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Understanding various phenomena in nonequilibrium dynamics of closed quantum many-body systems,
such as quantum thermalization, information scrambling, and nonergodic dynamics, is crucial for modern
physics. Using a ladder-type superconducting quantum processor, we perform analog quantum simulations
of both the XX-ladder model and the one-dimensional XX model. By measuring the dynamics of local
observables, entanglement entropy, and tripartite mutual information, we signal quantum thermalization
and information scrambling in the XX ladder. In contrast, we show that the XX chain, as free fermions on a
one-dimensional lattice, fails to thermalize to the Gibbs ensemble, and local information does not scramble
in the integrable channel. Our experiments reveal ergodicity and scrambling in the controllable qubit
ladder, and open the door to further investigations on the thermodynamics and chaos in quantum many-
body systems.
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Introduction.—Whether the out-of-equilibrium dynam-
ics of a quantum many-body system can present thermal-
ization [1,2] and information scrambling [3] is a
fundamental issue in statistical mechanics. The occurrence
or absence of ergodicity and information scrambling
depends on whether the system is equivalent to noninter-
acting particles or not. During the nonequilibrium dynam-
ics of an isolated quantum system, thermalization occurs as
the system achieves equilibration, and the quenched state is
described by the Gibbs distribution [4,5]. A nonintegrable
system thermalizes when it is driven out of equilibrium.
However, in an integrable system, an extensive number of
conserved quantities blocks the dynamical thermalization,
and therefore, the system cannot stably reach a thermal
equilibrium state after a long-time evolution [2,6]. As an
underlying mechanism for the thermalization of an isolated
quantum system, information scrambling [3] describes the
spreading of local information into many degrees of free-
dom of the system. It has been numerically shown that
information scrambling cannot occur in one-dimensional

(1D) free fermions as an integrable system, while a generic
nonintegrable system scrambles information [3,7].
Experiments on quantum thermalization have been dem-

onstrated in cold atoms [8] and trapped ions [9] with time-
independent Hamiltonians, as well as periodic Floquet
systems [10,11]. Nevertheless, the experimental implemen-
tationof both almost integrable andnonintegrable systemson
the same quantum processor, where distinguishable charac-
teristics of ergodicity and can be observed, remains limited.
Information scrambling can be identified by out-of-time-

order correlators (OTOCs) [3], which have been measured
using time-reversal operations [12–15], and statistical cor-
relations between randomized measurements [16,17]. The
quantum teleportation protocol can be employed to detect
information scrambling, distinguishing the scrambling-
induced decay of OTOCs from decoherence [18–20]. It is
noted that at infinite temperature the tripartite mutual
information (TMI) is closely related to the OTOC averaged
over a complete basis of operators [3]. The TMI can diagnose
scrambling when it reaches a stable negative value [3,7,21].
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Moreover, the TMI is an operator-independent quantity,
while the choice of proper local operators in OTOCs is
necessary for characterizing scrambling. Additionally, an
evolution time 2t is required to measure the OTOC at time t,
because of the need of time-reversal evolution, which
requires longer decoherence time of quantum simulators.
Recent numerical works have shown that ergodicity and

scrambling can occur in the XX ladder [22,23], but the 1D
XX model is a typical integrable system [24] that exhibits
the characteristics of free fermions. Here, we realize the XX
chain and the XX ladder with a superconducting qubit
chain and ladder, respectively, on a programmable quantum
processor. Through the measurements of local observables
and von Neumann entanglement entropy, we observe two
distinct nonequilibrium dynamical behaviors of the qubit
chain and ladder. The dynamics of the qubit ladder is
ergodic, validating the predictions of the Gibbs ensemble.
However, with these signatures of thermalization, the
dynamics of the XX chain is verified to be nonergodic
due to its integrability. Furthermore, we monitor the quench
dynamics of the TMI by performing efficient and accurate
quantum state tomography (QST). For the first time, we
present critical experimental evidence of scrambling, char-
acterized by a stable negative value of TMI in the XX
ladder.
Superconducting quantum processor.—Our experiments

