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Droplet under confinement: Competition and coexistence with a soliton bound state
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We study the stability of a quantum droplet and its associated phase transitions in ultracold Bose-Bose
mixtures uniformly confined in quasi-two-dimensions with a periodic boundary condition. We show that the
confinement-induced boundary effect can be significant when increasing the atom number or reducing the
confinement length, which destabilizes the quantum droplet towards the formation of a soliton bound state that
has no density modulation along the confined direction. In particular, as increasing the atom number we find the
soliton reentrance, while the droplet is stabilized only within a finite number window that sensitively depends on
the confinement length. Near the droplet-soliton transitions, they can coexist with each other as two local minima
in the energy landscape. Finally, we map out the phase diagram for the droplet-soliton transition and coexistence
in the parameter plane of the atom number and confinement length for 39K boson mixtures.
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Introduction. A quantum droplet describes a self-bound
many-body state that is stabilized by a quantum effect. It has
aroused great attention recently in the field of ultracold atoms,
given its successful observation in dipolar gases [1–7] and
alkali Bose-Bose mixtures [8–11]. These dilute droplets, as
pointed out in a pioneering work by Petrov [12], are stabilized
by a subtle balance between the mean-field attraction and
the Lee-Huang-Yang (LHY) repulsion from quantum fluctua-
tions. A similar stabilization mechanism has been extended to
other droplet systems including Bose-Fermi mixtures [13–18]
and dipolar mixtures [19,20].

The stability of a quantum droplet depends crucially on
the geometry. In three dimensions (3D), quantum pressure
can dissociate the droplet at a small atom number and
lead to a liquid-gas transition as observed in experiments
[1–11]. In 2D and 1D, the quantum droplet can be supported
in quite different interaction regimes as compared to 3D,
due to distinct LHY corrections [21]. In this context, it is
conceptually important and also practically meaningful to in-
vestigate the confinement effect to droplet stability, which can
bridge different droplet physics between different geometries.
Previously, a few theoretical studies have revealed the signif-
icant change in the LHY correction in quasilow dimensions
[22–25]. In particular, it was shown that the LHY energy
of alkali bosons can gradually change sign to negative as
strengthening the confinement [24,25], while the resulting
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instability of the droplet and its associated transitions during
the dimensional reduction have not been discussed therein.

Apart from the significant change in the LHY correction,
we note that the confinement can affect the droplet stability in
two other nontrivial ways:

First, it introduces the boundary effect. As illustrated in
Fig. 1, for a droplet cloud confined uniformly with well-
defined boundaries (central plot), the boundary effect can
become significant when the droplet size σ is comparable to
the trap length L, either by increasing the atom number N or
by reducing L. In either case, the droplet will adjust itself
to be compatible with the boundary, which naturally causes
instability. Second, the confinement can introduce another
channel of a bound state to compete with the droplet. A well-
known example is the bright soliton in quasi-1D (Q1D) that
is stabilized by quantum pressure and mean-field attraction
[26–28]. In a recent experiment, the droplet-soliton transition
was explored in harmonically trapped quasi-1D Bose-Bose
mixtures [9], while the confinement effect to qualitatively
change the LHY correction was not considered therein.

In this Letter, by fully taking into account the confine-
ment effect, we study the stability of a quantum droplet and
its associated transitions in Bose-Bose mixtures confined in
Q2D. To clearly see the boundary effect, we consider the
uniform trap as depicted in Fig. 1 with a periodic boundary
condition. We find that when the boundary effect becomes
significant, the droplet becomes unstable and gives way to a
soliton bound state that displays no density modulation along
the confined direction. As increasing N , a soliton to droplet
transition occurs at relatively small N , while the boundary
effect leads to the soliton reentrance at a larger N and thus
the droplet can only be stabilized within a finite number
window that sensitively depends on the trap length. Near the
droplet-soliton transitions, they can coexist with each other
as two local minima in the energy landscape. Taking the 39K
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FIG. 1. Boundary effect to a quantum droplet. Starting from a 3D
droplet in a uniform trap with a length much larger than the droplet
size L � σ (central plot), the boundary effect can become significant
either by increasing the atom number (right) or by reducing the trap
length (left). In both cases, we have L � σ and the droplet will
encounter instability. Here, the droplet wave function is plotted only
along the trap direction.

boson mixture as an example, we have analyzed in detail the
droplet-soliton competition and finally mapped out the phase
diagram for their transition and coexistence.

