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In the presence of both space and time reversal symmetries, an s-wave A1g superconducting state is
usually topologically trivial. Here, we demonstrate that an exception can take place in a type of
nonsymmorphic lattice structure. We specify the demonstration in a time reversal invariant system with a
centrosymmetric space group P4=nmm, the symmetry that governs iron-based superconductors, by
showing the existence of a second-order topological state protected by a mirror symmetry. The topological
superconductivity is featured by 2Z degenerate Dirac cones on the (10) edge and Z pairs of Majorana
modes at the intersection between the (11) and ð11̄Þ edges. The topological invariance and Fermi surface
criterion for the topological state are provided. Moreover, we point out that the previously proposed s-wave
state in iron-based superconductors, which features a sign-changed superconducting order parameter
between two electron pockets, is such a topological state. Thus, these results not only open a new route to
pursue topological superconductivity, but also establish a measurable quantity to settle one long-lasting
debate on the pairing nature of iron-based superconductors.
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I. INTRODUCTION

Stimulated by potential application in fault-tolerant
quantum computation, the search for topological super-
conductors [1–8] is a central topic in condensed matter
physics. After decades of efforts, great progress has
been made both theoretically [9–24] and experimentally
[25–36]. In recent years, motivated by the study in topo-
logical insulators [37–47], more and more attention has
been paid to the topological superconducting phases
protected by crystalline symmetries, dubbed as topo-
logical crystalline superconductors. The crystalline sym-
metries play a dramatic role in classifying the topological
superconductors. On one hand, the crystalline sym-
metries greatly enrich the classification. For example, in
the presence of mirror symmetry [48–51], rotational

symmetry [52–58], or glide mirror symmetry [59–61],
many new topological superconducting states beyond the
Altland-Zirnbauer classification [62,63] have been identi-
fied. On the other hand, the crystalline symmetries have
strict constraints on the values of the topological indices.
For instance, if a class-DIII superconductor is centrosym-
metric with the superconducting order belonging to a trivial
irreducible representation, it can hardly carry any topo-
logical nontrivial property [64–66]. Thus, normally, abun-
dant s-wave centrosymmetric superconductors cannot be
topological superconductors.
In this study, we show that the s-wave superconducting

states in centrosymmetric superconductors can carry non-
trivial topology in the presence of additional nonsym-
morphic symmetries, i.e., the glide mirror symmetry or the
screw rotation symmetry. This exception stems from
anomalous band degeneracies induced by the nonsymmor-
phic symmetries. We specify the study with the space group
P4=nmm (#.129), the nonsymmorphic symmetry group
that governs iron-based superconductors. A second-order
topological superconducting state in the A1g pairing chan-
nel is constructed and is characterized by a 2Z winding
number protected by the mirror symmetry. The state hosts
2Z degenerate Dirac cones on the edge and Z pairs of
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Majorana modes at the corner, where the corresponding
mirror symmetry is preserved. We develop a Fermi surface
criterion for such topological superconductors. The pre-
viously proposed s-wave state for iron-based superconduc-
tors [67,68], which are characterized by a sign-changed
superconducting order parameter between two electron
pockets, belongs to this exceptional class of topological
states. Thus, the theory also establishes a directly measur-
able quantity to reveal the pairing nature in iron-based
superconductors.
In the following, we first introduce the centrosymmetric

space group P4=nmm in the quasi-two-dimensional (2D)
case and analyze the group structure by studying the
commutation relation between different symmetry opera-
tions. Then, we demonstrate that in such systems, due to the
nonsymmorphic property, in the reciprocal space on the
Brillouin zone boundary the corresponding little group has
a unique group structure, leading to anomalous band
degeneracies which can never be realized in the point
group condition. Based on the anomalous band degener-
acies, we show that topological superconductivity can be
realized in such systems even if the pairing order is s-wave
(A1g). We also provide a Fermi surface criterion for the
development of topological superconductivity. To verify
the theory, we carry out numerical simulations based on a
toy model and analytic analysis based on the low-energy
edge Hamiltonian. The study is also generalized to three-
dimensional (3D) systems. After establishing the theory, we
show that the theory can be applied to the previously
proposed extended s-wave state in iron-based supercon-
ductors [67,68]. In a similar spirit as previous studies
[17,69], we suggest that, by studying the topological
physics in the iron-based superconductors, essential infor-
mation on the pairing nature can be revealed.

II. GROUP STRUCTURE OF P4=nmm

We begin with a brief review of the structure of the space
group G ¼ P4=nmm. We consider a quasi-2D lattice
structure shown in Fig. 1(a), similar to monolayer iron-
based superconductors. To describe the symmetry group,
we adopt the Seitz operators fαjτg, which act on the lattice
in the way fαjτgr ¼ αrþ τ. It is easy to check the Seitz
operators have the following properties:

fαjτg−1 ¼ fα−1j − α−1τg;
fα1jτ1gfα2jτ2g ¼ fα1α2jα1τ2 þ τ1g; ð1Þ

where α is a point group operation and τ is a spatial
translation. Apparently, the translation symmetry in the
space group can be denoted as fEjt1a1 þ t2a2g, with the
primitive lattice translations ai and integers ti. The quotient
group G=T, with T being the translation group, is specified
by 16 symmetry operations and is expressed instructively
as [70]

G=T ¼ D2d ⊗ Z2; ð2Þ

with D2d the point group defined on the lattice sites and Z2

a two-element group including the inversion symmetry
defined at the center of the bond between two nearest lattice
sites, as illustrated in Fig. 1(a). In Eq. (2), the quotient
group is a direct product of the two subgroups in a sense
that symmetry operations are equivalent if they differ by a
lattice translation. According to Eq. (2), the quotient group
G=T can be generated by the generators of the two
subgroups D2d and Z2 including fMyj0g, fS4zj0g, and
fIjτ0g, with all the symmetry operations being defined at
the lattice site in Fig. 1(a) and τ0 ¼ a1=2þ a2=2. The point

FIG. 1. (a) shows the monolayer case for the lattice structure
respecting the space group P4=nmm. The translational symmetry
from sublattice A to B is broken by an intrinsic effective electric
field normal to the xy plane allowed by the symmetry [71–73],
with � labeling the direction. The green point represents the
inversion center. Throughout the paper, the [10] ([01]) direction is
along the x (y) axis. (b) shows the corresponding first Brillouin
zone, with G, X, M, and Y the (0,0), ðπ; 0Þ, ðπ; πÞ, and ð0; πÞ
points, respectively. Notice that ðkx; kyÞ in the Brillouin zone are
defined according to ðx; yÞ in (a), and the lines ΣY (M-Y-M) and
ΣG (X-G-X) are invariant under the mirror symmetry fMyj0g. For
a system respecting the space group P4=nmm, its energy bands
along ΣG and ΣY can be sketched in (c) and (d), respectively, with
the red lines representing the bands in the fMyj0g invariant
subspace with eigenvaluemy ¼ þi and the black dashed lines the
bands in the subspace with my ¼ −i. In the s-wave state,
according to the criterion in Eq. (8), whatever the pairing order
Δ is like on ΣG, it does not contribute to topological super-
conductivity, while the sign-changed pairing on ΣY illustrated in
(d) (open purple circles and closed purple dots represent opposite
signs of Δ on the Fermi points) leads to second-order topological
superconductivity protected by the mirror symmetry fMyj0g. The
blue dotted lines in (c) and (d) label the Fermi level.
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group part of the above operations, i.e., α in the Seitz
operator fαjτg, acts on the coordinates in Fig. 1(a) as

My∶ ðx; y; zÞ ↦ ðx;−y; zÞ;
S4z∶ ðx; y; zÞ ↦ ðy;−x;−zÞ;
I∶ ðx; y; zÞ ↦ ð−x;−y;−zÞ: ð3Þ

The other symmetry operations in G=T are specified in the
Appendix A.
Because of the special structure of the quotient group

G=T shown in Eq. (2), we can obtain the following two
conclusions. (i) Since D2d and Z2 are two point groups
defined on two inequivalent points, G is nonsymmorphic
and there are glide mirror and screw rotation operations in
G=T. (ii) Different from the point group condition where
the inversion symmetry always commutes with other point
group symmetries, here the inversion symmetry in Z2 does
not commute with the point group symmetries in D2d; for
example, fIjτ0gfMyj0g ¼ fEja2gfMyj0gfIjτ0g.

III. SYMMETRY CONSTRAINTS
ON BLOCH STATES

First, we analyze the constraint of the electronic struc-
tures by the nonsymmorphic symmetries on the boundaries
of the Brillouin zone shown in Fig. 1(b), in time reversal
invariant systems. We compare the ΣY (M-Y-M) line with
the ΣG (X-G-X) line in the Brillouin zone. The ΣY=G line is
invariant under the group C2v ⊗ Z2, which includes the
following symmetry operations:

fEj0g; fC2zj0g; fIjτ0g; fMzjτ0g;
fMxj0g; fMyj0g; fC2xjτ0g; fC2yjτ0g; ð4Þ

where τ0 ¼ a1=2þ a2=2 and all the symmetry operations
are defined at the lattice site in Fig. 1(a). Besides the
crystalline symmetries, we can also consider the operation
fIjτ0gΘ with Θ being the time reversal symmetry. fIjτ0gΘ
is antiunitary and leaves every k point unchanged in the
Brillouin zone. We can use the above symmetries to
classify the eigenstates on ΣY=G. Here, we focus on the
mirror symmetry fMyj0g, which allows us to specify
eigenvalues of Bloch states as my ¼ �i. In the spinful
condition, the symmetries satisfy

ðfIjτ0gΘÞðfIjτ0gΘÞjφðkÞi ¼ −jφðkÞi; ð5aÞ

ðfIjτ0gΘÞfMyj0gjφðkÞi ¼ eikyfMyj0gðfIjτ0gΘÞjφðkÞi:
ð5bÞ

Equation (5a) provides the Kramers’ degeneracy which
applies for every k point in the Brillouin zone. In
deriving Eq. (5b), we utilize the following facts.

fIjτ0gfMyj0g ¼ fEja2gfMyj0gfIjτ0g, and the time rever-
sal symmetry commutes with the crystalline symmetries in
a paramagnetic system. The phase factor in Eq. (5b) makes
the commutation relation between the symmetries fIjτ0g
and fIjτ0gfMyj0g k dependent. Specifically, along the
lines ΣY and ΣG, it gives

ky ¼ π∶ ½fIjτ0gΘ; fMyj0g�þ ¼ 0; ð6aÞ

ky ¼ 0∶ ½fIjτ0gΘ; fMyj0g�− ¼ 0; ð6bÞ

where ½ �− and ½ �þ label the commutation and anticommu-
tation operations, respectively [74]. Based on Eqs. (5) and
(6), for a Bloch state with eigenvalue my, there is a
degenerate state −my on ΣG and a degenerate state my

on ΣY .
At the Y and M points on ΣY , besides the above

symmetries, the twofold rotational symmetry fC2zj0g also
preserves. In the spinful condition, fC2zj0g always maps a
state with the mirror eigenvalue my to a state with −my.
Therefore, the bands must be fourfold degenerate at Y and
M. The degeneracy between themy and −my states at Y and
M is also consistent with the constraint of the time reversal
symmetry. Based on the above analysis, we can obtain
an overall picture on the bands along the ΣY=G line as
illustrated in Figs. 1(c) and 1(d). Notice that the bands at X
in Fig. 1(c) are also fourfold degenerate, because the X
point and the Y point are related by the fourfold rotational
symmetry in the space group.