are performed on a ladder-type superconducting circuit
[see Fig. 1(a)], where 18 transmon qubits are used for the

quantum simulation. Transmon qubits are designed by
making the Josephson energy larger than the charge energy,
and can be described by Duffing oscillators [25]. The
neighbor qubits are coupled via a fixed capacitor, which
can be regarded as the hopping interaction between nearby
nonlinear photonic resonators [26]. Thus, the supercon-
ducting circuit can be described by a Bose-Hubbard
Hamiltonian [25–28]

Ĥ ¼
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with m denoting the number of rungs, âm;n (â†m;n) as the
bosonic annihilation (creation) operator, N̂m;n ¼ â†m;nâm;n

as the bosonic number operator, μmn and Umn denoting the
on-site chemical potential and nonlinear interaction, and J⊥n
and Jkmn referring to the rung and intrachain hopping
interactions, respectively. To study the out-of-equilibrium
dynamics of the superconducting qubit chain and ladder,
we choose the initial states as shown in Fig. 1(b), which are
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FIG. 1. Superconducting quantum circuit and experimental pulse sequences. (a) False-color optical micrograph of the super-
conducting circuit. Each qubit has an independent control line for the XY and Z control (the yellow region), coupled to a separate readout
resonator (the purple region). (b) A schematic graph of the superconducting quantum circuit. The up and down arrows indicate that the
initial state of the qubit is j1i and j0i, respectively. The qubitsQ1–Q12 are employed in the quantum simulation of XX chain. The qubits
Q1–Q6 and Q13–Q18 are employed in the quantum simulation of XX ladder. (c),(d) The experimental pulse sequence of the quantum
simulation of XX chain and ladder, respectively. The pulse sequences consist of initialization, evolution, and readout. In the
initialization, all qubits are at j0i, and the X gates are applied on the qubits whose chosen initial state is j1i. Next, the qubits are tuned to
the working point via Z pulses, and the time evolution is realized. Finally, the measurements are performed after tuning the qubits back
to their idle points.

PHYSICAL REVIEW LETTERS 128, 160502 (2022)

160502-2



prepared by using an X gate on target qubits of vacuum
states [see Figs. 1(c) and 1(d)].
Since jŪj=J̄ ≃ 19with jŪj and J̄ being the average value

of nonlinear and hopping interactions (see Supplemental
Material [29]), the system (1) approximates to the XX spin
model where the bosonic annihilation and creation operator
are mapped to the spin lowering and raising operator,
i.e., â†ðâÞ → σ̂þðσ̂−Þ [45]. Thus, the qubit chain can be
described by ĤC ¼ J̄

P
nðσ̂þn σ̂−nþ1 þ H:c:Þ, transformed to

a quadratic fermionic model using Jordan-Wigner trans-
formation [24]. However, the XX ladder cannot be written
as a quadratic form [23], which is an interacting fer-
mionic model.
Thermalization.—Thermalization occurs in the quench

dynamics of closed quantum systems if ρAðtÞ ¼ ρβA for all
subsystems A in the large-system and long-time limit. Here,
ρAðtÞ denotes the reduced density matrix of A for the
quenched state at time t, and ρβA refers to the one for
the Gibbs thermal state with an inverse temperature β. The
inverse temperature β depends on the initial state, and in
our experiments β → 0 for the initial states as shown in
Fig. 1(b) (see Supplemental Material [29]). When consid-
ering a single qubit as the subsystem A, we have ρβ→0

A ¼
diagð1=2; 1=2Þ.
To probe ergodic dynamics, we consider the local

observable n̂j1ð0Þi ¼ ðPm∈N1ð0Þ σ̂
þ
mσ̂

−
mÞ=N1ð0Þ, summing

over the N1ð0Þ qubits initialized in j1i (j0i) and averaging
it. Applying the pulse sequence in Figs. 1(c) and 1(d), we
can monitor the dynamics of local observables (known as
local densities [45]) via 3 000 repeated single-shot mea-
surements. If the dynamics is ergodic, local densities will
approach a stationary value, Tr½σ̂þA σ̂−Aρβ→0

