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Emergence of crystalline few-body
correlations in mass-imbalanced
Fermi polarons

Ruijin Liu,1 Cheng Peng,1,2 and Xiaoling Cui1,3,4,*
SUMMARY

Polarons can serve as an ideal platform to identify few-body corre-
lations in tackling complex many-body problems. In this work, we
reveal various crystalline few-body correlations smoothly emergent
from the mass-imbalanced Fermi polarons in two dimensions. A uni-
fied variational approach up to three particle-hole excitations allows
us to extract the dominant dimer, trimer, or tetramer correlation in a
single framework. When the fermion-impurity mass ratio is beyond
certain critical value, the Fermi polaron is found to undergo a
smooth crossover, instead of a sharp transition, from the polaronic
to trimer and tetramer regimes as the fermion-impurity attraction
is increased. The emergent trimer and tetramer correlations result
in the momentum-space crystallization of particle-hole excitations
featuring a stable diagonal or triangular structure, as can be directly
probed through the density-density correlation of majority fer-
mions. Our results shed light on the intriguing quantum phases in
the mass-imbalanced Fermi-Fermi mixtures beyond the pairing su-
perfluid paradigm.
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INTRODUCTION

Many-body problems are usually complex, and an efficient tool to tackle them is

through identifying few-body correlations. A famous example is the Cooper insta-

bility, which results in the molecule formation on top of a spin-1/2 Fermi sea,

providing the foundation for the theory of Cooper pair superfluidity.1 However,

the hardest part of the approach is to foresee the dominant correlation from a

complicated many-body environment. In this regard, the 1+N polaron system,

which consists of an impurity immersed in a sea of majority atoms, serves as an ideal

platform for this study as it just interpolates between the few- and many-body sys-

tems and constitutes the simplest model for the few-to-many crossover.2–4

The concept of polaron, as raised by Landau nearly a century ago for an electron

moving in solid,5 has been successfully applied to various physical systems. In recent

years, the polaron study has gained rapid development in ultracold atoms thanks to

the high controllability over spin species, number, and interaction therein. For

instance, by choosing majority atoms with different statistics, the cold atoms exper-

iments have successfully realized the Fermi polaron,6–14 Bose polaron,15–18 and even

both of them in a single system,19 where the attractive and repulsive branches of

polaron spectra have been explored (see recent reviews20,21). Similar polaron

spectra have also been observed in semiconductor microcavities.22,23 Among all cir-

cumstances, the few-body correlation in an attractive Fermi polaron is of particular

interest. It has been shown that the three-dimensional (3D) and 2D Fermi polarons
Cell Reports Physical Science 3, 100993, August 17, 2022 ª 2022 The Author(s).
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with equal mass can undergo a first-order transition from polaronic to molecular

phase as the impurity-fermion attraction is increased,24–33 a consequence of

enhanced two-body correlation therein. Using a unified treatment of polaron and

molecule, such a transition can be interpreted as the energy competition between

different momentum states,34,35 where the molecule serves as a good approxima-

tion for the finite-momentum state in strong coupling limit (see also Chen et al.36)

and possesses a huge hidden degeneracy. The inclusion of finite-momentum

states34,35,37 is crucial for explaining the smooth polaron-molecule evolution in real-

istic experiments with a finite impurity density and at finite temperature.6,9,13 Be-

sides, the polaron-molecule transition has profound implications to the property

of highly polarized spin-1/2 fermions, where a phase separation between normal

and superfluid states can occur,38 as observed in cold atoms experiments.39,40

The recent realization of mass-imbalanced Fermi-Fermi mixtures in cold atoms,

such as 40K-6Li,41–43 161Dy-40K,44,45 173Yb-6Li,46,47 and 53Cr-6Li,48,49 offers an un-

precedented opportunity for uncovering intriguingly new correlation effects in

Fermi polarons. Here, an important hint is from the few-body physics, where the

mass imbalance has been found to greatly facilitate the formation of cluster bound

states. For instance, a light atom can bind with two heavy fermions to form an Efi-

mov trimer50 or a universal trimer51,52 and can bind with three or four fermions to