IV. s-WAVE (A1g) TOPOLOGICAL
SUPERCONDUCTIVITY

We consider s-wave superconductivity in the 2D lattice
in Fig. 1(a). Here, we focus on the time reversal invariant
superconductors, which belong to class DIII and are
characterized by a Z2 topological index according to the
Altland-Zirnbauer classification [62,63]. The crystalline
symmetries have strict constraints on the values of the
topological index. In the presence of inversion symmetry,
the above Z2 index in an s-wave superconductor is always
trivial [64–66]. A brief proof is given in Appendix D.
Though Z2 is trivial, as we show, the s-wave super-
conductors respecting the lattice in Fig. 1(a) can be
mirror-symmetry-protected topological superconductors.
Specifically, we consider the topological classification of
s-wave superconducting states protected by the mirror
symmetry fMyj0g in the following.
In class-DIII superconductors, there always exists the

chiral symmetry C, which is the product of the time reversal
symmetry and the particle-hole symmetry. In the s-wave
state, the chiral symmetry commutates with the crystalline
symmetries and is preserved in each of the fMyj0g
invariant subspaces [48,50]. Now we consider the two
fMyj0g invariant lines ΣY and ΣG, in the Brillouin zone,
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and treat them as two one-dimensional (1D) subsystems.
The winding number in each of the mirror subspaces along
the ΣY=G line is given by [50]

w�i
Y=G ¼

Z
Y=G

dkx
2π

tr½CH−1
�iðkÞ∂kxH�iðkÞ�; ð7Þ

where H�iðkÞ is the superconducting Hamiltonian in the
my ¼ �i mirror subspace. The winding numbers along the
two lines are dramatically different due to the different
symmetry-enforced band degeneracies along the two lines
shown in Figs. 1(c) and 1(d). Considering the time reversal
and space inversion symmetries together with the con-
straints in Eq. (6), we can obtain the following conclusions
(details in Appendix C): (i) On ΣG, the inversion symmetry
preserves in each mirror invariant subspace, leading to the
winding number always being trivial, namely, wþi

G ¼
−w−i

G ¼ 0; (ii) on ΣY , the inversion symmetry no longer
preserves in the mirror invariant subspaces, and the
classification is wþi

Y ¼ −w−i
Y ¼ 2Z. The results can be

further understood by calculating the 1D winding numbers
through the Fermi surface criterion [64,69,75]

w ¼ 1

2

X
j

sgn½vðkF;jÞΔðkF;jÞ�; ð8Þ

where vðkF;jÞ and ΔðkF;jÞ are the Fermi velocity and
superconducting pairing at the jth Fermi point, respec-
tively, and sgn[] is the sign function. For instance, to
calculate wþi

Y=G, the summation in Eq. (8) includes all the
Fermi points with mirror eigenvalue my ¼ þi on the ΣY=G

line, with vðkFÞ being the corresponding Fermi velocity
along the ΣY=G line and ΔðkFÞ the superconducting pairing
at the corresponding Fermi point; the winding number in
the my ¼ −i mirror subspace can be calculated similarly.
On the other hand, for an s-wave centrosymmetric super-
conducting state, the pairing order is an even function of k.
The Fermi velocity on ΣG is odd of k in each mirror
subspace as indicated in Fig. 1(c), leading to w�i

G ¼ 0

according to the criterion in Eq. (8). However, on ΣY , the
bands are no longer symmetric between k and −k. The
nonzero w�i

Y can be generated if the pairing order has a sign
change as indicated in Fig. 1(d). Specifically, the topo-
logical number is characterized by jw�i

Y j Dirac cones
degenerate at ky ¼ π on the (10) edge. It is worth
mentioning that the above analysis also applies for the
mirror symmetry fMxj0g, since fMxj0g and fMyj0g are
related by the fourfold rotational symmetry in the space
group P4=nmm.
We emphasize that the above topological superconduc-

tivity is unique for centrosymmetric superconductors gov-
erned by nonsymmorphic groups, since the anomalous
band degeneracy in Fig. 1(d) can occur only in the presence
of the nonsymmorphic symmetries.

V. LATTICE MODEL

To verify the above analysis, we construct a simple
two-orbital (px and py) model in the lattice in Fig. 1(a).
The px (py) orbital is defined along the x (y) direction in the
lattice. The band structure with respect to the P4=nmm
symmetry can be generally described by

H0 ¼ t cos kxs0ðσ0 þ σ3Þη0 þ t cos kys0ðσ0 − σ3Þη0
þ 4t1 cos

kx
2
cos

ky
2
s0σ0η1 − 4t2 sin

kx
2
sin

ky
2
s0σ1η1

− λR sin kxs2ðσ0 þ σ3Þη3 − λR sin kys1ðσ0 − σ3Þη3
þ λ

2
s3σ2η0; ð9Þ

where si, σi, and ηi are the Pauli matrices standing for
the spin, orbital, and sublattice degrees of freedom,
respectively. In the model, t is the nearest-neighbor
(NN) intrasublattice intraorbital hopping, t1=2 is the NN
intersublattice intraorbital or interorbital hopping, λ is the
atomic spin-orbit coupling, and λR is the Rashba-type spin-
orbit coupling allowed by the symmetry group P4=nmm.
It takes the form iλRðd × sÞ · ez in real space, with d the
intrasublattice NN vector and ez the direction of the
effective electric field shown in Fig. 1(a). Notice that we
preserve only the intraorbital λR, with the π-bond type
omitted. We emphasize that the effective electric field
inducing λR is an intrinsic result of the symmetry group.
Such inversion-symmetric polarization has been identified
both theoretically and experimentally in previous studies
[71–73,76]. In iron-based superconductors, this term stems
from the noncoplanar cations and anions.
We set the parameters in Eq. (9) as ft; t1; t2; λ; λRg ¼

f−1.0; 0.4; 0.6; 0.3; 0.75g and obtain the band structures in
Fig. 2. Based on the lattice model, one can directly verify
the different band degeneracies on ΣG and ΣY , by decou-
pling H0 according to the mirror symmetry fMyj0g on
these two lines (details in Appendix B).
An s-wave (A1g) superconductivity is described gener-

ally by Hsc ¼ ½Δ0 þ 2Δ1ðcos kx þ cos kyÞ�s0σ0η0 in the

FIG. 2. The band structures correspond to the model Hamil-
tonian H0 in Eq. (9). G, X, and M are the high-symmetry
points shown in Fig. 1(b). The parameters are chosen as
ft; t1; t2; λ; λRg ¼ f−1.0; 0.4; 0.6; 0.3; 0.75g.
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basis ψ†ðkÞ ¼ ½c†ðkÞ; is2cð−kÞ�, where Δ0 is the on-site
intraorbital pairing and Δ1 is the NN intrasublattice intra-
orbital pairing. The total superconducting Hamiltonian
corresponding to the model in Eq. (9) takes the form

HBdG ¼ ðH0 − μÞτ3 þHscτ1; ð10Þ

where the Pauli matrix τi is defined in Nambu space and μ
is the chemical potential. The matrix forms of the related
symmetry operations are listed as follows. The time
reversal symmetry and the chiral symmetry take the form
Θ ¼ is2σ0η0τ0K and C ¼ s0σ0η0τ2, respectively, with K
the complex conjugation operation, and the particle-
hole symmetry can be obtained as P ¼ CΘ; the three
generators of the quotient group G=T in Eq. (2) have
the form I ¼ e−ik·τ0s0σ0η1τ0, My ¼ is2σ3η0τ0, and
S4z ¼ ieis3π=4σ2η0τ0, with I , My, and S4z corresponding
to the symmetry operations fIjτ0g, fMyj0g, and fS4zj0g,
respectively.
To show the topological superconductivity protected by

the mirror symmetry fMyj0g, we simulate the edge states
on the boundary normal to mirror plane, i.e., the (10) edge.
There are two different conditions in which the Fermi
surfaces and pairing nodes are located around (i) the M
point and (ii) theG point in the Brillouin zone, respectively,

as shown in Figs. 3(a) and 3(b). In the first case, there are
two Dirac cones degenerate at ky ¼ π on the boundary,
shown in Fig. 3(c), indicating jw�i

Y j ¼ 2. In the second case,
there is no gapless mode as shown in Fig. 3(d), indicating a
topological trivial state. To see that the results are consistent
with the Fermi surface criterion in Eq. (8), we draw the
Fermi surfaces and the vanishing lines of the superconduct-
ing orders, shown in Figs. 3(a) and 3(b). It is worth
mentioning that on the (01) edge the results are similar,
and the gapless edge modes corresponding to the state in
Fig. 3(a) are protected by the mirror symmetry fMxj0g.