A � ¼ 1=2 (A labels
the single-qubit subsystem), after a short relaxation. As
shown in Figs. 2(a) and 2(b), for the qubit chain, there is no
convergence of local densities for t ≤ 300 ns, and the
experimental data are consistent with the analytical results
of the 1D Bose-Hubbard model with the limit case of the
nonlinear interaction U ¼ ∞ [45] (see also Supplemental
Material [29]). Moreover, we demonstrate that the con-
vergence is still absent for longer evolution time, and with a
larger system size [29]. For the qubit ladder, we observe
a tendency of convergence with a small oscillation after a
time t ≃ 30 ns. The existence of small oscillation can be
interpreted by the finite-size effect, because its amplitude
decreases with an increasing size of the qubit ladder [29].
Next, we study ergodicity via the operator distance

d½ρAðtÞ; ρβA� as the maximum eigenvalue of ρAðtÞ − ρβA with
A being the single-qubit subsystem. When the dynamics is
ergodic, it can be predicted that d½ρAðtÞ; ρβA� ¼ 0 for a long
time t, since ρAðtÞ ¼ ρβA is a signature of thermalization
[4,8]. Figure 2(c) displays the time evolutions of the
d½ρAðtÞ; ρβA� averaged over all qubits. The distance shows
a value smaller than 0.05 for the ladder, while it exhibits a
strong oscillation between 0.1 and 0.2 for the chain,

providing evidence of the occurrence and absence of
ergodicity in the XX ladder and chain, respectively.
We also investigate the entanglement entropy (EE), as a

quantification of bipartite entanglement, which plays a key
role in thermalization because the description of local
observables via statistical physics is validated by the
entanglement creating local entropy [46,47]. The efficient
QST [48,49] is a conventional way to measure the von
Neumann EE. Recently, other methods to detect entangle-
ment have been developed, such as quantum interference
[8] and randomized measurements [50] for measuring the
second Rényi EE, and spectroscopy of the entanglement
Hamiltonian [51] for measuring the entanglement spec-
trum. However, these studies cannot be simply generalized
to the von Neumann entropy to the best of our knowledge.
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FIG. 2. Dynamics of local densities and the operator distances.
(a) Experimental data of the time evolution of local observables
nj1iðtÞ in the qubit chain and ladder. Panel (b) is similar to (a), but
for the local observable nj0iðtÞ. (c) The time evolution of the
operator distance between the quenched and thermal states in the
chain and ladder. The solid lines are numerics without consid-
ering decoherence. The error bars of experimental data are
smaller than the size of symbols and not shown here (see Ref. [29]
for the values of errors of all experimental data).
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Here, we perform a six-qubit state tomography to obtain
the reduced density matrix ρAðtÞ with the subsystem A
comprised of Q1–Q6, and then calculate the EE SA ¼
−Tr½ρAðtÞ ln ρAðtÞ�. By partially tracing the six-qubit den-
sity matrix, we also obtain the EE of smaller subsystems.
Figures 3(a)–3(f) show the dynamics of the EE in the

qubit chain and ladder. We observe that the temporal
fluctuations of EE become more dramatic in the chain
than that in the ladder. Furthermore, we study the time-
averaged EE (after t ¼ 60 ns) as a function of the sub-
system size l. As depicted in Fig. 3(g), the volume law of
EE SA ∝ l is satisfied for the quenched states in both the
qubit chain and ladder. However, the value of EE is larger

for the ladder, which approaches the Page value for random
pure states [46]. The experimental data of EE agree with the
numerical results in Ref. [47], which reveal stronger
fluctuations of the EE and a smaller volume-law slope
of the time-averaged EE in integrable systems than those in
nonintegrable systems.
We note that the deviation between the experimental data