form a tetramer53–57 or pentamer,56,57 as long as the heavy-light mass ratio is

beyond certain critical value. An important follow-up question is how would

their associated few-body correlations affect the many-body physics, such as, in

1+N Fermi polarons. In literature, there have been a number of studies on the

competition and conversion between polaron and trimer in Fermi polarons.58–64

However, a clear understanding on the relation between polaron, trimer, and other

highly correlated states is still missing, due to the lack of a unified perspective on

them. It is still an open question as to how the different few-body correlations

evolve and manifest themselves in polaron systems. The problem is quite chal-

lenging as it requires a theoretical approach to incorporate all essential correla-

tions in a single framework.

In this work, we address the mass-imbalanced Fermi polaron problem in 2D using

a unified variational approach consisting of up to three particle-hole excitations.

The approach represents the state-of-the-art theoretical tool that allows us to sys-

tematically examine the n-body correlations, with n ranging from 2 (dimer) to 3

(trimer) to 4 (tetramer), in a single unified framework. We find that in distinct

contrast to the first-order transition in the equal-mass case, no sharp transition oc-

curs in the mass-imbalanced Fermi polaron if the fermion-impurity mass ratio h is

larger than htr = 3.34htr ð = 3:34Þ, the critical value to support a trimer bound state

in the few-body sector. Depending on the actual h(>htr), the system undergoes a

continuous evolution from a polaronic state to the dressed trimer or tetramer

states (see Figure 1), where the dominant 3- and 4-body correlations gradually

emerge. In this process, the majority fermions develop the momentum-space crys-

tallization, i.e., the dominant particle-hole excitations distribute with equal interval

near the Fermi surface that form a stable diagonal or triangular structure, despite

the whole system being rotationally invariant. Such emergent crystallization

directly characterizes the dominant trimer and tetramer correlations and can be

readily detected via the density-density correlation of majority fermions. Our re-

sults reveal a remarkable effect of mass imbalance in changing the few-body cor-

relation in Fermi polarons, which shed light on the novel phases and correlations

in mass-imbalanced Fermi-Fermi mixtures that are well beyond the pairing super-

fluid paradigm.
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Figure 1. Phase diagram of the 2D Fermi polaron with interaction strength ln(kFa2d) and mass

ratio hhmf =ma

The black line refers to the polaron-molecule phase boundary for small hð< htr Þ: the ground state

above the line is a polaron (P) with total momentum Q = 0 and below the line is a molecule (M) with

jQj = kF (or with center-of-mass momentum QM = 0). The gray area around the line denotes the

coexistence region for polaron and molecule. For h>htr , no phase transition is found, and the

ground state is always at Q = 0; as the attraction strength is increased, the system undergoes a

smooth polaron-trimer (Tr) crossover for h˛ ðhtr ; hteÞ and a polaron-trimer-tetramer (Te) crossover

for h > hte. For the Q = 0 ground state, we provide the RGB color map according to the weights of

different particle-hole excitation terms in its full wave-function, i.e., w3, w2, and w1 + w0 represent

the mixing ratio of red (R), green (G), and blue (B) colors, respectively. Here, htr = 3.34 and hte = 3.38

are, respectively, the critical mass ratios in 2D to stabilize a trimer and the tetramer ground state in

the few-body sector.
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In the rest of this article, we will present the unified variational approach for the Fermi

polaron problem, as well as the results of polaron-trimer or polaron-trimer-tetramer

crossover for the mass-imbalanced case with emergent crystalline few-body correla-

tions. The final discussion will be devoted to the summary, generalization, and impli-

cation of our results in a broader context.
RESULTS

Unified variational approach

We start from the Hamiltonian describing a single impurity immersed in a 2D Fermi sea:

H =
X
k

�
eaka

y
kak + efkf

y
k fk

�
+
g

S

X
Q;k;k0

ayQ� kf
y
k fk0aQ� k0 : (Equation 1)

Here, ayk and f yk , respectively, create an impurity atom and a majority fermion with mo-

mentum k and energy ea;fk = k2=ð2ma;f Þ; g is the bare coupling that follows the renorm-

alization equation 1=g = � 1=S
P
k
1=ðeak + efk +E2bÞ, where S is the system area and

E2b = ð2ma22dÞ
� 1

is the 2-body binding energy in vacuum that relies on the relative

mass m = mamf =ðma +mf Þ and 2D scattering length a2d. We take h = 1 for brevity.