VI. MAJORANA CORNER MODES

In fact, the mirror-protected topological superconduc-
tivity is a second-order topological state [77–83]. It sup-
ports Majorana modes at the corner with a Z classification
equal to jw�i

Y j=2. To verify this, we first simulate the edge
states on the (11) edge under the same Fermi surface
condition in Fig. 3(a). The (11) edge has neither fMyj0g
nor fMxj0g symmetry. As expected, as shown in Fig. 4(a),
no gapless modes survive, because fMyj0g and fMxj0g are
no longer maintained. Furthermore, we simulate the corner
modes localized at the intersection between the (11) and
ð11̄Þ edges. As shown in Fig. 4(b), at each corner there
exists one pair of zero-energy modes, indicating second-
order topological superconductivity.
The rise of the corner Majorana modes is guaranteed by

the mirror symmetries fMyj0g and fMxj0g. This can be
clearly verified by considering the effective theory on the
edges, as sketched in Figs. 4(c) and 4(d). We first consider
the fMyj0g symmetry. We start with the gapless modes on
the (10) edge illustrated in Fig. 4(c), corresponding to the
jw�i

Y j ¼ 2 result shown in Fig. 3(c). On this edge, there are
the time reversal symmetry, the particle-hole symmetry, the
chiral symmetry, and the mirror symmetry. With the
constraints of these symmetries and a proper gauge choice,
the effective theory can be written as Heff ¼ vkys3κ3, with
v the Fermi velocity, si the Pauli matrices labeling the spin
degree of freedom, and κi the Pauli matrices for the
remaining degree for the edge Dirac cones (details in
Appendix E).
Now we gradually bend edge (10) into a right angle, with

the two sides along the ½11� and ½11̄� directions. In this
procedure, the mirror symmetry fMyj0g is preserved,
mapping the (11) edge to the ð11̄Þ edge. However, the
gapless modes on each edge gain a mass and are gapped
out, as the mirror symmetry is not maintained on the (11) or
ð11̄Þ edge. The gapped modes on these two edges take the
form (details in Appendix E)

Hð11Þ
eff ¼ vks3κ3 þmð11Þs0κ1;

Hð11̄Þ
eff ¼ vks3κ3 þmð11̄Þs0κ1; ð11Þ

FIG. 3. (a) and (b) show the normal-state Fermi surfaces (solid
lines) and the pairing nodes (dashed lines) for the Hamiltonian in
Eq. (10). The red (blue) color in the figures means a positive
(negative) superconducting pairing order on the Fermi surface. (c)
and (d) show the edge modes on the (10) edge corresponding to
the states depicted in (a) and (b), respectively. In (c) and (d), Ȳ
and Ḡ are the projection points of Y and G on the edge,
respectively. The parameters are chosen as Δ0 ¼ −0.58,
Δ1 ¼ −0.2, and the chemical potential μ ¼ 3.6 for (a) and (c)
and Δ0 ¼ −0.3, Δ1 ¼ 0.2, and μ ¼ 0.8 for (b) and (d). The other
parameters are the same as those in Fig. 2.

TOPOLOGICAL SUPERCONDUCTIVITY IN AN EXTENDED … PHYS. REV. X 12, 011030 (2022)

011030-5



with mð11Þ=ð11̄Þ the mass term on the ð11Þ=ð11̄Þ edge.
Moreover, the mirror symmetry fMyj0g demands
mð11Þ ¼ −mð11̄Þ (details in Appendix E). Obviously,
the theory in Eq. (11) describes a massive Dirac theory,
whose mass changes sign at the intersection between the
(11) and ð11̄Þ edges. This mass domain leads to a pair
of Majorana modes localized at the corner [84–87],
consistent with the results in Fig. 4(b). Based on
the analysis, it is clear that, besides the intersection
between the (11) and ð11̄Þ edges, any corner respecting
the mirror symmetry fMyj0g would support the
Majorana modes. Moreover, under a general condition
with jw�i

Y j ¼ 2Z, we can conclude that Z Majorana
Kramers’ pairs would arise at the corner. Similar
analysis can be applied to the mirror symmetry
fMxj0g, and we can obtain the mass term configuration
in Fig. 4(d). At each corner, there is a symmetry-
enforced sign change in the mass terms, leading to the
corner Majorana modes in Fig. 4(b).

VII. GENERALIZATION TO 3D
SUPERCONDUCTORS

The above analysis in 2D lattices can be generalized
to the 3D case. Specifically, we can stack the lattice in
Fig. 1(a) along the z direction, in which condition the space
group P4=nmm is preserved, and consider the edge modes
on the (100) surface and the hinge modes at the intersection
between the (110) and ð11̄0Þ surfaces. We can calculate the
winding numbers protected by the mirror symmetry
fMyj0g, w�i

0 ðk0zÞ on line ðkx; 0; k0zÞ and w�i
π ðk0zÞ on line

ðkx; π; k0zÞ for each fixed k0z . Notice that the winding
number is well defined on these lines, because the chiral
symmetry leaves each k point unchanged in the Brillouin
zone. Correspondingly, jw�i

0=πðk0zÞj pairs of zero-energy

modes can be found at ð0=π; k0zÞ in the (100) surface
Brillouin zone labeled by ðky; kzÞ. Moreover, the change of
the winding numbers is closely related to the gapless points
in the bulk energy spectrum. For instance, we consider the
winding numbers on the L1 and L2 lines in Fig. 5(a),
assuming w�i

π ðk1zÞ and w�i
π ðk2zÞ. If w�i

π ðk1zÞ ≠ w�i
π ðk2zÞ, the

winding number goes through a topological phase tran-
sition in the process k1z evolving into k2z , leading to gapless
points in the region k2z < kz < k1z in the ky ¼ π plane in the
bulk spectrum.
On the other hand, similar to the 2D case, the symmetry

fIjτ0gΘ requires a Bloch state with eigenvalue my to be
degenerate with a state −my in the ky ¼ 0 plane and be
degenerate with a state my in the ky ¼ π plane. Taking the
rotational symmetry fC2zj0g into account, one immediately
realizes that the condition of the normal bands along each
line ðkx; 0=π; k0zÞ is qualitatively the same as those in
Figs. 1(c) and 1(d). Therefore, for the s-wave pairing state,
the winding number w�i

0=πðk0zÞ on line ðkx; 0=π; k0zÞ can be
analyzed in a similar way as the 2D case. More specifically,
we have wi

0ðk0zÞ ¼ −w−i
0 ðk0zÞ ¼ 0 regardless of pairing

orders, while wi
πðk0zÞ ¼ −w−i

π ðk0zÞ ¼ 2Z in the extended
s-wave state. Moreover, the edge and corner modes for
each k0z are also expected to be similar to those in the
2D case.
Based on the above analysis, we can conclude that in 3D

superconductors there exist three different phases [88]: a
full-gap trivial phase, a full-gap second-order topological
superconductor phase sketched in Figs. 5(d) and 5(e), and a
gapless second-order topological superconductor phase
with Dirac nodes in the bulk energy spectrum sketched
in Figs. 5(b) and 5(c), which can be dubbed as the second-
order topological Dirac superconductor phase [58]. In the
two topological phases, 2Z degenerate quasi-1D Dirac
cones on the (100) surface and Z pairs of flat Majorana
hinge modes at the corner between the (110) and ð11̄0Þ
surfaces arise. Notice that, in Figs. 5(b)–5(e), we assume
that there are no accidental nodes in the bulk and the
2D subsystem within the kz ¼ 0 plane is topologically

FIG. 4. (a) shows the edge modes on the (11) boundary in the
same condition as those in Fig. 3(a). (b) shows the wave-function
profiles of the zero-energy modes in the real space under open-
boundary conditions in both the ½11� and ½11̄� directions, with the
low-energy spectrum presented in the inset. The color bar in (b) is
in the unit of 10−3. The origin of the corner Majorana modes is
sketched in (c) and (d). The magenta (dashed) line labels the
mirror symmetry fMyj0g (fMxj0g). (c) shows the Dirac cones on
the ð10Þ=ð01Þ edge protected by fMyj0g=fMxj0g. Notice that we
use the green lines to label the two Dirac cones on each edge for
simplicity. When the edges evolve into the condition in (d), i.e.,
the (11) and ð11̄Þ boundaries, on each edge the mirror symmetry
no longer preserves and the Dirac cones gain a mass term. The
mass terms on different edges are odd with respect to the mirror
symmetries fMyj0g and fMxj0g and form the configuration in
(d). At the corners, the sign-changed mass terms lead to the zero-
energy modes.
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nontrivial. These conclusions are further verified by
numerical simulations given in Appendix F.

VIII. IMPLICATION TO THE
SUPERCONDUCTING STATE IN IRON-BASED

SUPERCONDUCTORS

In iron-based superconductors, in particular, in those iron
chalcogenides, such as KFe2Se2 [89,90], the monolayer
FeSe/STO [91], and LiFe(OH)FeSe [92], where their Fermi
surfaces are featured by two electronic pockets at the
Brillouin zone corners as shown in Fig. 6, there is a long-
lasting debate about the pairing symmetry in their super-
conducting states [68,93–95]. High-resolution angle-
resolved photoemission spectroscopy and scanning tunnel-
ing spectroscopy (STM) measurements reveal a nodeless
superconducting gap [89–92,96] in these materials.

Although the results seem to be consistent with a conven-
tional s-wave state [97], it has also been argued that a sign-
changed s-wave state [67,98,99] between the inner and
outer pockets can be a candidate as well. In the presence of
strong spin-orbit coupling or interband pairing
[67,70,100,101], the latter can be nodeless. The experi-
mental results on this issue remain highly controversial
with supporting evidence for both cases. Indirect exper-
imental evidence from inelastic neutron scattering [93] and
STM quasiparticle interference [102] exists for the sign-
changed s-wave state, while impurity scattering suggests
the conventional s-wave state [97,103].
The Fermi surfaces in Fig. 6 are qualitatively the same as

that in Fig. 3(a). Thus, if the iron chalcogenides are in the
sign-changed s-wave states, according to the criterion in
Eq. (8), we can expect that they are second-order topo-
logical superconductors and must exhibit two Dirac cones
on the ð10Þ=ð01Þ boundary and one Majorana Kramers’
pair at the intersection between the (11) and ð11̄Þ edges. To
demonstrate this, we carry out our calculation in a five-
orbital model which describes the genuine band structures
of iron-based superconductors [104]. The result is given in
Appendix G, which confirms that iron chalcogenides, if
they host sign-changed s-wave states between two electron
pockets, are second-order topological superconductors.
This results offers smoking-gun evidence to reveal the

pairing nature of iron-based superconductors [105]. The
monolayer FeSe and LiFe(OH)FeSe are the two best
systems for such a purpose, as their superconducting gaps
can be more than 10 meV. If they are in the sign-changed s-
wave state, a local probe, such as STM, can easily capture
the boundary-selective Dirac cones on the ð10Þ=ð11Þ
boundaries. A tunneling measurement at the intersection
between the (11) and ð11̄Þ edge can measure the quantized
zero-bias conductance peak of 4e2=h resulting from
Majorana Kramers’ pairs [17].

