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The discovery of topological edge states that unidirectionally propagate along the boundary of system
without backscattering has enabled the development of new design principles for material or information
transport. Here, we show that the topological edge flow supported by the chiral active fluid composed of
spinners can even robustly transport an immersed intruder with the aid of the spinner-mediated depletion
interaction between the intruder and boundary. Importantly, the effective interaction significantly depends
on the dissipationless odd viscosity of the chiral active fluid, which originates from the spinning-induced
breaking of time-reversal and parity symmetries, rendering the transport controllable. Our findings propose
a novel avenue for robust cargo transport and could open a range of new possibilities throughout biological
and microfluidic systems.
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Introduction.—The concept of topological insulator,
originally discovered in electronic quantum Hall state
[1–7], has been generalized to a variety of physical systems,
ranging from mesoscopic photonic materials [8–10] to
macroscopic mechanical lattices [11–15], and from passive
fluids [16–20] to active matters [21–24]. Thanks to non-
trivial bulk band structures, topological insulator systems,
being insulating in the bulk, hold topologically protected
edge modes [7,10,15,20], which propagate unidirectionally
along the system boundary and are immune to disorder. The
edge modes thus provide robust channels for information or
material transport. Because of their fundamental interest
and potential application, the exploration and exploitation
of topological edge states is at the forefront of condensed-
matter physics.
Without exception, the one-way edge modes either

directly transport the essential constituents of topologically
nontrivial systems (e.g., electron or photon) [7,10] or
transmit the edge excitations of the constituents (like
phonon) [15,19,20]. Comparing to traditional fluid flows
that can entrain immersed objects, a quite interesting
question is whether or not a topological edge flow can
topologically and unidirectionally transport an intruder
(i.e., cargo) that itself does not support an edge mode.
Fundamentally different from the entrainment of an object
by the traditional fluid flow, the topological edge transport

of the intruder, if feasible, provides a robust, one-way, and
local edge channel for cargo transport, immune to
obstacles. However, the presence of the topological edge
flow does not mean that the immersed intruder can also
experience a topological edge transport. To achieve such a
cargo transport, two additional conditions are required.
First, the intruder needs to spontaneously and stably stay
clinging to the boundary such that it can be robustly
entrained by the local edge flow along the system boun-
dary, otherwise the intruder will often locate in the bulk.
Second, the intruder can be controllably released from the
boundary at the expected target position, otherwise the
intruder will always stay at the boundary. For topologically
nontrivial systems, the two conditions seem rather unusual
to be satisfied.
Here, we study the feasibility of the topologically

protected edge transport of the intruder in a chiral active
matter through experiment, simulation, and theory. The
chiral active matter consists of a two-dimensional fluid of
interacting self-spinning particles [25,26], which breaks
both time-reversal and parity symmetries. Interestingly, the
chiral active fluid spontaneously yields a one-way edge
flow along the system boundary [25,27–29], which was
proven to be topologically protected by mapping to model
quantum Hamiltonians with nontrivial topology [30].
Moreover, the spinner fluid possesses a nondissipative
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transport coefficient called “odd viscosity” or “Hall
viscosity” [31–36], which was usually discussed in the
context of quantum Hall fluids [37]. The odd viscosity
arises from the breaking of time-reversal symmetry [38,39]
and is related to spinner activity [31,32].
When immersing an intruder in the chiral active fluid, the

spinners give rise to a depletionlike attraction between
the intruder and boundary, which is inclined to push the
intruder to the boundary. Importantly, the odd viscosity can
significantly strengthen the effective attraction, which is
tunable through the spinner activity. Thus, the present
system meets all the conditions required for the topological
edge transport of the intruder. Our findings constitute proof
of principle that topological edge flow can robustly trans-
port cargoes, and extend the concept of topological edge
transport from the constituents of topological systems to the
immersed intruders.
Experiment.—The experimental spinners are granular