The Fermi polaron properties are determined by two dimensionless parameters,

namely the mass ratio hhmf =ma and the interaction strength ln(kFa2d), where kF is

the Fermi momentum of majority atoms giving the Fermi energy EF = k2F=ð2mf Þ.

We write down a generalized version of the Fermi polaron ansatz initially proposed

by Chevy:65
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P2n+ 1ðQÞ =

0
@jð0ÞayQ +

1

ðn!Þ2
Xn

l = 1

X
kiqj

j
ðlÞ
kiqj

ayP
Yl

i = 1

f yki
Yl

j = 1

fqj

1
AjFSiN: (Equation 2)

Here, jFSiN is the Fermi sea with number N; all q (k) are below (above) the Fermi sur-

face and P = Q+
P
j
qj �

P
i
ki. Taking jFSiN as the reference state, P2n+1(Q) de-

scribes the impurity dressed with up to n particle-hole (p-h) excitations and with total

momentum Q. Because of the rotational invariance, hereafter we will useQh jQj as
the momentum index for simplicity.

We emphasize that the generalized ansatz Equation 2 systematically incorporates all

the essential few-body correlations and thus can serve as a unified approach for the

Fermi polaron problem. First, taking Q = 0, it describes the polaronic ground state

for the weak coupling Fermi polarons, as studied previously with up to

one26,30,31,34,58,65–67 and two27,35,59,68 p-h excitations. Secondly, taking a finite

Q = kF, it well covers the molecule state with zero center-of-mass momentum as pro-

posed in the strong coupling regime,26,27,30,31,58,59,67 where the impurity essentially

binds with one fermion on the Fermi surface to form a dimer. In this sense, it has been

pointed out that the polaron-molecule transition can be recognized as the energy

competition between different Q sectors.34,35 Finally, by including higher-order

p-h excitations, all the few-body correlations can be systematically incorporated.

Specifically, the full n-body correlation effect has been contained in the ðn � 1Þ
p-h excitation terms in Equation 2.

In this work, we will consider up to three p-h excitations, i.e., with P7(Q), which allow

us to unify the dimer, trimer, and tetramer correlations in a single framework to

examine their relations and competitions inbetween. See Note S1 for the integral

equations from P7(Q), and the numerical details are presented in Note S2 and

Figures S1 and S2. Moreover, since the P7 formulism can well cover the P5 ones by

neglecting the terms of three p-h excitations, in the regime where these excitations

(signifying tetramer correlation) are negligible, we shall work with P5 for simplifica-

tion. Finally, we remark that there are two important values of mass ratio to distin-

guish different few-body correlations in 2D Fermi polarons studied here, namely

the one to support a trimer in vacuum from the atom-dimer threshold htr = 3.3452

and the one to support a tetramer in vacuum from the atom-trimer threshold

hte = 3.38.57 The effect of even larger cluster bound states will be discussed at the

end of this paper.
Polaron-molecule transition for h< htr

We first briefly go through the regime with a small mass ratio h< htr . In this case, the

three p-h excitations in P7 take little effect, and thus P5 can serve as a good ansatz. In

this regime, the polaron-molecule transition persists, with the same nature as in the

equal-mass case. Taking h = 2 for instance, we show in Figure 2A that as the coupling

strength is increased, the ground state of Fermi polaron can switch from Q = 0 to

Q = kF, signifying the polaron-to-molecule transition. Nearby the transition, the

dispersion curve displays a double-well structure where Q = 0 and Q = kF states

are both locally stable, indicating the polaron-molecule coexistence in a realistic sys-

tem with a finite impurity density and at finite temperature. All these features are the

same as the equal-mass case.34,35

For comparison, we also consider the molecule ansatz
4 Cell Reports Physical Science 3, 100993, August 17, 2022



Figure 2. Polaron-molecule transition at mass ratio h = 2

(A) Energy dispersion from P5(Q) for interaction strength ln(kFa2d) = �1.25, �1.35, �1.4, �1.45, and

�1.55 (from top to bottom), shifted by the energy at Q = 0. The lines with points show the energies

from M4(QM) after a constant momentum shift kF.

