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Abstract 

The lunar soils evolution over time is mainly caused by space weathering that 

includes the impacts of varying-sized meteoroids and charged particles implantation 

of solar/cosmic winds as well. It has long been established that space weathering leads 

to the formation of outmost amorphous layers (50–200 nm in thickness) embedded 

nanophase iron (npFe0) around the mineral fragments, albeit the origin of the npFe0 

remains controversial [1,2]. The Chang’e-5 (CE5) mission returned samples feature 

the youngest mare basalt [3,4] and the highest latitude sampling site [5], providing an 

opportunity to seek the critical clues for understanding the evolution of soils under 

space weathering. Here, we report the surface microstructures of the major minerals 
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including olivine, pyroxene, anorthite, and glassy beads in the lunar soil of CE5. 

Unlike the previous observations, only olivine in all crystals is surrounded by a 

thinner outmost amorphous SiO2 layer (~10 nm thick) and embedded wüstite 

nanoparticles FeO (np-FeO, 3–12 nm in size) instead of npFe0. No foreign volatile 

elements deposition layer and solar flare tracks can be found on the surface or inside 

the olivine and other minerals. This unique rim structure has not been reported for any 

other lunar, terrestrial, Martian, or meteorite samples so far. The observation of 

wüstite FeO and the microstructures support the existence of an intermediate stage in 

space weathering for lunar minerals by thermal decomposition.  

Keywords: Lunar soil, wüstite FeO, nanoparticle, nanophase Fe, amorphous rim 

 

1. Introduction 

The lunar soils, made up of a myriad of minute crystalline, non-crystalline mineral 

fragments and agglutinates, have been exposed to the harsh environment, i.e., space 

weathering, for billions of years. Space weathering includesthe impact of meteoroids 

and the irradiations of the solar winds and cosmic rays [1, 6–8]. As a result, rims 

composed of amorphous SixOy (50-200 nm in thickness) and embedded npFe0 (2-10 

nm in size) usually form on olivine, pyroxene, and anorthite grain surfaces [2, 9, 10]. 

The randomly-distributed npFe0 significantly reduces the optical reflection intensity 

and reddens the reflectance spectra [11–15]. Beyond the rims into the grain cores, the 

atoms gradually undergo a transition from disorder to order and finally into the 

crystalline lattice of the hosts [16, 17]. 

The occurrence of amorphous SiO2 and npFe0 inside of the rim is explained by the 

impact of micrometeoroids and bombardment of solar/galactic cosmic rays and the 

solar wind that decomposes mineral-like olivine (Fe2SiO4=2FeO+SiO2) and further 

reduce FeO into npFe0 with the aid of solar-wind-implanted H+ ions [18–20]. SiO2 is 

then existent in the form of an amorphous state. Most npFe0 are pure Kamacite (α-Fe, 

body-centered cubic) mixed with trace amounts of Ni and Co. Terrestrial laboratory 

simulations directly create a silica-rich amorphous layer (200 nm in thickness) and 

npFe0 (10-30 nm in size) in a vacuum chamber by irradiating olivine grains with a 

pulse laser beam [21]. It demonstrates that the H+ ions are not necessary in the 

reduction process while the intermediate phase FeO is not observed. The FeO is also 

not found in the dust of the Itokawa asteroid either, though these grains are speculated 

to be in their incipient state of space weathering [22].  

The CE5 soils feature  high-latitude sampling site (43.058°N and 51.916°W) of 
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the Moon and  the youngest exposure ages [3,4,23-26]. By using 

aberration-corrected transmission electron microscopy (TEM) and scanning 

transmissionelectron microscopy (STEM), we examined the microstructures and 

chemical compositions at nano/atomic scales of 25 soil grains (1-3 μm in size) from 

Sample CE5C0400YJFM00507 (1.5 g), which mainly includes minerals olivine, 

pyroxene, anorthite, and glassy bead. We unambiguously identify the wüstite FeO 

nanoparticles instead of npFe0 that are embedded in amorphous SixOy rims outside the 

olivine grains. Our systematic study provides clues or constraints on the incipient 

formation mechanism of rim structure under space weathering. 