and the numerics without considering decoherence cannot
be negligible in Fig. 3(e). With the inevitable coupling of
quantum simulators to the environment, decoherence may
affect the dynamical processes. Here, we numerically
simulate the dynamics by solving the Lindblad master
equation, taking the energy relaxation and dephasing into
consideration [29]. In Fig. 3(e), the numerical results with
decoherence agree better with the experimental data,
especially for the data at a late time t ≥ 150 ns when
the effects of decoherence become more notable. However,
in an early time t ≤ 50 ns, the discrepancy may be induced
by some other sources of errors in addition to decoherence,
such as the readout errors, the instability of qubits due to
the long time for six-qubit state tomography (around 5 h),
and accumulated errors of 36 single-qubit gates in the
quantum state tomography.
Information scrambling.—We then study information

scrambling by considering TMI [3]:

I3 ¼ SðρAÞ þ SðρBÞ þ SðρCÞ þ SðρABCÞ
− SðρABÞ − SðρACÞ − SðρBCÞ; ð2Þ

where SðρÞ is the von Neumann entropy, and A, B, and C
refer to three subsystems. Experimentally, to calculate TMI,
we measure ρABC using QST, and obtain the density matrix
of smaller subsystems by partially tracing ρABC.
The schematic experimental pulse sequence for meas-

uring TMI in the qubit chain is depicted in Fig. 4(a).
Different from the previous pulse sequences [Figs. 1(c) and
1(d)], the qubits Q1 and Q2 are prepared in an Einstein-
Podolsky-Rosen (EPR) pair jEPRi12 ¼ ð1= ffiffiffi

2
p Þðj0i1j0i2 þ

j1i1j1i2Þ by the Xπ gate and a CNOT gate [see the frames in
Figs. 4(a) and 4(b)]. Subsystems A and B are chosen as Q1

and Q2, respectively, and the subsystem C consists of
Q3–Q5. A similar scheme of scrambling in the qubit ladder
is plotted in Fig. 4(b) with the same choices of subsystem
A, B, and C, but the remainder becomes Q14–Q17. The
protocol for studying information scrambling is enlight-
ened by the Hayden-Preskill thought experiment [21,52].
It studies how quantum information undergoes the internal
unitary dynamics of black holes, and its retrieval in this
process (see Supplemental Material [29] for more details).
Based on the protocol, TMI can characterize how local
information encoded by the EPR pair scrambles during the
dynamics of quantum processors.
Figures 4(c) and 4(d) show the numerical and experimen-

tal results of the quenchdynamics ofTMI, respectively. In the
qubit chain as an integrable case, TMI recovers to zero
after the decreasing period, while in the qubit ladder, TMI
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FIG. 3. Dynamics of entanglement entropy with different
subsystem length l. (a) Time evolution of EE in the qubit chain
with the subsystem consisting of Q1 and Q2. (b) Time evolution
of EE in the qubit ladder with the subsystem consisting ofQ1 and
Q2. Panels (c) and (d) are similar to (a) and (b), respectively, but
with the subsystem consisting of Q1–Q4. Panels (e) and (f) are
similar to (a) and (b), respectively, but with the subsystem
consisting of Q1–Q6. (g) The time-averaged EE as a function
of l. The solid lines in (a) to (f) are numerics without considering
decoherence. The dashed lines in (b), (d), and (f) denote the Page
value of von Neumann EE SPage ¼ lnm −m=2n withm ¼ 2l and
n ¼ 2N−l (N ¼ 12 as the number of qubit). The dotted curve in
(e) shows the numerics considering decoherence. The dashed
lines in (g) are the linear fittings of the experimental data. The
error bars of experimental data are smaller than the size of the
symbols.
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saturates to a stationary negative value.Moreover, for theXX
ladder, the value of time-averaged TMI (after t ¼ 60 ns),
smaller than that in the chain, reflects a stronger information
scrambling. The dynamical properties of TMI observed in
the qubit ladder and chain are consistent with the numerical
results obtained without considering decoherence. We note
that TMI tends to 0 for both the qubit chain and ladder
when considering decoherence [29], suggesting that
decoherence can be a factor for TMI getting closer to 0 as
shown in experiments.
Discussion.—We have performed quantum simulations