gears of external diameter σs with tilted legs [Fig. 1(a)],
fabricated via a 3D printer [29]. A monolayer of spinners
are put in a circular vessel of radius Rw ≃ 10σs mounted on
an electromagnetic shaker, whose vertical vibration is
translated into a unidirectional active rotation of the spinner
[40], with the spin angular velocity ωs. Meanwhile, the
spinner experiences stochastic motion. The interactions
between the gears are short-ranged repulsive, with a large
interparticle friction. This active fluid exhibits a topologi-
cally protected edge flow [30], with its direction deter-
mined by the gear rotation. It has been shown that the
topological edge flow can generally occur at a boundary
and is not sensitive to the boundary geometry and the
system size, as long as the spinners have nonvanishing
friction with the environment [30].

To study if the topological edge flow of the spinners can
robustly transport an immersed intruder, we put a large
smooth passive disk of diameter σp in the spinner fluid,
and fix a long and thin obstacle at the vessel boundary
[Fig. 1(c)]. Because of the depletionlike interaction
between the intruder and boundary mediated by the
spinners (depletants), which still exists in macroscopic
and nonequilibrium systems [41–45], the passive intruder
tends to stay at the container boundary, and then is
unidirectionally entrained along the boundary by the
topological edge flow, as displayed in Fig. 1(c) [40].
Strikingly, when encountering the obstacle, the intruder
clings to and bypasses it without back reflection, since the
obstacle can be regarded as a part of the boundary. This
result clearly indicates that the intruder can indeed be
robustly transported by the topological edge flow of the
spinner fluid. Because the spinner edge flow is quite robust,
as long as the intruder-boundary depletion attraction is
sufficiently strong, a stable edge transport of the intruder
will take place, insensitive to the boundary properties. Note
that the depletionlike attraction is negligible in conven-
tional molecular fluids, since the attraction range deter-
mined by the molecular size is too small.
The edge flow velocity of the spinners and the transport

velocity of the intruder are quantified in Fig. 2(a). Both
velocities increase with the spinner packing fraction ρ in the
fluid regime, since the driving force of the edge flow,
arising from the interspinner friction, increases with ρ.
Moreover, because the edge flow decays quickly from the
boundary and the intruder is entrained averagely by the
fluid flow located around σp=2 with respect to the boun-
dary, the intruder transport velocity is smaller than the edge
flow velocity of the spinner (at σs=2 from the boundary).

FIG. 1. (a) Top view (top) and side view (bottom) of the gearlike spinner in experiments. The arrow denotes the clockwise rotation of
the spinner. (b) Sketch of the counterclockwise rotating spinner in simulations, which is intendedly represented as a Janus particle to
highlight its orientation. (c) Experimental and (d) simulation snapshots of a large passive disk transported in the chiral active fluid
confined by a circular boundary with a rodlike obstacle, where σp ¼ 4σs and ρ ¼ 0.6. In (c) and (d), the red numbers denote the
experimental and the scaled simulation times, respectively, and the arrows represent the direction of the edge transport (edge flow). In
the simulation Td ¼ 20 is used.
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We define the dwell probability of the intruder at the
boundary Pr as the ratio of the intruder dwell time at the
boundary to the experimental duration after the intruder
first touching the boundary. The Pr increases with ρ and
saturates to 1 over ρ ¼ 0.5 (i.e., stable transport) [Fig. 2(a)],
meaning that the depletionlike interaction strengthens with
the depletant concentration, similar to the equilibrium case
[46,47]. Figure 2(b) shows that the intruder transport
velocity decreases with increasing σp, as the center of
larger intruder separates farther from the boundary (subject
to smaller local flow). While, Pr grows with σp and
approaches 1 when σp > 3σs, implying that the larger
intruder suffers from the stronger depletion attraction, as
the equilibrium case [46,47].
For comparison, we also measure Pr of the intruder in a