FIG. 5. (a) shows the first Brillouin zone corresponding to the 3D lattice respecting the P4=nmm symmetry group. L1 and L2 (orange)
are two lines in the ky ¼ π plane (cyan). (b)–(e) illustrate different topological superconductor phases in the system. (b) and (c) sketch
the second-order topological Dirac superconductor phase. In this phase, there are Dirac nodes (yellow) in the bulk at ðk0x; π; k0zÞ and its
symmetry-related points. On the (100) surface shown in (b), there are 2Z Dirac cones (green) dispersing flatly along the line ky ¼ π for
jkzj < k0z (the gray region); and at the hinges between the (11) and ð11̄Þ surfaces shown in (c), there are Z Majorana pairs (red)
dispersing flatly along the kz direction for jkzj < k0z. (d) and (e) sketch the full-gap second-order topological superconductor phase. In
this condition, 2Z Dirac cones (green) disperse flatly across the surface Brillouin zone along the ky ¼ π line on the (100) surface shown
in (d); and Z Majorana pairs (red) disperse flatly across the 1D Brillouin zone at the hinges between the (11) and ð11̄Þ surfaces shown in
(e). The modes on other edges and hinges can be obtained by symmetry and are also indicated in (b)–(e).

FIG. 6. The typical Fermi surfaces in the monolayer FeSe or
LiFe(OH)FeSe in the presence of spin-orbit coupling, with the
details shown in the inset. A sign reverse between the super-
conducting orders on the inner and outer Fermi surfaces, which
leads to topological superconductivity as shown in Fig. 3(a), are
indicated by the red and blue colors in the figure.
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IX. CONCLUSIONS

In summary, we identify that the centrosymmetric super-
conductor, which respects a nonsymmorphic symmetry
group, can host topological superconductivity even though
its superconducting order belongs to an s-wave state [106].
The anomalous band degeneracies stemming from non-
symmorphic symmetries are vital in realizing topological
superconductivity. The study is specified with the space
group P4=nmm, with a Fermi surface criterion developed
for the topological superconductivity. Based on the analy-
sis, we reveal that the iron-chalcogenide superconductors,
if they are in the sign-changed s-wave state [67,68], are
second-order topological superconductors, which have two
Dirac cones on the ð10Þ=ð01Þ boundary and one Majorana
Kramers’ pair at the intersection between the (11) and ð11̄Þ
edges. Therefore, by measuring the topological property,
in a similar spirit as previous studies [17,69], we can
reveal essential information on the pairing symmetry of the
iron-chalcogenide superconductors. Our study uncovers a
new direction in the pursuit of the topological super-
conductors and establishes a measurable quantity to settle

one long-lasting debate on the pairing nature of iron-based
superconductors.
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APPENDIX A: QUOTIENT GROUP G=T
OF THE SPACE GROUP P4=nmm

As mentioned in the main text, there are totally 16
symmetry operations in the quotient group G=T of the
space group P4=nmm. We list these operations defined in
the lattice in Fig. 1(a) in the main text in the following:

fEj0g; fC2zj0g; fC2xyj0g; fC2x̄yj0g; fMxj0g; fMyj0g; fS4zj0g; fS−14z j0g;
fIjτ0g; fMzjτ0g; fMxyjτ0g; fMx̄yjτ0g; fC2xjτ0g; fC2yjτ0g; fC−1

4z jτ0g; fC4zjτ0g; ðA1Þ

where τ0 ¼ a1=2þ a2=2 and all the symmetry operations are defined at the lattice site. The point group part of the above
operations, i.e., α in the Seitz operator fαjτg, acts on the coordinates in Fig. 1(a) in the main text as follows:

E∶ ðx;y;zÞ↦ ðx;y;zÞ; C2z∶ðx;y;zÞ↦ ð−x;−y;zÞ; C2xy∶ ðx;y;zÞ↦ ðy;x;−zÞ; C2x̄y∶ðx;y;zÞ↦ ð−y;−x;−zÞ;
Mx∶ ðx;y;zÞ↦ ð−x;y;zÞ; My∶ ðx;y; zÞ↦ ðx;−y;zÞ; S4z∶ ðx;y;zÞ↦ ðy;−x;−zÞ; S−14z ∶ ðx;y;zÞ↦ ð−y;x;−zÞ;
I∶ ðx;y;zÞ↦ ð−x;−y;−zÞ; Mz∶ ðx;y;zÞ↦ ðx;y;−zÞ; Mxy∶ ðx;y;zÞ↦ ð−y;−x;zÞ; Mx̄y∶ ðx;y;zÞ↦ ðy;x;zÞ;

C2x∶ ðx;y;zÞ↦ ðx;−y;−zÞ; C2y∶ ðx;y;zÞ↦ ð−x;y;−zÞ; C−1
4z ∶ ðx;y; zÞ↦ ð−y;x;zÞ; C4z∶ ðx;y;zÞ↦ ðy;−x;zÞ:

ðA2Þ

APPENDIX B: MIRROR SYMMETRY IN SPACE GROUP P4=nmm

In the main text, we show that the band degeneracies along the ΣY and ΣG lines are different, based on the analysis of the
group structure of P4=nmm. Here, we provide a detailed calculation by decoupling the normal-state lattice Hamiltonian in
the main text according to the mirror symmetry fMyj0g.
We first rotate the spin to the y direction. Namely, we do a unitary transformation H0

0 ¼ e−iπ=4s1H0eiπ=4s1 . In H0
0, the

spins ↑ ↓ are along the y direction and px=y are eigenstates of fMyj0g. Therefore, in general, ðcAx↑; cAy↓; cBx↑; cBy↓Þ (cAx↑
is the annihilation operator for the spin-↑ px-orbital electron in the A sublattice) would be in a mirror invariant subspace,
while their time reversal partners are in the other mirror subspace. On the line ΣG for group P4=nmm, we can write down
H0

0 as
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0
BBBBBBBBBBBBBBBB@

2tcoskx−2λRsinkx 0 0 λ
2

4t1cos
kx
2

0 0 0

0 2t −λ
2

0 0 4t1cos
kx
2

0 0

0 −λ
2

2tcoskxþ2λRsinkx 0 0 0 4t1cos
kx
2

0

λ
2

0 0 2t 0 0 0 4t1cos
kx
2

4t1cos
kx
2

0 0 0 2tcoskxþ2λRsinkx 0 0 λ
2

0 4t1cos
kx
2

0 0 0 2t −λ
2

0

0 0 4t1cos
kx
2

0 0 −λ
2

2tcoskx−2λRsinkx 0

0 0 0 4t1cos
kx
2

λ
2

0 0 2t

1
CCCCCCCCCCCCCCCCA

;

ðB1Þ

with the basis ðcAx↑; cAy↑; cAx↓; cAy↓; cBx↑; cBy↑; cBx↓; cBy↓Þ. As analyzed, ðcAx↑; cAy↓; cBx↑; cBy↓Þ are in a mirror invariant
subspace. The situation is very different on line ΣY . Under the same basis with the Hamiltonian in Eq. (B1),H0

0 on ΣY takes
the form

0
BBBBBBBBBBBBBBBB@

2tcoskx−2λRsinkx 0 0 λ
2

0 −4t2sin
kx
2

0 0

0 2t −λ
2

0 −4t2sin
kx
2

0 0 0

0 −λ
2

2tcoskxþ2λRsinkx 0 0 0 0 −4t2sin
kx
2

λ
2

0 0 2t 0 0 −4t2sin
kx
2

0

0 −4t2sin
kx
2

0 0 2tcoskxþ2λRsinkx 0 0 λ
2

−4t2sin
kx
2

0 0 0 0 2t −λ
2

0

0 0 0 −4t2sin
kx
2

0 −λ
2

2tcoskx−2λRsinkx 0

0 0 −4t2sin
kx
2

0 λ
2

0 0 2t

1
CCCCCCCCCCCCCCCCA

:

ðB2Þ

In this case, ðcAx↑; cAy↓; cBy↑; cBx↓Þ are in a mirror invariant subspace. We apply the symmetry fIjτ0gΘ on the mirror
invariant subspace

ΣG∶ ðcAx↑; cAy↓; cBx↑; cBy↓Þ⟶
fIjτ0gðcBx↑; cBy↓; cAx↑; cAy↓Þ⟶Θ ðcBx↓; cBy↑; cAx↓; cAy↑Þ; ðB3aÞ

ΣY∶ ðcAx↑; cAy↓; cBy↑; cBx↓Þ⟶
fIjτ0gðcBx↑; cBy↓; cAy↑; cAx↓Þ⟶Θ ðcBx↓; cBy↑; cAy↓; cAx↑Þ: ðB3bÞ

In the above equation, we take advantage of the fact that the inversion symmetry interchanges the two sublattices but
preserves spin, while the time reversal symmetry merely flips the local spin. According to Eq. (B3), fIjτ0gΘ maps the
fMyj0g flips of the two fMyj0g subspaces on ΣG while it preserves in each of the subspaces on ΣY , which is consistent with
the general symmetry analysis in the main text.
The above difference can be straightforwardly understood by considering the Fourier transform of the real-space basis

jϕAðkÞi ¼
X
j

eik·R
j
A jϕAðRj

AÞi; jϕBðkÞi ¼
X
j

eik·R
j
B jϕBðRj

BÞi; ðB4Þ

where Rj
A=B is the position of the A=B site in the jth unit cell, with Rj

A −Rj
B ¼ τ0. Applying the mirror symmetry

ðky → −kyÞ, we have

ky ¼ π∶ fMyj0gjϕAðkÞi ¼
X
j

eik·R
j
AmAjϕAðRj

AÞi; fMyj0gjϕBðkÞi ¼ −
X
j

eik·R
j
BmBjϕBðRj

BÞi; ðB5aÞ
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ky ¼ 0∶ fMyj0gjϕAðkÞi ¼
X
j

eik·R
j
AmAjϕAðRj

AÞi; fMyj0gjϕBðkÞi ¼
X
j

eik·R
j
BmBjϕBðRj

BÞi; ðB5bÞ

withmA=B the mirror eigenvalues. In the equation, we consider the fact that Rj
A=B;y · ky ¼ jπ at the Brillouin zone boundary

(definition of ky). The results in Eq. (B5) explain the difference between the mirror invariant subspaces in Eqs. (B1)
and (B2).