(B) Energy comparisonbetweenP7(0),P7(kF),P5(0),P5(kF), andM4(0). For all coupling regimes,P7(Q) andP5(Q)

(withQ= 0, kF) produce very close energies (with� 0:03EF deviation at most), indicating the negligible role

of three particle-hole (p-h) excitations in this case. In strong coupling regime,M4(0) can well approximate

P5(kF), and their energies are indistinguishable. The polaron-molecule transition locates at lnðkFa2dÞ = �
1:36 (blue arrow) asgivenby theenergy crossingbetweenP7(0) andP7(kF), very close to the transitionpoint�
1:38 (red arrow) as given by the crossing between P5(0) and P5(kF).
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M2n+ 2ðQMÞ =

0
@X

k

f
ð0Þ
k ayQM � kf

y
k +

Xn

l = 1

X
kkiqj

f
ðlÞ
kkiqj

ayPf
y
k

Yl

i = 1

f yki
Y1
j = 1

fqj

1
AjFSiN� 1;

(Equation 3)

with P = QM � k � Pn
i = 1ðki � qiÞ. As pointed out in Cui et al.34 and Peng et al.,35

M2n+2(0) expands a subset of the variational space of P2n+3(kF), and thus the former is

always energetically unfavorable compared with the latter. However, in the strong

coupling regime, M2n+2(0) can be a good approximation for P2n+3(kF). As shown in

Figure 2B for the case of h = 2, at the transition between Q = 0 and Q = kF, the en-

ergies from M4(0) and P5(kF) are indistinguishable, and thus it can be interpreted as

the polaron-molecule transition. In this case, since P5(Q) produce very close energies

with P7(Q), these two ansatz result in very similar critical points for polaron-molecule

transition (see the blue and red arrows in Figure 2B).
Cell Reports Physical Science 3, 100993, August 17, 2022 5
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In addition, we would like to clarify that in the strong coupling regime, P7(0) ansatz

can produce another type of solution that has very close energy with M4(0). This so-

lution corresponds to considering a special structure of p-h excitations near the

Fermi surface and thus can be approached in our numerics by choosing a proper

initial state in the iteration. However, such a state is only stabilized when the interac-

tion is strong enough, and it is always orthogonal to the one that is adiabatically

evolved from the weak coupling limit (as shown by the black line in Figure 2B). More-

over, this state belongs to an excited manifold, i.e., with a higher energy than P7(kF),

in the strong coupling regime, due to the fact that P7(kF) is well approximated by

M6(0) while this solution is close to M4(0). Therefore, with a fixed truncated level of

p-h excitations, the lowest molecule state is given by P2n+1(kF) rather than by a spe-

cial solution of P2n+1(0). In this sense, the presence of this solution will not affect the

occurrence and the nature of polaron-molecule transition in this system. More de-

tails on this solution can be found in Note S3 and Figure S3.

In Figure 1, we have mapped out the transition point and the coexistence region for

polaron (Q = 0) and molecule (Q = kF,QM = 0) in (h, ln(kFa2d)) plane. It is found that as

h increases, the critical ln(kFa2d)c moves to the strong coupling regime and saturates

at�N as h/htr . This is consistent with the ground state in the vacuum limit (kF/ 0),

where the molecule (or dimer) gives way to a trimer ground state at htr and the trimer

gives way to tetramer at hte. The phase diagram in Figure 1 exactly reflects such

ground-state change in kF/0 limit ðlnðkFa2dÞ/ � NÞ, where the trimer and

tetramer regions are marked, respectively, by green and red. Increasing kF from

zero, these cluster bound states will be significantly affected by the majority Fermi

sea, and finally, as discussed below, all evolve into the polaronic state at large

kF ðlnðkFa2dÞ/NÞ.
Smooth polaron-trimer crossover for htr < h< hte

A remarkable difference between Fermi polarons with h<htr and h > htr is that the

latter displays no sharp transition as the impurity-fermion attraction increases. In or-

der for a direct comparison with Figure 2A, in Figure 3A, we show the same energy

dispersion from P5(Q) but at a higher mass ratio h = 3:35ð>htr Þ. In this case, the

ground state always stays at Q = 0, without any transition to other Q sectors.