fluid of passive gears with completely vertical legs. In this
case, the active rotation, hence the edge flow, are absent
[40]. We find for ρ ¼ 0.6 (0.55), Pr is 0.71 (0.64) [stars in
Fig. 2(a)], much lower than their active counterparts
(Pr≃1). So, the equilibrium depletion effect is not strong
enough for a stable transport. This implies that the active
spinning largely enhances the depletion attraction on the
intruder, which is attributed to the odd viscosity of the
spinner fluid, as will be discussed later.
Simulation.—In simulations, the spinner is modeled as a

disk driven by a torque Td [Fig. 1(b)]. Different spinners
interact via a short-ranged repulsive potential and a
tangential friction [29,40,48]; while both the wall-particle
and intruder-spinner interactions are repulsive without
friction. The particle dynamics evolves according to the

Langevin equation [40], with the spinner translational
and rotational friction coefficients from the environment
separately γs and γr ¼ 1

3
σ2sγs, and the intruder friction

coefficient taken as γp ¼ γs. For Td ¼ 5, the simulation and
experimental spinners have a similar Péclet number.
Figure 1(d) displays typical simulation snapshots [40],
reproducing the experimental observations. In simulations,
we also quantify the dwell probability and transport
velocity of the intruder for various ρ and σp [Figs. 2(c)
and 2(d)], which well agree with the experiments. We point
out that the intruders of other shapes can still exhibit similar
edge transport, whose transport speeds depend on the
separation between the intruder center and the boundary.
To further probe the experimentally observed increase of

Pr of the intruder induced by the spinner rotation, which is
critical for a stable edge transport, we perform simulations
for various Td. Figure 3(a) shows that both Pr and the
intruder transport velocity increase with Td. The stable
transport (Pr≃1) can only be realized for Td beyond a
threshold, otherwise the intruder can diffuse away from
the boundary, indicating that the intruder edge transport can
be controlled by tuning the spinner activity. The Td
dependence of the transport velocity is directly related
to the increase of the edge flow velocity with Td; while
the dependence of Pr on Td originates from the
enhanced depletion force on the intruder due to the
spinning. Figure 3(b) shows that the depletion attraction
between the intruder and boundary indeed strengthens with
Td, which is obtained from independent simulations
with the intruder clinging to the external wall. When the
intruder-boundary effective attractive potential largely
overwhelms thermal kinetic energy, Pr approaches 1. In
equilibrium, the depletion interaction is proportional to the
osmotic pressure contributed by small depletants [46,49];
while, in the spinner fluid, the effective attraction is
determined by the radial stress on the intruder exerted
by the spinners. Based on this picture, we theoretically
investigate the mechanism of the spinning-enhanced
depletion interaction.

FIG. 2. Dwell probability (circle, left longitudinal axis) and
transport velocity (triangle, right longitudinal axis) of the intruder
as a function of the spinner packing fraction (a),(c) and the
intruder size (b),(d). For comparison, the spinner edge flow
velocity (square) is plotted. Here, the velocities are reduced by an
isolated-spinner quantity ωsσs [40]. The star in (a) denotes Pr in
the passive gear fluid. The data in (a),(b) and (c),(d) correspond to
the experiment and simulation, respectively. In (a),(c), σp ¼ 4σs;
and in (b),(d), ρ ¼ 0.55 for experiments and ρ ¼ 0.6 for simu-
lations. In simulations Td ¼ 10 is used.