Model. The Hamiltonian we consider for the Bose-Bose
mixture is H = ∫

drH (r), where (h̄ = 1)
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Here, r = (x, y, z) is the coordinate; mi and �i are respec-
tively the mass and field operator of boson species i; gii =
4πaii/mi and g12 = 2πa12/μ [μ = m1m2/(m1 + m2)] are the
intra- and interspecies couplings. Given the atoms confined
uniformly within z ∈ [−L, L] and under a periodic boundary
condition, the momenta along z are quantized as kn = nπ/L
(n = 0,±1, . . .). Based on the Bogoliubov theory for a ho-
mogeneous mixture with densities n1, n2 [29], we can get the
LHY energy per volume as
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Here, q and k are respectively 2D and 3D momentum vectors,
and the quasiparticle energies read
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with ωi =
√

ε
(i)
nq (ε (i)

nq + 2giini ) and ε (i)
nq = [(nπ/L)2 +

q2]/(2mi ). We note that the LHY energy in quasilow
dimensions was studied previously with different techniques
aiming at equal-mass mixtures [24,25]. In comparison,
our scheme can apply for an arbitrary mass ratio. For the
equal-mass case, we have checked that Eq. (1) can reproduce
the LHY energy effectively in the 2D [24] or 3D [12] limit,
given the boson densities are small or large.

To investigate the stability of a self-bound state, we have to
go beyond the bulk description and employ a spatially varying
ansatz �i(r). Using the single-mode approximation �i(r) =√

Niφ(r), we get the energy functional

E = Ekin + Emf + ELHY, (3)

with Ekin = ∑
i Ni

∫
drφ∗(r)(− ∇2

2mi
)φ(r), Emf =

(g11N2
1 /2 + g22N2

2 /2 + g12N1N2)
∫

dr|φ(r)|4, and ELHY =∫
drELHY[ni(r)], where ni(r) = Ni|φi(r)|2. We further assume

the number ratio as N1/N2 = √
g22/g11 in order to minimize

Emf [12]. The above assumptions have been shown to well
predict the liquid-gas transition in 3D droplets [8]. For the
current case with a uniform trap under a periodic condition
φ(r) = φ(r + 2Lez ), we adopt an extended Gaussian-type
ansatz as follows:

φ(r) = 1√
N
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2σ 2
xy

)[ ∞∑
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(
− (z − 2νL)2

2σ 2
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Here, N is the normalization factor; σxy and σz are two varia-
tional parameters and represent, respectively, the sizes of the
bound state along xy and z. The ground state can be obtained
by minimizing the energy functional (3) in terms of σxy and
σz.

In this Letter, we specifically consider the two hyper-
fine states of 39K atoms, |1〉 ≡ |F = 1, mF = 0〉, |2〉 ≡ |F =
1, mF = −1〉, as have been well studied in 3D droplet exper-
iments [8–10]. In this case, a22 = 35aB, a12 = −53aB (aB is
the Bohr radius), and a11 is highly tunable by a magnetic
field. We will focus on the mean-field collapse regime with
δa ≡ a12 + √

a11a22 < 0 and study how the uniform confine-
ment affects the quantum droplet. As we consider small |δa|
(
a11, a22, |a12|), in calculating ELHY we make the approx-
imation δa = 0 to avoid the phonon instability due to the
complex spectrum (2). Other rectified theories on this have
appeared recently [30–32]. Throughout this Letter, we choose
the length unit as l0 = 1 μm and the energy unit as E0 =
1/(2ml2