APPENDIX C: SYMMETRY CONSTRAINTS ON THE WINDING NUMBER

In this part, we show how the symmetries constrain the winding number. As mentioned in the main text, for a 1D system
H with chiral symmetry C, its topological property can be characterized by the winding number w. If the system has
additional symmetry g satisfying gHðkÞg−1 ¼ HðgkÞ, the symmetry has a constraint on w as follows [107]:

w ¼
Z

π

−π

dk
2π

tr½CH−1ðkÞ∂kHðkÞ�

¼
Z

π

−π

dk
2π

trfC½gHðg−1kÞg−1�−1∂k½gHðg−1kÞg−1�g

¼
Z

π

−π

dk
2π

tr½g−1CgH−1ðg−1kÞ∂kHðg−1kÞ�

¼
Z

g−1π

−g−1π

dðgkÞ
2π

tr½g−1CgH−1ðkÞ∂gkHðkÞ�

¼
Z

π

−π

dk
2π

tr½g−1CgH−1ðkÞ∂kHðkÞ� · detðgÞ

¼
Z

π

−π

dk
2π

tr½CH−1ðkÞ∂kHðkÞ� · detðgÞ; ðC1Þ

where we use the property ½C; g� ¼ 0 for the s-wave superconductivity.
Now we consider the winding number in each of the fMyj0g subspaces on the ΣY=G line. As mentioned in the main text,

the bands are always twofold degenerate due to the presence of the symmetry fIjτ0gΘ. Moreover, the symmetries on the
ΣY=G line require

ðfIjτ0gΘÞfMzjτ0gjφðkÞi ¼ e−2ik·τ0fMzjτ0gðfIjτ0gΘÞjφðkÞi; ðC2aÞ

ðfIjτ0gΘÞfMyj0gjφðkÞi ¼ eikyfMyj0gðfIjτ0gΘÞjφðkÞi; ðC2bÞ

fMzjτ0gfMyj0gjφðkÞi ¼ −eikyfMyj0gfMzjτ0gjφðkÞi; ðC2cÞ

namely,

ky ¼ π∶ ½fIjτ0gΘ; fMyj0g�þ ¼ 0; ½fMzjτ0g; fMyj0g�− ¼ 0; ðC3aÞ

ky ¼ 0∶ ½fIjτ0gΘ; fMyj0g�− ¼ 0; ½fMzjτ0g; fMyj0g�þ ¼ 0: ðC3bÞ

Based on the above constraints, we can obtain the following conclusions.
(i) On ΣY , the two degenerate states are in the same mirror subspace which can be further decoupled by fMzjτ0g. Since

the two states are related by the symmetry fIjτ0gΘ, we have wmy;mz

Y ¼ w
my;−mz

Y , with my ¼ �i and mz ¼ �ieik·τ0 the
eigenvalues of fMyj0g and fMzjτ0g, respectively. Considering the constraint of the time reversal symmetry, we
have wþi

Y ¼ −w−i
Y ¼ 2Z.

(ii) On ΣG, we take the inversion symmetry fIjτ0g into consideration, which satisfies fMyj0gfIjτ0gjφðkÞi ¼
eikyfIjτ0gfMyj0gjφðkÞi ¼ fIjτ0gfMyj0gjφðkÞi. Obviously, fIjτ0g maps a state at k to a state at −k in the same
mirror subspace. According to Eq. (C1), we have wþi

G ¼ −w−i
G ¼ 0.
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APPENDIX D: TOPOLOGICAL TRIVIALNESS
IN CENTROSYMMETRIC SYMMORPHIC
SUPERCONDUCTORS WITH s-WAVE

(A1g) PAIRING

In this part, we show that in centrosymmetric super-
conductors respecting symmorphic groups, if the pairing
order is in the A1g channel, the superconductivity is always
topologically trivial with respect to (i) the topological
indices in the Altland-Zirnbauer (AZ) classification and
(ii) the mirror-protected topological indices (the mirror
Chern number and mirror winding number).

1. Without crystalline symmetry

We begin with the topological indices in the AZ
classification. In the 1D and 3D cases, the class-DIII
superconductors are featured by the Z indices, which
are the 1D and 3D winding numbers defined according
to the chiral symmetry C. We label the inversion symmetry
with I . As mentioned, for A1g superconductivity ½C; I � ¼ 0.
Moreover, since Ik ¼ −k, namely, detðIÞ ¼ −1. Hence,
in the 1D case, w1D ¼ 0 according to Eq. (C1). The 3D case
can be analyzed similarly. In the presence of inversion
symmetry, the 3D winding number is confined as

w3D ¼
Z

d3k
48π2

ϵαβγtr½CH−1ðkÞ∂kαHðkÞH−1ðkÞ∂kβHðkÞH−1ðkÞ∂kγHðkÞ�

¼
Z

d3k
48π2

ϵαβγtrfC½IHð−kÞI−1�−1∂kα ½IHð−kÞI−1�½IHð−kÞI−1�−1

× ∂kβ ½IHð−kÞI−1�½IHð−kÞI−1�−1∂kγ ½IHð−kÞI−1�g

¼
Z

d3k
48π2

ϵαβγtr½CH−1ðkÞ∂kαHðkÞH−1ðkÞ∂kβHðkÞH−1ðkÞ∂kγHðkÞ� · detðIÞ

¼ −w3D ¼ 0; ðD1Þ

where ½C; I � ¼ 0 and Ik ¼ −k are taken into consider-
ation. Therefore, in 1D and 3D, inversion symmetry
demands A1g superconductivity to be topologically trivial.
For the 2D case, the superconductor is featured by a Z2

index similar to that in a time reversal symmetry-protected
topological insulator. In general, it is hard to calculate the
Z2 index directly. However, due to the inversion symmetry,
we can calculate the Z2 index based on the parity criterion
[108,109]

Z2∶ð−1Þν ¼
Y
i

YN
m¼1

ξ2mðΓiÞ; ðD2Þ

where Γi (i ¼ 1, 2, 3, 4) are the four time reversal invariant
points in the 2D Brillouin zone and ξ2m is the parity of the
2mth negative-energy state (time reversal symmetry
requires that all of the states appear in the form of
Kramers’ pairs, and each Kramers’ pair shares the same
parity). We take the chiral symmetry C into consideration,
which is unitary and satisfies CHðkÞC−1 ¼ −HðkÞ. We can
realize that C maps a state [EðkÞ, ξ0] [with EðkÞ the
eigenenergy and ξ0 the parity) to a state [−EðkÞ, ξ0],
considering ½C; I � ¼ 0. Based on this relation, for A1g

superconductivity, the Z2 index in Eq. (D2) can take only
one value. Namely, it is always topologically trivial.

2. In the presence of mirror symmetry

We turn to the situation where there is mirror sym-
metry in a centrosymmetric class-DIII superconductor and

consider the mirror-protected topological indices, mainly
the mirror Chern number and mirror winding number.
We first consider the condition where there are mirror

invariant lines in the Brillouin zone. Specifically, two cases
are included: (i) In 1D, the system is parallel to the mirror
plane; (ii) in 2D, the mirror plane is normal to the system
(for simplicity, we consider a square lattice with mirror
symmetry My). In these two cases, we study the mirror-
protected winding numbers, and the analysis is similar to
the case of the ΣG line in the main text. The winding
number in each of the mirror invariant subspaces is always
trivial, namely, wþi

1D ¼ w−i
1D ¼ 0 and wþi

2Dðky ¼ 0Þ ¼
w−i
2Dðky ¼ 0Þ ¼ wþi

2Dðky ¼ πÞ ¼ w−i
2Dðky ¼ πÞ ¼ 0.

Then, we consider the condition where there are mirror
invariant planes in 3D superconductors (for simplicity,
we consider the mirror symmetry Mz in a tetragonal
lattice). Within the mirror invariant planes, the mirror
Chern numbers are well defined. As pointed out in
Ref. [50], the Chern numbers are always zeros in each
of the mirror subspaces, Cþi ¼ C−i ¼ 0, because of the
chiral symmetry. Moreover, within the mirror invariant
planes, the mirror-protected winding number can be con-
sidered along the time reversal invariant lines in kz ¼ 0=π.
For instance, the mirror-protected winding number is
well defined on lines ðkx; k0y; k0zÞ and ðk0x; ky; k0zÞ, with
k0x=y ¼ 0; π and −π ≤ kx=y ≤ π. Because of the inversion
symmetry, these mirror-protected winding numbers are
always zero, which is similar to the case of the ΣG line
in the main text. The above analysis is also true for 2D
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superconductors where the mirror plane is parallel to the
system.

APPENDIX E: THEORY FOR THE SYMMETRY-
PROTECTED CORNER MODES

In this part, we (i) further verify the Z classification
of the corner Majorana modes and (ii) derive an effective
edge theory to explain that the appearance of corner
Majorana modes is guaranteed by mirror symmetry;
namely, the topological superconductivity in the main text
is an intrinsic second-order one.

1. Z classification of the corner modes

We show that the symmetry-protected corner Majorana
modes indeed have a Z classification. This can be verified
by considering the hybridization between the corner
Majorana modes. We begin with the symmetry constraints,
including the mirror symmetry My ¼ fMyj0g and the

chiral symmetry C, on every single corner mode. As
mentioned for the A1g pairing state, the mirror symmetry
My commutes with the chiral symmetry C. Therefore, the
wave function of the corner mode jφi can be the eigen-
function of bothMy and C. AssumingMyjφi ¼ mjφi and
Cjφi ¼ cjφi with m ¼ �i and c ¼ �1 the eigenvalues of
My and C, respectively, we can use the eigenvalues of My

and C to label each corner mode jφi ¼ jm; ci. For instance,
j þ i;þ1i stands for a corner mode with mirror eigenvalue
þi and chiral eigenvalue þ1.
Then, we consider the hybridization between two corner

modes jm1; c1i and jm2; c2i. Obviously, only the corner
modes in the same mirror subspace can hybridize, and we
consider the m ¼ −i subspace for simplicity here (the
condition in the m ¼ þi mirror subspace can be obtained
by considering the effect of time reversal symmetry). The
Hamiltonian for the system composed of two corner modes
j − i; c1i and j − i; c2i takes the general form

Hhyb ¼ aj − i; c1ih−i; c1j þ bj − i; c2ih−i; c2j þ dj − i; c1ih−i; c2j þ d�j − i; c2ih−i; c1j; ðE1Þ

with a and b real numbers and d complex. Under the chiral symmetry, Hhyb transforms as

CHhybC−1 ¼ ac21j − i; c1ih−i; c1j þ bc22j − i; c2ih−i; c2j þ dc1c2j − i; c1ih−i; c2j þ d�c2c1j − i; c2ih−i; c1j: ðE2Þ

On the other hand, chiral symmetry requires CHhybC−1 ¼
−Hhyb. Straightforwardly, we come to the following con-
clusions: (i) a ¼ b ¼ 0; (ii) d ≠ 0 when and only when
c1 ¼ −c2. Namely, the two corner modes can hybridize and
be gapped out when they carry opposite chirality (the
eigenvalue of the chiral symmetry), while two corner
modes with the same chirality can never hybridize.
The above analysis can be directly generalized to the

condition where there are multiple corner modes in them ¼
−i mirror subspace. If the multiple corner modes carry the
same chirality, they cannot hybridize and are stable against
the symmetry-preserving perturbations. Considering the
requirement of time reversal symmetry, we can conclude

that there can be Z pairs of corner Majorana modes;
namely, the classification in our theory is Z.