2. Materials and methods 

2.1 Sample preparation 

The CE-5 lunar soils (CE5C0100YJFM00103, ~1.5 g) are allocated by the China 

National Space Administration. The lunar soils are scooped by the CE5 lander and 

separated in an ultraclean room at the extraterrestrial sample curation center of the 

National Astronomical Observatories, Chinese Academy of Sciences. All the soils are 

kept in a nitrogen-filled glove box. To avoid chemical contamination and 

ion-bombing-induced amorphization, we do not employ the focused ion beam (FIB) 

to cut the bulk samples except the large glassy bead. The pristine fine grains were 

mounted on the lacey carbon-coated copper grids by directly dipping the grids straight 

into the lunar soil. Small grains can cling onto the copper grids by electrostatic 

adsorption, allowing us to study the grains with an average size of ~1 μm and obtain 

high-resolution lattice fringe and accurate chemical composition. Meanwhile, we 

analyze the grains having sharp edges because they may undergo short exposure time 

under micro-meteoroids impact or sloar wind. Mineral types are initially identified by 

the real-time chemical composition via energy-dispersive X-ray spectroscopy (EDS). 

2.2 Glassy bead and standard sample preparation 

The slices samples are cut from the large glass bead (~100 μm) and Fe standard 

sample by the FIB technique. The lamella was thinned down to 100 nm thick at an 

accelerating voltage of 30 kV with a decreasing current from the maximum 2.5 nA, 

followed by fine polish at an accelerating voltage of 2 kV with a small current of 40 

pA. The standard samples of FeCO3 and Fe2O3 were ground to fine powder in a glove 

box and then dispersed on lacey carbon-coated copper grids. 

2.3 STEM, EDS and EELS measurements 

Transmission electron microscopy (TEM) and scanning transmission electron 

microscopy (STEM) observations were performed on Spectra 300 (Thermo Fisher 
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Scientific) double-Cs-corrected transmission electron microscope equipped with a 

field-emission electron source and a monochromator, operated at an accelerating 

voltage of 300 kV. High-angle annular dark-field (HAADF)-STEM and bright-field 

(BF)-STEM images were collected with a probe convergence angle of 30 mrad. EDS 

data were collected with a super-X EDS detector. Electron-energy loss spectroscopy 

(EELS) data were acquired using a Gatan image filter (GIF) (Gatan Inc.) with a 

dispersion of 0.05–0.15 eV per channel and collection semi-angle of 40 mrad. The 

energy resolution of EELS was estimated to be 0.4-0.7 eV from the full width at half 

maximum of zero-loss peak. 

3. Results and discussion 

Most of the measured grains have sharp edges and typical crystallographic habits 

rather than the rounded surface of grains from the Apollo and Luna missions [27]. We 

start with olivine as it is the most sensitive to space weathering among the Moon’s 

minerals [28–31]. Fig. 1a displays a HAADF-STEM image for a typical olivine grain. 

The enlarged upper region 1 and lateral region 2 are shown in Fig. 1b and c, 

respectively. The grain is entirely covered by amorphous layers with thicknesses of 

~10 nm and uniformly embedded nanoparticles (see Fig. 2a for details). EDS analyses 

reveal that the amorphous layer is only composed of O and Si as shown in Fig. S1a 

(online). The atomic ratio of O and Si is ~2.0, indicating the formation of amorphous 

SiO2 (a-SiO2) layer. The average composition of the olivine is quantified to be 

(Mg0.25Fe0.75)2SiO4, within the range of olivine in CE5 lunar soil [5]. The 

nanoparticles are richer in Fe in comparison to the host matrix, see Fig. S1b (online).  

The EDS line mapping was performed to describe the element distribution from 

surface to interior of olivine. The profile along the red arrow of Fig. 1d is shown in 

Fig. 1e. It confirms that the outmost amorphous layer is solely made up of Si and O 

again, and the nanoparticles within the matrix consisting of the olivine and MgO are 

FeO. Therefore, the np-FeO are embedded inside the olivine just beneath the 

amorphous layer, which is supported by the thickness calculations in Fig. S2 (online). 