0 ), with mass m ≡ m1 = m2 for 39K atoms.
Results. By searching for the energy minimum in terms of

σxy and σz, i.e., ∂E/∂σxy,z = 0 and ∂2E/∂σ 2
xy,z > 0, we find

two candidates for the ground state: One is with finite σxy and
finite σz, which is smoothly connected to the 3D droplet for
large L and is thus referred to as a droplet; the other is with
finite σxy and σz → ∞, which exists only under confinement
and is referred to as a soliton. Different from the free-space
case, here no gaseous ground state (both σxy,z → ∞) can be
found for finite L.

(I) Droplet solution. Figure 2 shows the droplet solution
as varying N at different L. One can see from Fig. 2(a1)
that the total energy of the droplet continuously decreases as
shrinking L, which can be attributed to the reduced kinetic and
LHY energies, as shown by Ekin and ELHY in Fig. 2(a2). The
reduction of Ekin is due to the enlarged energy gap and thus
the suppressed excitation along z, while the reduction of ELHY

here is consistent with that found in Refs. [24,25]. Another
remarkable effect of finite L is that, now the droplet only
survives within a finite number window [Nd1, Nd2], unlike the
free-space droplet that just requires a lower number bound.
This number window becomes narrower for smaller L, due to
the existence of another competitive bound state (soliton, as
discussed later). In particular, we see that a small L also gives
rise to a small upper bound Nd2, which is consistent with the
boundary effect as illustrated in Fig. 1.

Figures 2(b1) and 2(b2) show both σxy and σz evolving
nonmonotonically with N . Near the vanishing point of the
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FIG. 2. Droplet state of 39K atoms in Q2D with δa = −5aB. (a1)
Droplet energy E as a function of atom number N at different L =
4, 3.5, 3. (a2) ELHY, Ekin, and Emf at different L for a given N = 7 ×
104. (b1), (b2) Droplet sizes σxy and σz as functions of N at various L
[with the same line style as in (a1)]. (c1) Contour plot of droplet wave
function φ(r) in the (x, z) plane (with y = 0) for a given N = 7 × 104

at L = 4 (upper panel) and 3 (lower panel). (c2) Peak density n0 (in
units of 1015/cm3) as a function of N . Here, the length and energy
units are respectively l0 = 1 μm and E0 = 1/(2ml2

0 ).

droplet (N ∼ Nd2), shrinking L will lead to a smaller σxy but
a larger σz. This means that by tightening the confinement,
the droplet wave function will change from isotropic to a
highly elongated shape (along z), as shown in Fig. 2(c1).
This counterintuitive change shares the same reason with the
suppressed Ekin as shown in Fig. 2(a2), i.e., the lower Ekin

corresponds to an extended density distribution along z. Be-
cause of such an extended distribution, the peak density of the
droplet n0 also decreases as L shrinks [see Fig. 2(c2)]. Here,
n0 ∼ 1015/cm3, the same order as the typical density in the
3D droplet experiment [10].

(II) Soliton solution. The uniform trap along z can also
support a soliton bound state (E < 0) at σz = ∞ and a fi-
nite σxy, where the density modulation is allowed only along
free (xy) directions but not along the confined (z) direction.

FIG. 3. Transverse size of the soliton state σxy(black square) for
39K atoms in Q2D. Here, δa = −5aB and L = 3. Red solid and blue
dashed lines are the fits to results in 2D and 3D limits (see text). The
length unit is l0 = 1 μm.

Different from the Q1D soliton [26–28], here only the kinetic
and mean-field terms are inadequate to support the Q2D soli-
ton. For instance, in the 2D limit we have Ekin ∼ σ−2

xy and
Emf ∼ −L−1σ−2

xy , and one has to incorporate the contribution
from ELHY to enable an energy minimum at finite σxy. It is
noted that such an LHY-stabilized soliton in the 2D limit is
equivalent to the 2D droplet studied in Ref. [21].

