
Supporting Information for 

Observation of topological flat bands in the kagome 

semiconductor Nb3Cl8 

Zhenyu Sun,1,4 Hui Zhou,1,4 Cuixiang Wang,1,4 Shiv Kumar,1,4 Daiyu Geng,1,4 

Shaosheng Yue,1,4 Xin Han,1,4 Yuya Haraguchi,3 Kenya Shimada,2 Peng Cheng,1,4 Lan 

Chen,1,4,5 Youguo Shi,1,4,5,6 Kehui Wu,1,4,5 Sheng Meng,1,4 and Baojie Feng1,4 

 

1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 

2Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-

Hiroshima 739-0046, Japan 

3Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and 

Technology, Koganei, Tokyo 184-8588, Japan 

4School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 

5Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China 

6Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of 

Sciences, Beijing 100049, China 

 

1. Generalizing the destructive phase interference to a breathing kagome lattice 

To confirm our analysis, we performed TB calculations. The real-space 

wavefunctions in breathing kagome lattice take the form:  

𝜓 =
1

√6
∑ (−1)𝑗6
𝑗=1 𝜙𝑗. 

where 𝜙𝑗 is the s-orbital wavefunction at the jth corner of the hexagon and j is 

sorted in the clockwise or anticlockwise direction. By transforming the real-space 

wavefunctions to the momentum space, we obtained the Bloch states:  
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where C is the normalization factor, ai is the lattice vector, and δai is an ai -

directional vector with the length being the difference of two kinds of bonds. The 

Hamiltonian of the breathing Kagome lattice takes the form:  



𝐻 = −(

0 𝑡1𝑒
−𝑖𝑘𝑎1𝑙 + 𝑡2𝑒

𝑖𝑘𝑎1𝑠 𝑡1𝑒
𝑖𝑘𝑎3𝑙 + 𝑡2𝑒

−𝑖𝑘𝑎3𝑠

𝑡1𝑒
𝑖𝑘𝑎1𝑙 + 𝑡2𝑒

−𝑖𝑘𝑎1𝑠 0 𝑡1𝑒
−𝑖𝑘𝑎2𝑙 + 𝑡2𝑒

𝑖𝑘𝑎2𝑠

𝑡1𝑒
−𝑖𝑘𝑎3𝑙 + 𝑡2𝑒

𝑖𝑘𝑎3𝑠 𝑡1𝑒
𝑖𝑘𝑎2𝑙 + 𝑡2𝑒

−𝑖𝑘𝑎2𝑠 0

) 

where t1 and t2 are the nearest neighbor hopping in the big and small triangles, 

respectively, ail and ais are the ai-directional vector with the length being the long 

and short bonds, respectively. We find that 𝜓𝑘 is the eigenfunction of the flat band 

by solving the eigenfunction of the Hamiltonian H. Therefore, the breathing kagome 

lattice also hosts topological flat bands that arise from the destructive phase 

interference in real space.  

2. Inversion symmetry breaking induced gap opening in the kagome lattice 

Here, we demonstrate that the band gap opening at the K point of the breathing 

kagome lattice (𝑃6̅𝑚2) with respect to the kagome lattice (𝑃
6

𝑚
𝑚𝑚) is driven by 

the inversion symmetry breaking. For the kagome lattice, the little group at the K 

point is D3h and the doubly degenerate bands at the K point, i.e., the Dirac point, are 

ensured by the 2D irreducible representation of D3h. For the breathing kagome 

lattice, due to the inversion symmetry breaking, the little group at the K point 

decreases to C3h, whose irreducible representations are all 1D. Therefore, the doubly 

degenerate bands at the K point are gapped out.  

Monolayer Nb3Cl8 has a space group of 𝑃3𝑚1 without inversion symmetry. 

This is the reason for the gap opening at the K point. It should be noted that z-

directed mirror symmetry is also broken in monolayer Nb3Cl8, which is not 

necessary for the gap opening at the K point.  

3. Determining the magnetic ground state of monolayer Nb3Cl8 

To determine the magnetic ground state of monolayer Nb3Cl8, we calculated the 

free energy of five types of magnetic orderings: the paramagnetic (PARA) ordering, 

antiferromagnetic (AFM) ordering, x-, y-, and z-directed FM orderings, as shown in 

Table S1. The primitive cell was used in the calculations. For the AFM ordering, 

the magnetic moments of two Nb atoms in the primitive cell are along the z direction, 

while that of the third one is along the negative z direction. We find that the free 

energies of PARA and AFM orderings are higher than those of the FM orderings, 

indicating that monolayer Nb3Cl8 has a FM ground state. Among the three FM 

orderings, the free energy of x-directed FM ordering is the lowest, indicating an 

easy magnetization axis along the x direction.  