FIG. 3. (a) Edge flow velocity of the spinner (square) and
transport velocity (triangle) and dwell probability (circle) of the
intruder as a function of Td. Dashed and dotted lines are
separately the velocities of the spinner and the intruder, obtained
from Eq. (4). (b) Effective attraction on the intruder versus Td,
obtained from simulation (circle) and theory (square). The inset
plots the odd viscosity of the spinner fluid versus Td. Here, we fix
ρ ¼ 0.6 and σp ¼ 4σs.
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Theory.—The chiral active fluid is described by a
2D continuum hydrodynamic theory [31,32], with the incom-
pressible condition, as used in previous work [25,28,30,32].
The hydrodynamic variables are the momentum density
ϱvðr; tÞ and the angular momentum density Iωðr; tÞ, with
ϱ the mass density and I the moment-of-inertia density.
The conservation of momentum takes the form

ϱð∂t þ v · ∇Þvi ¼ ∂jσij − Γvi; ð1Þ

with Γ the frictional coefficient from environment, related
to its single-particle counterparts by Γ ¼ 4γsρ=πσ2s. The
stress tensor σij is expressed as

σij ¼ −pδij þ ηð∂ivj þ ∂jviÞ þ ϵijηRð2ω −ΩÞ
þ ηoð∂iϵjkvk þ ϵik∂kvjÞ; ð2Þ

with p the pressure, ϵij the Levi-Civita symbol, and
Ω ¼ ẑ · ð∇ × vÞ the vorticity of the flow field. In
Eq. (2), the second term refers to the shear stress with
η the shear viscosity, the third term to the antisymmetric
frictional stress that couples the spin to the flow with ηR
the rotational viscosity, and the last term to the stress
contributed by the dissipationless odd viscosity ηo. The
odd viscosity term is allowed in the chiral active fluid due
to the breaking of time-reversal and parity symmetries,
and its microscopic origin can be intuitively understood
by comparing Figs. 4(a) and 4(b). In the presence of a

shear flow, the odd viscosity leads to a nonzero normal
stress.
For a quantitative analysis, we obtain η ¼ 23.5 and

ηR ¼ 3.32 for ρ ¼ 0.6 from independent simulations, as
done in our previous work [29]. And, ηo can be obtained
from Eq. (2) by imposing a small uniform shear on
the active fluid, say ∂xvy, as sketched in Figs. 4(b) and
4(c) [40]. In this case, the normal stresses across the
x and y planes separately read σxx ¼ −pþ ηo∂xvy and
σyy ¼ −p − ηo∂xvy, so that ηo ¼ 1

2
ðσxx − σyyÞð∂xvyÞ−1.

Thus, the odd viscosity is computed independently [the
inset of Fig. 3(b)].
The angular momentum conservation reads

Ið∂t þ v · ∇Þω ¼ −Γrω − 2ηRð2ω − ΩÞ þD∇2ωþ τ;

ð3Þ

with Γr ¼ 4γrρ=πσ2s the rotational friction coefficient from
environment and τ ¼ 4Tdρ=πσ2s the torque density field.
Here, D is the translational diffusion coefficient, negligible
for the present concentration.
We first calculate the edge flow velocity of the

spinners along the external boundary wall. In a polar
coordinate system, the radial velocity vanishes due to
symmetry. In low Reynolds number regime, the steady-state
tangential velocity vtðrÞ is obtained by solving Eqs. (1) and
(3) with the boundary conditions vtðr ¼ 0Þ ¼ 0 and
σϕrðr¼R0

wÞ¼0 (frictionless wall andR0
w ¼ Rw − σs=2) [40],

vtðrÞ ¼
2ηRη

0τI1ðr=η0Þ
ηðΓr þ 4ηRÞI2ðR0

w=η0Þ þ ηRΓrI0ðR0
w=η0Þ

: ð4Þ

Here, η0 ¼ ½ðηRΓr þ ηΓr þ 4ηηRÞ=ΓðΓr þ 4ηRÞ�1=2, and I0,
I1, and I2 are the zeroth, first, and second-order Bessel
functions of imaginary argument, respectively. Inserting all
known quantities into Eq. (4) yields the spinner edge velocity
vtðR0

wÞ and the intruder transport velocity vtðRw − σp=2Þ, in
good agreement with the simulations [Fig. 3(a)].
To understand the spinning-enhanced depletion force on