In Fig. 3 we show the soliton size σxy as varying N at fixed
L = 3 μm. To analyze its behavior in the limits of small and
large N , we utilize the analytical expressions of εLHY in 2D
and 3D limits [same as Eq. (7) in Ref. [24] and Eq. (5) in
Ref. [12]], and obtain the integrated LHY energy as

E2D
LHY = 2D2

mσ 2
xy

(
ln

[
4LD1/2

σxy

]
+ 8L2

9σ 2
xy

D

)
, (5)

E3D
LHY = 1024L

75πmσ 3
xy

D5/2, (6)

with D = (N1a11 + N2a22)/(2L). Minimizing the total energy
E , we can obtain the equilibrium size, σ 2D

xy or σ 3D
xy , in the 2D or

3D limit. Figure 3 shows that σ 2D
xy (σ 3D

xy ) fits well to the soliton
size σxy in a small (large) N limit.

(III) Droplet-soliton transition and coexistence. After iden-
tifying the individual property of the droplet and soliton, now
we turn to their competition. In Fig. 4, we show their transition
and coexistence as varying N for a fixed L = 3.5 μm. As seen
from Fig. 4(a), the energies of the droplet and soliton cross
twice as increasing N , which gives two transition points re-
spectively at Nc1 and Nc2. Their individual stability and mutual
competition can be clearly seen from the energy contour plots
E (σxy, σz ) in Figs. 4(c1)–4(c5), together with the comparison
of their transverse sizes σxy shown in Fig. 4(b).

For small N , the only energy minimum represents a soliton
state, i.e., at σz → ∞ and a finite σxy [see Fig. 4(c1)]. As in-
creasing N to Nd1, the droplet starts to emerge as an additional
energy minimum at finite σz and a smaller σxy [Fig. 4(b)]. The
double minima reach the same energy at the first transition
point Nc1 [Fig. 4(c2)].
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FIG. 4. Droplet-soliton transition and coexistence at δa = −5aB

and L = 3.5 μm. (a) Energies of a droplet (Ed ) and soliton (Es) as
functions of N . The energy crossings determine two transition points
at Nc1 and Nc2. (b) Transverse sizes of a droplet (σ d

xy) and soliton
(σ s

xy), in comparison with σ d,low
xy and σ d,upp

xy defining the droplet region
(see text). The droplet is locally stable for N ∈ (Nd1, Nd2), and is
the only stable (ground) state for N ∈ (Ns1, Ns2) when the soliton
enters the droplet region. Droplet-soliton coexistence occurs at N ∈
(Nd1, Ns1)

⋃
(Ns2, Nd2). (c1)–(c5) Contour plot of E (σxy, σz ) for vari-

ous N (104): (c1) 3, (c2) 3.48(= Nc1), (c3) 6, (c4) 10.66(= Nc2), (c5)
11.5. The white dashed-dotted and dashed lines mark the locations of
σ d,low

xy and σ d,upp
xy , and the red arrows mark σ s

xy. The length and energy
units are the same as in Fig. 2.

To facilitate later discussions, let us define the droplet
region in the energy landscape along σxy, with a lower bound
σ d,low

xy and upper bound σ
d,upp
xy [marked by the dashed-dotted

and dashed lines in Figs. 4(c2)–4(c4)]. Within this region, for
any σxy ∈ (σ d,low

xy , σ
d,upp
xy ), the energy minimum occurs at a

finite σz. By this definition, the droplet solution stays right
within the droplet region [see Figs. 4(c2)–4(c4)]. Then, if the
soliton solution also lies in this region [see the red arrow in
Fig. 4(c3)], i.e., when σ s

xy ∈ (σ d,low
xy , σ

d,upp
xy ), the soliton will

become locally unstable and flow from σz = ∞ to the droplet
minimum. In Fig. 4(b), we denote the atom number at the
intersection of σ s

xy and σ
d,upp
xy (σ d,low

xy ) as Ns1 (Ns2). Corre-
spondingly, when N ∈ [Ns1, Ns2], the droplet is the only stable
(ground) state [see Fig. 4(c3)]. For N beyond Ns2, the soliton