The size of nanoparticles spans from 3 to 12 nm with a dominant range of 6-8 nm, see 

the histogram of Fig. 1f. The fast-Fourier transform (FFT) pattern (Fig. 1g) based on a 

high-resolution transmission electron microscopy (HRTEM) image (Fig. S3, online) 

suggests that apart from the olivine phase, the wüstite fcc-FeO nanoparticles be 

embedded inside as the diffraction rings, matching well with the simulated ones. 

We then carried out the HRTEM imaging to probe into the details of the amorphous 

layer, nanoparticle and the interior olivine. In Fig. 2a, a multiple-layered rim 
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consisting of zone I, II, and III is observed, in which three typical areas labeled as 

green, red and white squares are selected for further measurements. The results are 

shown in Fig. 2b, c, respectively. In the green square area, the outmost layer is 

homogeneously amorphous with a thickness of ~10 nm, see an enlarged HRTEM 

image and the corresponding FFT pattern in Fig. 2b. The HRTEM image for an 

np-FeO (red square) particle is shown in Fig. 2c. The lattice fringe is d = 2.11 Å. 

Several important d values are measured to be 2.45, 2.11, and 1.49 Å from Fig. 2c, 

which well match the spacing values of (110) , (002), and (220)  planes of wüstite 

FeO, respectively. These results confirm the embedded nanoparticles are fcc FeO. Fig. 

2d is the enlargement of the HRTEM image for the olivine host (white square) and its 

FFT pattern along the zone axis of [103 ]. The diffraction spots are well indexed to be 

orthorhombic olivine. Although a few FeO and Fe3O4 nanoparticles have been 

observed along with a large amount of npFe0 in Apollo lunar soils [32], they are 

suggested to be generated by the diffusion of O atoms from the O-rich matrix to the 

surface. In contrast, the npFe0 are not observed at all in our samples and the wüstite 

FeO nanoparticles are the only inclusion embedded in the amorphous rim. This 

unique rim structure has not been reported in any other lunar, terrestrial, Martian, or 

meteorite samples to the best of our knowledge. 

Fig. 3a shows the HAADF image and elemental mapping of surface area. It reveals 

that the Si and O are richer in the outmost layer, and the Fe and Mg below a-SiO2, 

consistent with line scanning in Fig. 1e. To determine the valence of Fe, we acquired 

the EELS for np-FeO and olivine marked by blue and red circles in Fig. 3b. The Si 

L-edge, O K-edge, Fe L-edges of FeO and olivine are plotted in Fig. 3c, in which the 

weaker Si and O intensity for FeO indicates that the np-FeO are embedded in the host 

olivine. The features of Si L-edge for the olivine and the amorphous SiO2 layer are 

compared with several reference spectra. It indicates that they are similar to those for 

the SiO2 rather than Si (Fig. S4a, online). Importantly, the Fe L3-edges of np-FeO and 

olivine have the same energy of 708.45 eV, which is identical to 708.42(4) eV for the 

FeCO3 standard sample (Fig. S4b, online), and larger than 708.08(5) eV for the Fe 

standard sample. Furthermore, we analyze the intensity L3/L2 ratios based on the 

method given in Fig. S5 (online). The L3/L2 ratios for the np-FeO and olivine are 

3.99(11) and 4.01(12), respectively. Both values are close to the ratio of 4.03(5) in the 

FeCO3 standard sample while much larger than the ratio of 2.99(7) in the Fe standard 

sample. All the Fe L3-edge energy and L3/L2 ratios are tabulated in Table S1 (online). 
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It demonstrates that the nanoparticles are FeO rather than Fe [33–35]. Besides, we 

notice pores, 1-2 nm in diameter, exist in these np-FeO (Fig. S6 online), which could 

act as natural collectors for noble gases. 

We checked more olivine grains, and found that they exhibit the same features of 

L-edge and L3/L2 ratio as the abovementioned grain (Fig. S7, online). In the thin slice 

of glassy beads, see Fig. S8 (online), np-FeO are found in amorphous matrix as 

revealed by the EDS and EELS analyses. We have checked the morphology of 

pyroxene grains, however, found there are no np-FeO and a-SiO2 layers, see Fig. 4a, b. 