the intruder, we notice that the intruder can be regarded as
an internal boundary, so the spinner fluid spontaneously
develops an edge flow around it. The steady-state tangential
velocity and pressure are similarly calculated from Eqs. (1)
and (3) with the boundary conditions vtðr → ∞Þ ¼ 0 and
σϕrðr ¼ RÞ ¼ 0 [frictionless intruder, R ¼ ðσp þ σsÞ=2,
and the intruder situated at the origin of an unbounded
system] [40],

vtðrÞ ¼
−2ηRη0τK1ðr=η0Þ

ηðΓr þ 4ηRÞK2ðR=η0Þ þ ηRΓrK0ðR=η0Þ
; ð5Þ

with K0, K1, and K2 being the zeroth, first, and second-
order Hankel functions of imaginary argument, respec-
tively, and

FIG. 4. Sketch of the frictional collisions between spinners
separated by an imaginary plane (dashed line), illustrating the
origin of the odd viscosity. The yellow arrow at one spinner
surface denotes the friction exerted by the other. (a) In the absence
of shear flow, the interparticle collision direction (from center to
center) is uniformly distributed, so the interparticle friction
averagely produces a tangential stress parallel to the plane,
corresponding to the rotational viscosity term in Eq. (2), and
does not contribute to normal stress. (b),(c) In the presence of a
shear flow ∂xvy > 0 (red arrow), the spinners on the right have
larger upward velocity, so they are inclined to collide with their
left neighbors from below, resulting in a biased collision
direction. Such biased collisions contribute to a nonzero normal
stress σo across the imaginary plane, which is (b) negative for
a plane parallel to the flow and (c) positive for a plane
perpendicular to the flow.
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pðrÞ ¼ pð∞Þ þ ηoΩðrÞ: ð6Þ

Here, pð∞Þ arises as an integration constant and
corresponds to the pressure at infinity due to vanishing
flow at infinity. In the absence of flow, the active spinning
does not contribute to normal stress, so pð∞Þ can
be reasonably approximated as the equilibrium value,
pð∞Þ ¼ ð4ρkBT=πσ2sÞf1 þ 2ρ½ð1 − 7ρ=16Þ=ð1 − ρÞ2−
ðρ3=16Þ=8ð1 − ρÞ4�g, obtained from avirial expansion [50].
Equations (2) and (6) yield the radial stress on the

intruder

σrrðRÞ ¼ −pð∞Þ − 2ηovtðRÞR−1; ð7Þ

which shows the odd viscosity contributes to a spinning-
dependent radial stress, enhancing the total radial stress
owing to ηovtðRÞ ≥ 0. Since both ηo and vtðRÞ are
odd functions of the spinner chirality, ηovtðRÞ ≥ 0
remains for oppositely rotating spinners. Thus, the
depletionlike attraction on the intruder at the external
boundary equals to −σrrðRÞAe, with Ae the effective
cross section of the intruder colliding with the spinner,
approximated as Ae ≃ σp. Combining Eqs. (5) and (7)
with ηo, pð∞Þ and Ae, the effective attraction is obtained
as a function of Td [Fig. 3(b)], consistent with the
simulation. In the above calculation, we ignore the effect
of the external boundary wall on the flow around the
intruder, hence the stress, as the edge flow is short
ranged.
Conclusion.—Topological edge flow and dissipation-

less odd viscosity are two most fascinating features of
chiral active fluids composed of spinners, analogous to
quantum Hall systems. We demonstrate that the combi-
nation of the two properties with the spinner-mediated
depletion interaction can lead to a robust and unidirec-
tional edge transport of immersed passive intruder,
which is immune to obstacles. Remarkably, the odd
viscosity significantly enhances the intruder-boundary
effective attraction, which is adjustable through the
spinner activity, enabling the manipulation of the
intruder transport. Our work thus reveals a novel sce-
nario of robust cargo transport, which could be relevant
in biological and synthetic active systems. It remains an
interesting open question whether similar transport
phenomena can be observed in other types of topologi-
cally nontrivial systems.
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