FIG. 5. Phase diagram in the (N, L) plane for a 39K mixture at
δa = −5aB. The droplet, soliton, and their coexistence regions are
respectively shown by blue, white, and gray colors. Their phase
boundaries are given by Nd1, Ns1, Ns2, and Nd2 (see text). Droplet-
soliton transitions (energy crossing) occur at Nc1 and Nc2, denoted by
solid and open orange diamonds.

moves outside the droplet region and they can coexist again.
Their second transition occurs at Nc2 when the two minima
have the same energy [see Fig. 4(c4)]. The coexistence stops
at N = Nd2 when the droplet solution disappears, and for
N > Nd2 the only stable state becomes a soliton again [see
Fig. 4(c5)].

From above, we can see that the droplet-soliton competi-
tion is most pronounced when the soliton enters the droplet
region, or equivalently, when they have similar sizes along
free (xy) directions. On the other hand, the instability of a
droplet as well as the reentrance of a soliton at large N > Nd2

can be attributed to the boundary effect (Fig. 1), when the
droplet size along z is comparable with L. For instance, at Nd2

we have σz = 1.86 μm, beyond half of L(= 3.5 μm).
(IV) Phase diagram. To fully explore the confinement ef-

fect, we have carried out a similar analysis for different L and
arrived at the phase diagram in the (N, L) plane as shown in
Fig. 5. One can see that the droplet state (blue color) only sur-
vives within a finite number window that sensitively depends
on the value of L. It will give way to the soliton state (white
color) for very large or small N , or for small L. Near their
transition points Nc1 and Nc2 (orange diamonds), the droplet
and soliton can coexist with each other, and their coexistence
region (gray color) also depends sensitively on L.

In fact, for L ∈ (2.6, 3) μm we find continuous transitions
between the droplet and soliton, i.e., the location of the energy
minimum continuously changes between finite and infinite σz

across the phase boundaries, For L < 2.6 μm, no droplet so-
lution can be found and the soliton is the only stable (ground)
state. Again this can be attributed to the large energy gap along
z, which rules out the possibility of density modulation in this
direction.

Discussion. In this Letter, we have adopted the local
density approximation (LDA) to compute ELHY, which was
shown to predict the 3D droplets quantitatively well [8,10].
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Here, we remark that the LDA is even more qualified in
our case, especially along the confined direction with small
L. This is because as reducing L, the density distribution
gets more extended along z and the kinetic energy is further
suppressed [Figs. 2(a2) and 2(c1)]. In fact, we have ηz ≡
Ekin,z/ELHY 
 1 in a broad parameter regime considered in
this Letter. Taking the case in Fig. 4, for instance, the ratio ηz is
0.46 at Nc1 and gets even smaller to 0.08 at Nc2. This is to say,
the typical length at which the density varies is visibly longer
than that characterizing the LHY correction, which justifies
the use of LDA in our setup.

Though we have taken the periodic boundary condition,
our results shed important light on the hard-wall boundary
case as realized in current experiments [33–37]. We expect
the hard-wall boundary can equally cause the instability of
a quantum droplet at small L or large N (see Fig. 1). Nev-
ertheless, in this case the droplet cannot extend outside the

boundary, in contrast with the periodic case [see Fig. 2(c1)],
and therefore the actual phase diagram needs to be reexam-
ined. Finally, it is worth pointing out that the boundary effect
here is unlikely to apply for harmonic confinements, where
the boundary cannot be clearly defined and the eigenmode
is also different. This follows that the physics near Nc2, as
mostly driven by the boundary effect, would disappear for
harmonically confined systems. This expectation is consistent
with the recent experiment of harmonically trapped Bose-
Bose mixtures in Q1D [9], where only one droplet-soliton
transition (corresponding to Nc1 in this Letter) was observed.
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