2. Edge theory for the corner modes

On the (10) edge, the mirror symmetryMy is preserved.
In addition to My, the particle-hole symmetry P and the
time reversal symmetry Θ are also preserved. The chiral
symmetry C ¼ PΘ also exists on the edge. An effective
theory describing the Dirac cones on the edge can be
derived based on the constraints of the above four sym-
metries. These symmetries constrain the edge theory on the
(10) edge as

ΘHeff;IðkyÞΘ−1 ¼ Heff;Ið−kyÞ; PHeff;IðkyÞP−1 ¼ −Heff;Ið−kyÞ;
CHeff;IðkyÞC−1 ¼ −Heff;IðkyÞ; MyHeff;IðkyÞM−1

y ¼ Heff;Ið−kyÞ: ðE3Þ

Moreover, we choose a gauge where the symmetries satisfy

½Θ;M�− ¼ ½P;M�− ¼ ½C;My�− ¼ 0: ðE4Þ

We start with the time reversal symmetry and the particle-
hole symmetry. Without loss of generality, the matrix form
of these two symmetries can be chosen as Θ ¼ is2κ0K
and P ¼ is2κ2K with K the complex conjugate operation.

Here, si are the Pauli matrices labeling the spin degree of
freedom and κi the Pauli matrices labeling the remaining
degree for the two Dirac cones on the edge. Correspond-
ingly, the chiral symmetry takes the form C ¼ s0κ2. The
constraints of time reversal symmetry and particle-hole
symmetry on the 16 siκj matrices are listed in Table I.
Combining Eq. (E3) and the results in Table I, we obtain the
effective theory on edge I in Fig. 7 with the general form
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Heff;I ¼ vky
X3
i¼1

ðαisiκ1 þ βisiκ3Þ þmðα0s0κ1 þ β0s0κ3Þ;

ðE5Þ

where v is the Fermi velocity,m is the constant mass, and α
and β are the coefficients. We apply the mirror symmetry
My to the above effective theory. To derive the matrix form
of the mirror symmetry, one should keep in mind that
(i) My satisfies the constraints in Eq. (E4) and it stabilizes
two pairs of gapless modes on edge I [the constant mass in
Eq. (E5) should be prohibited by mirror symmetry];
(ii) similar to the analysis in the above section, the gapless
modes in the same mirror subspace always carry the same
chirality, and the gapless modes with opposite mirror
eigenvalue must carry opposite chirality (for a gapless
mode on edge I, its My eigenvalue is locked with its C
eigenvalue, making the two symmetries satisfy iMy ¼ C or
iMy ¼ −C). Accordingly, the mirror symmetry can be
chosen as My ¼ is0κ2. The effective theory on edge I in
Fig. 7 takes the form Heff;I ¼ vky

P
3
i¼1ðαisiκ1 þ βisiκ3Þ.

For simplicity, we take Heff;I ¼ vkys3κ3 in the following
(the other cases can be analyzed similarly).
Then, we bend edge I and make the bent edge evolve into

edges II and III in Fig. 7 gradually. In this progress, the
gapless modes on edge II (III) gain mass and are gapped
out, as mirror symmetry cannot be maintained on each
of the edges. Considering the symmetry constraints in
Eq. (E3), we have the mass term as mII=IIIs0κ1, with mII=III

the mass term on edge II/III. Therefore, the effective
theories on edges II andIII in Fig. 7 can be written as

Heff;II ¼ vkYs3κ3þmIIs0κ1; Heff;III ¼ vkXs3κ3þmIIIs0κ1:

ðE6Þ

Moreover, since edges II andIII are related by the mirror
reflection My, the effective theories on the two edges
satisfyMyHeff;IIM−1

y ¼Heff;III (notice thatMykX ¼ −kY).
Therefore, we have mII ¼ −mIII.
The theory in Eq. (E6) can be written in an instructive

form by treating the gapless part as propagating modes
along the edges of a finite size system, Heff ¼ vks3κ3 þ
mrs0κ1 with mr changing sign at the intersection between
the (11) and ð11̄Þ edges (assuming the intersection, i.e., the
corner, at r ¼ 0, we have mr>0 ¼ −mr<0). In this form,
Heff is just a Dirac theory with a mass domain at r ¼ 0. It
naturally leads to a pair of Majorana zero modes

jφ1i ¼ e−
R

r

0
ðmr0=vÞdr0 js3 ¼ 1i ⊗ jκ2 ¼ −1i=

ffiffiffi
2

p
;

jφ2i ¼ e−
R

r

0
ðmr0=vÞdr0 js3 ¼ −1i ⊗ jκ2 ¼ 1i=

ffiffiffi
2

p
; ðE7Þ

where v andmr>0 are assumed to be positive and js3 ¼ �1i
(jκ2 ¼ �1i) is the eigenfunction of s3 (κ2) with eigenvalue
�1. Obviously, the two Majorana zero modes in Eq. (E7)
are time reversal partners, and they are both localized at
r ¼ 0 (the corner).
Before finishing this part, it is worth emphasizing the

following points. (i) The Majorana modes emerge robustly
at the corner, i.e., the intersection between the (11) and ð11̄Þ
edges, since the mass domain at the corner is intrinsically
guaranteed by the mirror symmetry My. (ii) Though we
focus on the corner at the intersection between the (11) and
ð11̄Þ edges, the analysis can be generalized to any corner
respecting the mirror symmetry My. (iii) As the whole
system respects the space group P4=nmm where there
exists fourfold rotational symmetry, the above analysis can
be generalized to the corners related by fourfold rotational
symmetry (corners respecting the mirror symmetry Mx).
(iv) The Z classification of the corner Majorana modes is
lowered down to Z2 if we consider a corner which slightly
breaks the mirror symmetry; i.e., there can be one single
Majorana Kramers’ pair at the corner which is protected by
time reversal symmetry in this condition.

TABLE I. The constraints of time reversal symmetry (Θ) and particle-hole symmetry (P) on the 16 siκj matrices. In the table, we use
þ (−) to label the matrices satisfying UsiκjU−1 ¼ siκj (UsiκjU−1 ¼ −siκj), with U being Θ or P.

s0κ0 s0κ1 s0κ2 s0κ3 s1κ0 s1κ1 s1κ2 s1κ3 s2κ0 s2κ1 s2κ2 s2κ3 s3κ0 s3κ1 s3κ2 s3κ3

Θ þ þ − þ − − þ − − − þ − − − þ −
P þ − − − − þ þ þ − þ þ þ − þ þ þ

FIG. 7. Sketch of two different open-boundary conditions. The
square in black solid lines shows the open boundaries in the (10)
and (01) directions, while the square in gray dashed lines shows
the open boundaries in the (11) and ð11̄Þ directions. Mirror
symmetry is implied by the red line in the figure.
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APPENDIX F: TOPOLOGICAL
SUPERCONDUCTIVITY IN THE 3D LATTICES

RESPECTING THE P4=nmm SYMMETRY GROUP

In the main text, we generalize the topological super-
conductivity from the 2D case to 3D systems. Assuming no
accidental nodes in the bulk superconducting spectrum, we
find that there can exist three different kind of phases: a
full-gap topological trivial phase, a full-gap second-order
topological superconductor phase, and a second-order
topological Dirac superconductor phase [58]. All the
topological phases are protected by the mirror symmetries
Mx and My. Here, we specify the statement based on
numerical simulations.
We stack the 2D lattice model in the main text along the z

direction and assume the 3D system weakly coupled along
the z direction. In a most simple condition, the system can
be depicted by the following Hamiltonian:

HBdG;3D ¼ ðH0;3D − μÞτ3 þHsc;3Dτ1; ðF1Þ

where H0;3D ¼ H0 þ 2t3ðcos kz − 1Þs0σ0η0 and Hsc;3D ¼
Hsc þ 2Δ3ðcos kz − 1Þs0σ0η0, with H0 and Hsc presented
in the main text. In the system in Eq. (F1), we merely
consider the NN intrasublattice intraorbital hopping (t3)
and pairing (Δ3) along the z direction in addition to the
lattice model in the main text. Notice thatHBdG;3D at kz ¼ 0

has exactly the same form as the 2D lattice model in the
main text. By tuning t3 and Δ3 [with the other parameters
the same as those in Fig. 3(a) in the main text], different 3D
topological superconducting states can be realized. In the
following, we focus on two cases.