of the integrable 1D XX chain, and the XX ladder as a

nonintegrable model, observing two distinct behaviors of
ergodicity characterized by local densities, operator dis-
tances, and entanglement. In addition, we have measured
the TMI in the XX chain and ladder, showing a clear
signature of information scrambling in the dynamics of the
nonintegrable XX ladder.
The measurement of TMI characterizing information

scrambling lays the foundation for further experimental
studies on TMI in other systems, such as neutral atom
arrays [53], and a trapped-ion quantum simulator described
by long-range spin chains [54,55]. The ladder-type super-
conducting processor, where ergodicity is observed, can be
a suitable platform for experimentally probing the phe-
nomena related to the breakdown of ergodicity, such as
many-body localization [4], measurement-induced disen-
tangling phase [56], and quantum many-body scars [57].
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Neill et al., Science 374, 1479 (2021).

[15] J. Braumüller, A. H. Karamlou, Y. Yanay, B. Kannan, D.
Kim, M. Kjaergaard et al., Nat. Phys. 18, 172 (2022).

[16] B. Vermersch, A. Elben, L. M. Sieberer, N. Y. Yao, and P.
Zoller, Phys. Rev. X 9, 021061 (2019).

[17] M. K. Joshi, A. Elben, B. Vermersch, T. Brydges, C. Maier,
P. Zoller, R. Blatt, and C. F. Roos, Phys. Rev. Lett. 124,
240505 (2020).

[18] K. Landsman, C. Figgatt, T. Schuster, N. M. Linke, B.
Yoshida, N. Y. Yao, and C. Monroe, Nature (London) 567,
61 (2019).

[19] M. S. Blok, V. V. Ramasesh, T. Schuster, K. O’Brien, J. M.
Kreikebaum, D. Dahlen, A. Morvan, B. Yoshida, N. Y. Yao,
and I. Siddiqi, Phys. Rev. X 11, 021010 (2021).

[20] B. Yoshida and N. Y. Yao, Phys. Rev. X 9, 011006
(2019).

[21] E. Iyoda and T. Sagawa, Phys. Rev. A 97, 042330
(2018).

[22] C. B. Dağ and L.-M. Duan, Phys. Rev. A 99, 052322
(2019).

[23] Z.-H. Sun, J. Cui, and H. Fan, Phys. Rev. Research 2,
013163 (2020).

[24] E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. (N.Y.) 16, 407
(1961).

[25] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster,
J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J.
Schoelkopf, Phys. Rev. A 76, 042319 (2007).

[26] C. Noh and D. G. Angelakis, Rep. Prog. Phys. 80, 016401
(2017).

[27] Z. Yan, Y.-R. Zhang, M. Gong, Y. Wu, Y. Zheng, and S. Li
et al., Science 364, 753 (2019).

[28] P. Roushan, C. Neill, J. Tangpanitanon, V. M. Bastidas, A.
Megrant, R. Barends et al., Science 358, 1175 (2017).

[29] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevLett.128.160502 for the device information
and the systemHamiltonian, the performance of quantumgates,
the calibration of theworking frequency of qubits, the error bars
of the experimental data, and additional numerical results,
which includes Refs. [30–44].

[30] E. Purcell, Phys. Rev. 69, 37 (1946).

[31] M. D. Reed, B. R. Johnson, A. A. Houck, L. DiCarlo, J. M.
Chow, D. I. Schuster, L. Frunzio, and R. J. Schoelkopf,
Appl. Phys. Lett. 96, 203110 (2010).