Meanwhile, the chemical compositions of nine selected areas at the surface are 

identical to interior parts as shown in Fig. 4c. For Ca-rich anorthite, identical chemical 

compositions are observed at the surface and inside, see Fig. 4d-f. More details are 

shown in Figs. S9-S11 (online). All observations imply that our measured samples do 

not undergo severe space weathering as Apollo and Luna samples did on the Moon. 

It is interesting to compare our results to a recent paper about the rim structure and 

morphology of lunar soil returned by CE-5 [35], in which the authors found the npFe0 

(~35 nm) rather than wüstite FeO within the uppermost amorphous SixOy layers (5-20 

μm in thickness) of large olivine grains. A notable distinction is that the solar flare 

trails are found in their olivine grains, but they are not present in our smaller grains at 

all. Based on the size and sharp edge of our samples, we propose that our samples are 

more likely to be small pieces of grains cracked off bigger olivine. 

4. Conclusion 

In summary, our findings reveal two major characteristics of CE5 lunar soil under 

space weathering. First, a multiple-layer-rim structure consisting of (1) outmost 

a-SiO2 layer, (2) mixture of a-SiO2, np-FeO, and MgO, (3) mixture of np-FeO, MgO, 

and olivine, (4) host olivine, is observed. Second, the npFe0 and volatile elements S 

from vapor deposit are not observed within the rim, nor are the solar flare tracks 

inside the grain. As far as we know, such peculiar rim structures embedded FeO 

nanoparticles are not reported in the previous literatures. Given that the npFe0 is the 

final product of decomposing olivine, we suggest that wüstite FeO may serve as an 

intermediate state of the thermal decomposition process, and the FeO may further 

transform into npFe0 with the aid of cosmic radiation or solar flare. Our findings 

imply that our studied samples do not undergo severe space weathering, and the 

underlying mechanism deserves further investigation. 
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Fig. 1. Morphology and chemical composition of olivine from CE5. (a) 

HAADF-STEM image of an olivine grain. The upper region 1 and lateral region 2 are 

enlarged in (b) and (c), respectively. The thin amorphous layer is labeled by white 

arrows. (d) HAADF image showing location (red arrow) of EDS mapping for olivine 

edge. (e) Line profile of atomic fraction in the red arrow zone in (d). Zero position is 

at the outermost surface. (f) Histogram of the nanoparticles’ sizes in (b) and (c), 

showing their size in the range of 3-12 nm. (g) FFT pattern of an area of mixed 

nanoparticles and olivine matrix. The right panel is a simulated diffraction pattern of 

wüstite fcc-FeO. 

 

 

 

Fig. 2. Structural details of amorphous SiO2 layer, np-FeO and olivine host. (a) 

HRTEM image around the olivine surface. There are three typical zones (I, II, and III) 

within the rim. Green, red, and white areas are selected for detail analysis. (b)–(d) 

HRTEM and indexed FFT patterns of selected amorphous SiO2 layer, np-FeO and 

olivine host, respectively. 

 

 

 

 

 

 

 

Fig. 3. Elemental mapping and calibration of Fe’s valence. (a) HAADF image of 

surface area and elemental mapping of Si, O, Fe, and Mg. (b) HAADF-STEM image 

during EELS acquisition. FeO and olivine areas are marked by blue and red circles, 

respectively. (c) EELS of Si L-edge, O-K edge, and Fe-L edge of marked np-FeO and 

olivine in (b). In the right panel, the Fe-L edge of Fe standard sample is plotted for 

comparison. 
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Fig. 4. Morphology and chemical composition of pyroxene and Ca-rich anorthite. 

(a)-(c) HAADF images and nine selected areas at pyroxene’s surface. Zoom-in image 

around areas 2 and 6. EDS of nine areas. (d)-(f) HAADF image and eight selected 

areas at Ca-rich anorthite’s surface. Zoom-in image around areas 4 and 8. EDS of 

eight areas. 
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