(i) We set t3 ¼ 0.15 and Δ3 ¼ 0.03. With these param-
eters, the two Fermi surfaces in Fig. 3(a) in the main
text evolve into two quasi-2D concentric cylinders
along the kz direction, and the pairing node ofHsc;3D
sits between the two Fermi surfaces, as shown in
Fig. 8(a). Therefore, in this condition the system
is fully gapped with the pairing order on the two
Fermi surfaces sign changed. Now we study the
fMyj0g protected winding number w�i

π ðk0zÞ on line
ðkx; π; k0zÞ for each fixed k0z . At kz ¼ 0, as pointed
out, HBdG;3D is the same as the 2D lattice model in
the main text, namely, wþi

π ð0Þ ¼ −w−i
π ð0Þ ¼ 2. Ac-

cording to the Fermi surface condition in Fig. 3(a)
and the analysis in the main text, it can be straight-
forwardly concluded that the winding numbers are
all the same, namely, wþi

π ðk0zÞ ¼ −w−i
π ðk0zÞ ¼ 2 for

each fixed k0z satisfying −π ≤ k0z ≤ π. Correspond-
ingly, on the (100) surface where the mirror sym-
metry fMyj0g is preserved, the winding number
leads to fourfold degenerate zero-energy modes at
each point on line ky ¼ π, i.e., the quasi-1D Dirac
cones, as shown in Fig. 8(b); on the hinge between

FIG. 8. (a) and (d) show the Fermi surfaces (blue) in the 3D system described by H0;3D and the pairing nodes (green) for Hsc;3D. The
coordinate axis is in the unit of π. (b) and (e) show the superconducting surface modes along the high-symmetry lines on the (100)
surface corresponding to the system described byHBdG;3D in Eq. (F1). Ḡ, X̄, and M̄ are the high-symmetry points in the surface Brillouin
zone ðky; kzÞ, with Ḡ, X̄, and M̄ being (0,0), ðπ; 0Þ, and ðπ; πÞ, respectively. (d) and (e) show the hinge modes corresponding to the
system HBdG;3D, under open-boundary conditions in both the (110) and ð11̄0Þ directions. We take t3 ¼ 0.15 and Δ3 ¼ 0.03 in (a)–(c)
and t3 ¼ 0.2 and Δ3 ¼ 0.07 in (d)–(f). The other parameters are all the same as those in Fig. 3(a) in the main text.
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the (110) and ð11̄0Þ surfaces, the system supports
twofold degenerate Majorana flat bands across the
1D Brillouin zone, as shown in Fig. 8(c).

(ii) In the second case, we adopt t3 ¼ 0.2 and Δ3 ¼
0.07. Compared to case (i), the larger t3 andΔ3 make
the system more dispersive along kz, which can be
seen from the Fermi surfaces and the pairing node
shown in Fig. 8(d). Moreover, the pairing node
intersects with the inner Fermi surface, leading
to nodal lines around kz ¼ �0.65π in the bulk
superconducting gap as indicated in Fig. 8(d) (the
nodal line can shrink to a nodal point by tuning
parameters). Similar to the analysis in case (i), the
mirror-symmetry-protected winding number is
wþi
π ðk0zÞ ¼ −w−i

π ðk0zÞ ¼ 2 for −0.65π < k0z < 0.65π.
For jk0z j > 0.65π, the superconducting pairing on the
Fermi surfaces has no sign change, so we have
wþi
π ðk0zÞ ¼ −w−i

π ðk0zÞ ¼ 0. According to the above
analysis, we immediately come to the following
conclusions. The system must have zero-energy
modes at each point satisfying −0.65π < kz <
0.65π on the ky ¼ π line on the (100) surface as
shown in Fig. 8(e) and Majorana flat bands for
−0.65π < kz < 0.65π on the hinge between the
(110) and ð11̄0Þ surfaces as shown in Fig. 8(f).

APPENDIX G: CALCULATIONS FOR THE
IRON-SELENIDE SUPERCONDUCTORS

In this part, we derive the topological supercon-
ductivity for iron chalcogenides. We consider the following
Hamiltonian that captures the band structure of the mono-
layer FeSe:

H0 ¼ HTB þHsoc; ðG1Þ

whereHTB andHsoc are the tight-binding part and the spin-
orbit coupling part, respectively. For the tight-binding part,

we adopt the Hamiltonian in Ref. [104], in which all five d
orbitals of the Fe atoms are taken into account, and utilize
the parameters in Table II to fit the band structures of a
single layer FeSe shown in Fig. 9(a). For the spin-orbit
coupling part, we merely consider the atomic spin-orbit
coupling of the d orbitals, namely, Hsoc ¼ λL · s with L
and s the orbital and spin angular momentum, respectively.
If we write the spin-orbit coupling as

Hsoc¼d†
↑h↑↑d↑þd†

↑h↑↓d↓þd†
↓h↓↑d↑þd†

↓h↓↓d↓ ðG2Þ

with d ¼ ðdxz; dyz; dx2−y2 ; dxy; dz2ÞT as adopted in Table II,
we have

h↑↑ ¼ λ

2

0
BBBBBB@

0 −i 0 0 0

i 0 0 0 0

0 0 0 −2i 0

0 0 2i 0 0

0 0 0 0 0

1
CCCCCCA
;

h↑↓ ¼ λ

2

0
BBBBBB@

0 0 1 −i −
ffiffiffi
3

p

0 0 i 1
ffiffiffi
3

p
i

−1 −i 0 0 0

i −1 0 0 0ffiffiffi
3

p
−

ffiffiffi
3

p
i 0 0 0

1
CCCCCCA
: ðG3Þ

By applying the time reversal partners to h↑↑ and h↑↓, h↓↓
and h↓↑ can be obtained accordingly. It is worth pointing
out that the atomic spin-orbit coupling combined with the
lattice structure of the iron-based superconductors shown in
Fig. 9(e) can result in effective Rashba-type spin-orbit
coupling similar to the lattice model in the main text.
Figure 9(b) shows the bands in the presence of spin-orbit
coupling (λ ¼ 40 meV). In the following, we set the
chemical potential to be μ ¼ 118.3 meV (the doping level

TABLE II. Hopping parameters for the monolayer FeSe. The on-site energies of the d orbitals are ϵ1 ¼ 0.1754, ϵ3 ¼ −0.3576,
ϵ4 ¼ 0.0904, and ϵ5 ¼ −0.2776. We adopt the same notations as those in Ref. [104], and all the parameters are in the unit of eV. Notice
that according to Ref. [104] in the table (1,2,3,4,5) correspond to the orbitals ðdxz; dyz; dx2−y2 ; dxy; dz2Þ, and the x direction is along the
nearest Fe1—Fe2 bond in the monolayer FeSe shown in Fig. 9(e).

tmn
i i ¼ x i ¼ y i ¼ xy i ¼ xx i ¼ yy i ¼ xxy i ¼ xyy i ¼ xxyy

mn ¼ 11 −0.1514 −0.4059 0.225 0.002 −0.036 −0.019 0.014 0.024
mn ¼ 33 −0.4584 −0.070 −0.013 0.012
mn ¼ 44 −0.0704 0.012 0.002 0.019 −0.024
mn ¼ 55 0.013 −0.014 −0.006 −0.011
mn ¼ 12 0.103 −0.011 0.032
mn ¼ 13 −0.473 −0.089 0.011 0.018 −0.006
mn ¼ 14 −0.2736 0.053 −0.001 −0.006 −0.009
mn ¼ 15 −0.200 −0.130 0.009 0.009 0.011 −0.012
mn ¼ 34 0.012
mn ¼ 35 0.401 −0.023 0.006
mn ¼ 45 −0.113 0.011
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is about 0.09 electron per Fe), and the corresponding Fermi
surfaces are presented in Figs. 9(c) and 9(d).

1. Numerical simulation for the topological
superconductivity in the iron-selenide superconductors

Based on the genuine model in Eq. (G1), we calculate the
edge modes in the superconducting state to verify possible
topological superconductivity in iron-based superconduc-
tors. For the superconducting part, we design a general
superconducting gap form which includes the on-site and
NN intrasublattice intraorbital s-wave spin-singlet pairing
[97], namely,

Hsc ¼ Δ0 þ 2Δ1ðcos kX þ cos kYÞ; ðG4Þ

where kX and kY are defined in the two-Fe unit cell. This
form can generate both conventional and sign-changed s
waves between inner and outer pockets. We consider the
sign-changed s wave to confirm its nontrivial topology.
Taking Δ0 ¼ −58 meV and Δ1 ¼ −16.7 meV, the super-
conducting state is the sign-changed s-wave pairing
state with a minimum gap around 0.7 meV, as shown in
Fig. 10(a).
With the above parameters, we calculate the edge modes

on the (10) boundary shown in Fig. 10(b). There are two
degenerate Majorana cones, which is consistent with the
analysis in the main text. Therefore, we can conclude that

the sign-changed s-wave state in iron-selenides is a second-
order topological superconductor.

2. More analysis on the pairing states in the iron-
selenide superconductors

So far, we have shown that, in the iron-selenide super-
conductors with only two electron pockets near the
Brillouin zone corner, sign-changed s-wave pairing corre-
sponds to a second-order topological superconducting
state. Here, we present more analysis on the pairing states

FIG. 9. (a) and (b) show the normal-state band structures of the monolayer FeSe in the absence and presence of spin-orbit coupling,
respectively. The corresponding Fermi surfaces are shown in (c) and (d), with the insets showing the details. The chemical potential is set
to be μ ¼ 118.3 meV, and the spin-orbit coupling λ ¼ 40 meV here. We also show the lattice structure of the monolayer FeSe in (e).