[32] E. Jeffrey, D. Sank, J. Y. Mutus, T. C. White, J. Kelly, R.
Barends et al., Phys. Rev. Lett. 112, 190504 (2014).

[33] E. A. Sete, J. M. Martinis, and A. N. Korotkov, Phys. Rev. A
92, 012325 (2015).

[34] A. Dunsworth, R. Barends, Y. Chen, Z. Chen, B. Chiaro, A.
Fowler et al., Appl. Phys. Lett. 112, 063502 (2018).

[35] Y. Ye, Z.-Y. Ge, Y. Wu, S. Wang, M. Gong, and Y.-R. Zhang
et al., Phys. Rev. Lett. 123, 050502 (2019).

[36] J. Y. Mutus, T. C. White, R. Barends, Y. Chen, Z. Chen, B.
Chiaro et al., Appl. Phys. Lett. 104, 263513 (2014).

[37] R. Barends, C. M. Quintana, A. G. Petukhov, Y. Chen, D.
Kafri, K. Kechedzhi et al., Phys. Rev. Lett. 123, 210501
(2019).

[38] S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush, N.
Ding, Z. Jiang, M. J. Bremner, J. M. Martinis, and H. Neven,
Nat. Phys. 14, 595 (2018).

[39] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R.
Barends et al., Nature (London) 574, 505 (2019).

[40] J. M. Martinis and M. R. Geller, Phys. Rev. A 90, 022307
(2014).

[41] G. C. Knee, E. Bolduc, J. Leach, and E. M. Gauger, Phys.
Rev. A 98, 062336 (2018).

[42] J. Johansson, P. Nation, and F. Nori, Comput. Phys.
Commun. 183, 1760 (2012).

[43] J. Johansson, P. Nation, and F. Nori, Comput. Phys.
Commun. 184, 1234 (2013).

[44] M. C. Bañuls, J. I. Cirac, and M. B. Hastings, Phys. Rev.
Lett. 106, 050405 (2011).

[45] M. Cramer, A. Flesch, I. P. McCulloch, U. Schollwöck, and
J. Eisert, Phys. Rev. Lett. 101, 063001 (2008).

[46] D. N. Page, Phys. Rev. Lett. 71, 1291 (1993).
[47] Y. O. Nakagawa, M. Watanabe, H. Fujita, and S. Sugiura,

Nat. Commun. 9, 1635 (2018).
[48] B. P. Lanyon, C. Maier, M. Holzäpfel, T. Baumgratz, C.

Hempel, P. Jurcevic et al., Nat. Phys. 13, 1158 (2017).
[49] K. Xu, J.-J. Chen, Y. Zeng, Y.-R. Zhang, C. Song, W. Liu

et al., Phys. Rev. Lett. 120, 050507 (2018).
[50] T. Brydges, A. Elben, P. Jurcevic, B. Vermersch, C. Maier,

and B. P. LanyonP. Zoller, R. Blatt, and C. F. Roos, Science
364, 260 (2019).

[51] M. Dalmonte, B. Vermersch, and P. Zoller, Nat. Phys. 14,
827 (2018).

[52] P. Hayden and J. Preskill, J. High Energy Phys. 09 (2007)
120.

[53] T. Hashizume, G. S. Bentsen, S. Weber, and A. J. Daley,
Phys. Rev. Lett. 126, 200603 (2021).

[54] C. Monroe, W. C. Campbell, L.-M. Duan, Z.-X. Gong, A. V.
Gorshkov, P. W. Hess et al., Rev. Mod. Phys. 93, 025001
(2021).

[55] S. Pappalardi, A. Russomanno, B. Žunkovič, F. Iemini, A.
Silva, and R. Fazio, Phys. Rev. B 98, 134303 (2018).

[56] B. Skinner, J. Ruhman, and A. Nahum, Phys. Rev. X 9,
031009 (2019).