To examine the inner structure of theQ = 0 state, we plot in Figure 3B the respective

weight of the bare term (w0) and one (w1) and two (w2) p-h excitation terms, which are

defined as

wn =
1

ðn!Þ2
X

fkgfqg

���jðnÞ
k1.knq1.qn

���
2

; (Equation 4)

with the constraint
P

nwn = 1 from the normalization. By definition, w0 is exactly the

residue of the polaron.We can see that as the coupling ln(kFa2d) is tuned fromweak to

strong, the system evolves from a polaronic state where w0 dominates to a w1-domi-

nated intermediate state and finally ends up at the w2-dominated state. For this final

state, the polaronic picture fails given the residue w0 = 0, and another important

feature is that the two p-h excitations are strongly correlated near the Fermi surface.

As shown in Figures 3Cand3D, theprobability of finding twoparticles (and twoholes)

reaches a pronounced peak if their relative angle isp, i.e., they tend to distribute with

opposite directions as a diagonal. Such diagonal distribution is a directmanifestation

of trimer correlation, which describes an impurity near-zero momentum bound with

twoparticles with oppositemomenta outside the Fermi sea (associatedwith hole cre-

ations inside) to form a trimer. Therefore, the smooth evolution in Figure 3B can be
6 Cell Reports Physical Science 3, 100993, August 17, 2022



Figure 3. Smooth polaron-trimer crossover at mass ratio h = 3.35

(A) Energy dispersion from P5(Q) for different interaction strengths lnðkFa2dÞ = � 1; � 1:5; and � 2 (from top to bottom), shifted by the energy atQ = 0.

(B) Weights of the bare (w0), one p-h (w1), and two p-h (w2) terms in P5(0) as functions of ln(kFa2d).

(C and D) Probability of finding two particles (or two holes) with relative angle qkk0 (or qqq0 ) for different couplings ln(kFa2d) = �1.5, 0, and 1 (from top to

bottom).

(E) Energy comparison between P3(0), P5(0), P7(0), Tr3(0), and Tr5(0).
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seen as the polaron-trimer crossover. In this process, thew1-dominated intermediate

state serves as a bridge connecting the polaron and trimer regimes.

Previously, a sharp transition between polaron and trimer has been concluded for

the same mass-imbalanced system,58,59 in contrast to our finding here. The discrep-

ancy can be resolved by examining the relation between polaron and trimer ansatz,

with the latter given by

Tr2n+ 3ð0Þ =
X
kk0

0
@t

ð0Þ
kk0a

y
� k� k0 f

y
k f

y
k0 +

Xn

l = 1

X
kiqj

t
ðlÞ
kk0kiqj

ayPf
y
k f

y
k0
Yl

i = 1

f yki
Yl

j = 1

fqj

1
AjFSiN� 2;

(Equation 5)

with P = � k � k0 � Pn
i = 1ðki � qiÞ. Clearly, Equation 5 describes a trimer outside

the Fermi sea dressed with p-h excitations. The polaron-trimer transition was drawn

from an energy crossing between P3(0) andTr5(0).
58,59

Here, we remark that the polaron and trimer states are intimately related to each

other. As indicated by Figures 3C and 3D, the trimer ansatz Tr2n+3(0) (Equation 5)

just corresponds to picking up a particular set of p-h excitations in the polaron ansatz