The band structure of Nb3Cl8 in the ferromagnetic state is shown in Fig. S1. 

Because of the magnetic exchange interaction, all the bands in the proximity of the 



Fermi level are spin split, including the topological flat bands.  

Table S1: Calculated free energies of four magnetic states of Nb3Cl8. The x 

direction corresponds to the a axis in Fig. 1f of the main text.  

 PARA AFM x-FM y-FM z-FM 

Energy (eV) -58.961276 -58.999540 -58.999607 -58.999600 -58.999600 

 

Fig. S1: The calculated band structures of monolayer Nb3Cl8 in the ferromagnetic states 

without SOC. The magnetization direction is along x.  

4. Topological properties of the flat bands in Nb3Cl8.  

To confirm the topology of the flat band in Nb3Cl8, we first calculate the band 

structures of Nb3Cl8 in the paramagnetic state including spin-orbit coupling (SOC), 

as shown in Fig. S2(a). The quadratic touching point at Γ between the flat band γ 

and the dispersive band β is gapped out after inclusion of SOC. We further 

calculated the edge spectrum of Nb3Cl8 with a semi-infinite geometry, as shown in 

Fig. S2(b). Helical edge states emerge in the bulk gap, indicating a Z2 topological 

invariant of the SOC-induced gap. We also calculated the Z2 topological invariant 

by the Wilson loop method, as shown in Fig. S2(c). These results confirm the 

topological nature of the flat band.  

We then discuss the topological properties of Nb3Cl8 in the ferromagnetic state. 

When SOC is included, the touching points at Γ between the flat band γ and the 

dispersive band β are gapped out for both spin-up and spin-down channels, as 

shown in Fig. S3(a). We further calculated the edge spectrum of Nb3Cl8 with a semi-

infinite geometry. As shown in Fig. S3(b) and S3(c), chiral edge states emerge in 

both gaps, indicating a Chern topological invariant of each SOC-induced gap. The 

total Chern numbers for the lower and upper gaps are -1 and 1, respectively. The 

opposite Chern numbers indicate that the spin and transport directions of the edge 

states are opposite in the two gaps.  

In conclusion, the topological flat band supports a nontrivial Z2 topological 

invariant in the paramagnetic state and will split into two topological flat bands with 

opposite Chern numbers in the ferromagnetic state. 



 

Fig. S2: Topological properties of monolayer Nb3Cl8 in the paramagnetic state. (a) 

Calculated band structures of monolayer Nb3Cl8 including SOC. (b) Calculated edge 

spectrum of Nb3Cl8 based on a semi-infinite geometry. (c) Calculated Z2 topological 

invariants using the Wilson loop method.  

 

Fig. S3: Topological properties of monolayer Nb3Cl8 in the ferromagnetic state. (a) 

Calculated band structures of monolayer Nb3Cl8 considering SOC. Blue dashed circles 

indicate SOC-induced gaps. (b,c) Calculated edge spectrum of Nb3Cl8 based on a semi-

infinite geometry for the upper and lower gaps, respectively.  

5. Orbital and symmetry analysis of the flat band 

To understand the topological nature of the flat band, we projected the band 

structures of monolayer Nb3Cl8 to the dz2, dx2y2/dxy, and dxz/dyz orbitals, 

respectively, as shown in Fig. S4. The α and δ bands are mainly contributed by the 

dz2 orbital. Since these two bands have even parity, we can exclude these two bands 

from kagome flat bands. The β and γ bands are contributed by multiple d orbitals. 

Since the β band have even symmetry and have dz2 orbital components, we can also 

exclude it from the kagome flat band. Therefore, the only possible one is the γ band 

that has odd parity. After comparing with Ref. [1], we find that dx2y2/dxy orbital of 

the γ band corresponds to 𝜓3 in Fig. 2(b) of that paper which is phase destructive 

interfering. It should be noted that the dz2 orbital components in the γ band is also 

phase destructive interfering.  

Therefore, we can unambiguously prove that the γ band is the kagome-derived 

flat band.  



 

Fig. S4: Calculated partial density of states of monolayer Nb3Cl8. The parity of the mirror 

operator along Γ-M is labelled by “+” and “-” near each band.  
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