[57] C. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and
Z. Papić, Nat. Phys. 14, 745 (2018).

PHYSICAL REVIEW LETTERS 128, 160502 (2022)

160502-6

https://doi.org/10.1103/PhysRevB.100.224302
https://doi.org/10.1126/science.aaf6725
https://doi.org/10.1126/sciadv.1700672
https://doi.org/10.1126/sciadv.1700672
https://doi.org/10.1038/nphys3830
https://doi.org/10.1103/PhysRevX.10.021044
https://doi.org/10.1103/PhysRevX.10.021044
https://doi.org/10.1038/nphys4119
https://doi.org/10.1103/PhysRevX.7.031011
https://doi.org/10.1126/science.abg5029
https://doi.org/10.1038/s41567-021-01430-w
https://doi.org/10.1103/PhysRevX.9.021061
https://doi.org/10.1103/PhysRevLett.124.240505
https://doi.org/10.1103/PhysRevLett.124.240505
https://doi.org/10.1038/s41586-019-0952-6
https://doi.org/10.1038/s41586-019-0952-6
https://doi.org/10.1103/PhysRevX.11.021010
https://doi.org/10.1103/PhysRevX.9.011006
https://doi.org/10.1103/PhysRevX.9.011006
https://doi.org/10.1103/PhysRevA.97.042330
https://doi.org/10.1103/PhysRevA.97.042330
https://doi.org/10.1103/PhysRevA.99.052322
https://doi.org/10.1103/PhysRevA.99.052322
https://doi.org/10.1103/PhysRevResearch.2.013163
https://doi.org/10.1103/PhysRevResearch.2.013163
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1088/0034-4885/80/1/016401
https://doi.org/10.1088/0034-4885/80/1/016401
https://doi.org/10.1126/science.aaw1611
https://doi.org/10.1126/science.aao1401
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.160502
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.160502
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.160502
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.160502
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.160502
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.160502
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.160502
https://doi.org/10.1103/PhysRev.69.37
https://doi.org/10.1063/1.3435463
https://doi.org/10.1103/PhysRevLett.112.190504
https://doi.org/10.1103/PhysRevA.92.012325
https://doi.org/10.1103/PhysRevA.92.012325
https://doi.org/10.1063/1.5014033
https://doi.org/10.1103/PhysRevLett.123.050502
https://doi.org/10.1063/1.4886408
https://doi.org/10.1103/PhysRevLett.123.210501
https://doi.org/10.1103/PhysRevLett.123.210501
https://doi.org/10.1038/s41567-018-0124-x
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1103/PhysRevA.90.022307
https://doi.org/10.1103/PhysRevA.90.022307
https://doi.org/10.1103/PhysRevA.98.062336
https://doi.org/10.1103/PhysRevA.98.062336
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1103/PhysRevLett.106.050405
https://doi.org/10.1103/PhysRevLett.106.050405
https://doi.org/10.1103/PhysRevLett.101.063001
https://doi.org/10.1103/PhysRevLett.71.1291
https://doi.org/10.1038/s41467-018-03883-9
https://doi.org/10.1038/nphys4244
https://doi.org/10.1103/PhysRevLett.120.050507
https://doi.org/10.1126/science.aau4963
https://doi.org/10.1126/science.aau4963
https://doi.org/10.1038/s41567-018-0151-7
https://doi.org/10.1038/s41567-018-0151-7
https://doi.org/10.1088/1126-6708/2007/09/120
https://doi.org/10.1088/1126-6708/2007/09/120
https://doi.org/10.1103/PhysRevLett.126.200603
https://doi.org/10.1103/RevModPhys.93.025001
https://doi.org/10.1103/RevModPhys.93.025001
https://doi.org/10.1103/PhysRevB.98.134303
https://doi.org/10.1103/PhysRevX.9.031009
https://doi.org/10.1103/PhysRevX.9.031009
https://doi.org/10.1038/s41567-018-0137-5