FIG. 10. (a) shows the sign-changed s-wave pairing simulated
by the superconducting order in Eq. (G4), with the sign of the
superconducting order indicated by red (þ) and blue (−). The
Fermi surfaces are in the same condition as those in Fig. 9(d), and
the pairing nodes are labeled by the green color. (b) shows the
edge modes around Ȳ on the (10) boundary, corresponding to the
superconducting state in (a).
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in the iron-selenide superconductors, especially the pairing
in the sublattice degree of freedom.
In the former part, in the numerical calculations intra-

sublattice s-wave pairing with the specific form Hsc ¼
Δ0 þ 2Δ1ðcos kX þ cos kYÞ is taken. One can also consider
intersublattice pairing. However, the main problem for
intersublattice s-wave pairing is that it always leads to
the nodal superconducting state in iron-selenide super-
conductors. For instance, NN intersublattice s-wave pairing
takes the form HNN;s;1

sc ¼ 2ΔNN;sðcos kx þ cos kyÞη0 in
the one-Fe-unit-cell case, which vanishes along lines
kx þ ky ¼ �π and kx − ky ¼ �π, and HNN;s;2

sc ¼
4ΔNN;s cos kX=2 cos kY=2η1 in the two-Fe-unit-cell case,
which vanishes along lines kX ¼ �π and kY ¼ �π, as
illustrated in Figs. 11(d) and 11(e). Here, ðkx; kyÞ and
ðkX; kYÞ are defined in accordance with ðx; yÞ and ðX; YÞ
shown in Fig. 11(a), respectively. Therefore, to get the full-
gap s-wave superconducting state, we have to consider
intrasublattice pairing, such as the specific form in
Eq. (G4), in the presence of spin-orbit coupling (finite
spin-orbit coupling is necessary). It is worth pointing out
that (i) substituting the pairing form in Eq. (G4) with long-
range pairing and (ii) mixing intrasublattice pairing with
intersublattice pairing do not change the conclusions in
this work.
Besides s-wave pairing, in monolayer FeSe, d-wave

pairing can also support the full-gap superconducting state.
However, as pointed out in previous studies [67,76], the
d-wave state can be full gap only when the hybridiza-
tion between the inner and outer Fermi surfaces shown in
Fig. 9(c) is weak compared to the superconducting pairing
strength. The requirement lies in the fact that, if the d-wave
pairing is projected onto the band basis, in the strong
hybridization condition the inner and outer Fermi surfaces
split largely and only the intraband pairing matters. The
intraband pairing must have nodes in the d-wave state.
However, if the split of the two Fermi surfaces is small,
besides intraband pairing, interband pairing also plays an
important role, and it can make the d-wave superconduc-
tivity full gap. Considering that the inner and outer Fermi

surfaces in monolayer FeSe hybridize thoroughly due to
spin-orbit coupling as indicated in Figs. 9(a)–9(d), we
immediately conclude that the d-wave state can be full gap
only when the spin-orbit coupling is weak (including the
vanishing case). Specifically, in monolayer FeSe, to get
full-gap d-wave superconductivity, we need to consider
intersublattice pairing (it can be checked that intrasublattice
d-wave states are always nodal). We take NN intersublat-
tice d-wave pairing as an example, which has the form
HNN;d;1

sc ¼ 2ΔNN;sðcos kx − cos kyÞη0 in the one-Fe-unit-
cell case and HNN;d;2

sc ¼ 4ΔNN;s sin kX=2 sin kY=2η1 in the
two-Fe-unit-cell case, and the superconducting state is
sketched in Figs. 11(b) and 11(c). This state is full gap
(and topologically trivial) in the absence of spin-orbit
coupling and evolves into the nodal state as the spin-orbit
coupling becomes stronger (this nodal state may carry
topologically nontrivial properties).
Before finishing this part, it is worth mentioning that, in

addition to the sublattice degree of freedom, the pairing in
the orbital degree is also an important issue in iron-based
superconductors. However, we point out that these issues
do not change the conclusion in the work, since the
topological state is decided by the superconducting pairing
on the Fermi surfaces as demonstrated in the main text.

3. Effective Rashba spin-orbit coupling
in iron-selenide superconductors

As mentioned, in iron-based superconductors, atomic
spin-orbit coupling combined with lattice structure can lead
to effective Rashba-type spin-orbit coupling similar to the
lattice model in the main text. In monolayer FeSe, the
inversion center is located at the middle of the nearest
Fe1—Fe2 bond, and within the Fe1 (Fe2) sublattice there is
no inversion symmetry, as indicated in Fig. 9(e). Therefore,
Rashba spin-orbit coupling is prohibited between the
nearest Fe1 and Fe2 sites, and we need to consider it
between the nearest Fe1 (Fe2) and Fe1 (Fe2) atoms, i.e., the
intrasublattice nearest neighbors.
In the genuine model in Eq. (G1), the bands near the

Fermi energy are mainly contributed by the dxz, dyz, and

FIG. 11. (a) shows the sublattice structure of monolayer FeSe. (b)–(e) sketch the NN intersublattice pairing states in the absence of
spin-orbit coupling, with the pairing sign on the Fermi surfaces indicated by the red and blue colors. (b) and (c) correspond to d-wave
pairing and (d) and (e) to s-wave pairing. In the figures, (b) and (d) show the one-Fe-unit-cell case with the pairing nodes marked by the
green dashed lines, and (c) and (e) show the two-Fe-unit-cell case.
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dxy orbitals [104]. Here, we take the dxy orbital between the
intrasublattice nearest neighbors, for instance, to estimate
the strength of the effective Rashba spin-orbit coupling in
monolayer FeSe. Specifically, we consider the two dxy
orbitals at r1 and r2 in Fig. 12(a). The effective Rashba
spin-orbit coupling between these two orbitals should take
the formHR¼λRd

†
xy;↑ðr1Þdxy;↓ðr2Þ−λ�Rd†xy;↓ðr1Þdxy;↑ðr1Þþ

H:c:, which can be generated by the high-order processes
in the genuine model in Eq. (G1). With a careful check,
it can be found that up to second order the term
λRd

†
xy;↑ðr1Þdxy;↓ðr2Þ can be induced by the four processes

listed in Figs. 12(b)–12(e). These second-order pro-
cesses are intermediated by the dxz=yz orbital, and in each
of the second-order processes it includes direct hopping and
atomic spin-orbit coupling between the dxy and dxz=yz
orbitals. By taking the second-order processes in Figs. 12(b)–
12(e) and their reverse processes into account, we construct
a space ½dxy;↑ðr1Þ;dxy;↓ðr2Þ;dxz;↓ðr1Þ;dyz;↓ðr1Þ;dxz;↑ðr2Þ;
dyz;↑ðr2Þ�. The space can be described by the following
Hamiltonian:

H¼
�
H0 T01

T10 H1

�
; T01¼

1

2

�
iλ −λ 2t14xy 2t24xy

ð2t41xyÞ� ð2t42xyÞ� iλ λ

�
;

ðG5Þ

with H0 and H1 corresponding to the subspace ½dxy;↑ðr1Þ;
dxy;↓ðr2Þ� and ½dxz;↓ðr1Þ; dyz;↓ðr1Þ; dxz;↑ðr2Þ; dyz;↑ðr2Þ�,
respectively. In the above equation, T10 ¼ T 0

01, H0 ¼ ϵ4,
andH1 ¼ ϵ1 with ϵ1=4 presented in Table II. Considering the

constraint of C2z symmetry, the hopping parameters satisfy
−t14xy ¼ −t24xy ¼ t42xy ¼ t41xy. Integrating the dxz=yz orbitals out,
we obtain the effective Hamiltonian for subspace
½dxy;↑ðr1Þ; dxy;↓ðr2Þ� as H̃0 ¼ H0 − T01ðϵ4 −H1Þ−1T10.
The off-diagonal terms in H̃0 just correspond to the effective
Rashba spin-orbit coupling λRd

†
xy;↑ðr1Þdxy;↓ðr2Þ þ H:c:,

which gives λR ¼ −λt14xyð1 − iÞ=ðϵ4 − ϵ1Þwith λ the strength
of the atomic spin-orbit coupling of the d orbitals in iron-
based superconductors.
Similarly, if we consider effective Rashba spin-orbit

coupling between the two dxy orbitals at r3 and r4 in
Fig. 12(a) with the form λ0Rd

†
xy;↑ðr3Þdxy;↓ðr4Þ, the strength

can be calculated as λ0R ¼ −λt̃14xyð1 − iÞ=ðϵ4 − ϵ1Þ.
Moreover, the symmetry group of iron-based supercon-
ductors requires t̃14xy ¼ −t14xy, since the Fe1 and Fe2 sub-
lattices are related by the glide mirror symmetry fMzjτ0g as
indicated in Fig. 9(e) (the dxy orbital is even under Mz,
while dxz=yz is odd under Mz). Therefore, we have
λ0R ¼ −λR. Namely, the two sublattices experience opposite
Rashba spin-orbit coupling, i.e., the opposite intrinsic
polarization, which is consistent with the lattice model
in the main text.
Based on the above estimation and the parameters in

Table II, we estimate jλRj ∼ 0.88λ, which can be several
tens of meV in monolayer FeSe. Moreover, it is worth
pointing out that, in iron-based superconductors, effective
Rashba spin-orbit coupling decides the band split along the
M-X line shown in Figs. 9(a)–G1(d). It can be verified by
the fact that, for the bands described by the Hamiltonian in
Eq. (G1), the spin-flip (spin-nonflip) part of the atomic
spin-orbit coupling in Eq. (G2) can (cannot) split the bands
along the M-X line. This is consistent with the above
analysis that effective Rashba spin-orbit coupling is
induced from spin-flip spin-orbit coupling between the d
orbitals. In fact, in LiFeAs it has been identified that the
band split along theM-X line is about 10 meV [110], which
is consistent with our estimation.

APPENDIX H: CENTROSYMMETRIC
SPACE GROUPS WITH SIMILAR

STRUCTURE WITH P4=nmm

In the theory presented in the main text, the special group
structure, i.e., inversion symmetry and mirror symmetry
defined on nonequivalent sites, plays an essential role.
Here, based on a query of all 230 space groups, we find that
among the 92 centrosymmetric space groups there are 61
space groups, in each of which there is at least one point
group operation defined at the nonequivalent site with the
inversion center. According to our theory, in the A1g-pairing
centrosymmetric superconductors respecting these space
groups, topological superconductivity can be expected,
though more detailed analysis needs to be carried out.
We list these space groups (group number) as follows.

FIG. 12. (a) shows the NN intrasublattice hoppings (dashed
lines) between the dxz=yz and dxy orbitals in iron-based super-
conductors, with the hopping parameters tmn

i shown in Table II.
The hoppings in gray and blue occur within the Fe1 sublattice,
and the hoppings in magenta occur within the Fe2 sublattice.
Notice that the x=y direction in (a) has a difference of π=4 rotation
with the primitive lattice vectors. (b)–(e) show the four second-
order processes which can induce the Rashba term
λRd

†
xy;↑ðr1Þdxy;↓ðr2Þ in (a). The second-order processes are

intermediated by the dxz=yz orbital [the half-transparent red ball
which represents dxz;↑, dxz;↓, dyz;↑, and dyz;↓ in (b), (c), (d), and
(e), respectively]. The dashed lines in (b)–(e) have the same
meaning as those in (a).
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(i) the monoclinic space group: 11, 13, 15;
(ii) the orthorhombic space group: 48–54, 56, 57, 59,

60, 62, 63, 66–68, 70, 74;
(iii) the tetragonal space group: 84–86, 88, 124–127,

129–138, 140–142;
(iv) the trigonal space group: 163, 165, 167;
(v) the hexagonal space group: 176, 192–194;
(vi) the cubic space group: 201, 203, 205, 206, 222–224,

226–228, 230.
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