P2n+5(0) (Equation 2) where the two holes are right at the Fermi surface and with

opposite directions. Therefore, Tr2n+3 falls into the sameQ sector as P2n+5 and actu-

ally belongs to a subset of the latter. Because of this, Tr2n+3(0) should be always ener-

getically unfavorable compared with P2n+5(0), and the energy of the former can only

approach the latter from above, but there cannot be an energy crossing. This is to

say, the polaron-to-trimer evolution, if it exists, can only be a crossover but not a
Cell Reports Physical Science 3, 100993, August 17, 2022 7
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sharp transition. Note that this is very different from the case of polaron-molecule

competition, where P2n+3(0) and M2n+3(0) belong to different Q sectors (taking

jFSiN as reference) and there can be a transition between them.34,35 Moreover, we

would like to clarify that the energy comparison between Tr2n+3 and P2n+1 (with

the same n) is problematic in identifying a transition since the former contains two

more particles outside the Fermi sea and their additional scattering can easily pro-

duce a lower energy than the latter. A proper comparison is between Tr2n+3 and

P2n+5, both having n + 3 particles outside the Fermi sea.

In Figure 3E, we compare the energies from various ansatz for h = 3:35ð>htr Þ. As
expected, the energy of Tr5(0) (or Tr3(0)) is visibly higher than that of P7(0) (or

P5(0)). Nevertheless, Tr7(0) does have an energy crossing with P3(0) and P5(0), essen-

tially because they are actually associated with different levels of p-h excitations on

top of the Fermi sea jFSiN. Such crossing cannot represent any transition in the sys-

tem. Based on these analyses, we expect a similar polaron-trimer crossover instead

of a transition in other Fermi polaron systems.62,64
Polaron-trimer-tetramer crossover and crystalline correlation for h> hte

Continuously increasing mass ratio h beyond hte, the four-body (tetramer) correla-

tion can become dominant and lead to even intriguing physics. To capture the phys-

ics here, we have worked with P7 ansatz, which includes up to three p-h excitations

and thus covers all the dimer, trimer, and tetramer correlations. We have confirmed

the absence of phase transition in this case, and the ground state is always atQ = 0,

similar to the case of h˛ ðhtr ;hteÞ. However, here, a crucial difference is that as the

coupling strength increases, the system undergoes a sequence of crossover from

polaron to trimer and then from trimer to tetramer states.

To understand the relation between the tetramer and the general ansatz in Equa-

tion 2, we write down the tetramer ansatz according to the same strategy as in

writing Equations 3 and 5:

Te2n+ 4ð0Þ =
X
kk0k00

0
@n

ð0Þ
kk0k00a

y
� k� k0 f

y
k f

y
k0 f

y
k00 +

Xn

l = 1

X
kiqj

n
ðlÞ
kk0k00kiqj

ayPf
y
k f

y
k0 f

y
k00
Yl

i = 1

f yki
Yl

j = 1

fqj

1
AjFSiN� 3;

(Equation 6)

with P = � k � k0 � k00 � Pn
i = 1ðki � qiÞ. Equation 6 describes a tetramer bound

state that is on top of the Fermi sea and is dressed with p-h excitations. Then,

following a similar analysis as in the trimer case, we can immediately see that

Te2n+4 belongs to a special case of P2n+ 7 by only considering the p-h excitations

with three holes pinning at the Fermi surface. By manipulating the directions of three

holes such that their total momentum is zero, these two ansatz can belong to the

same Q sector, and therefore Te2n+4(0) expands a subvariational space of P2n+7(0).

Because of these, the conversion between polaron and tetramer regimes can only

be a smooth crossover but not a sharp transition, similar to the polaron-trimer cross-

over discussed earlier.

In Figure 4, we take the 40K-6Li Fermi polaron with h = 40/6 and demonstrated the

polaron-trimer-tetramer crossover therein. Figure 4A shows that as the coupling

strength is increased, the system undergoes a continuous evolution from a polaronic

state (where w0 dominates), to a trimer state (w2 dominates), and finally to a tetramer

state (w3 dominates). These states can also be distinguished from themomentum-space

correlation ofmajority fermions. To see this, we compute the hole-hole and particle-par-

ticle correlation functions of majority fermions in momentum space, defined via
8 Cell Reports Physical Science 3, 100993, August 17, 2022



Figure 4. Polaron-trimer-tetramer crossover at mass ratio h = 40/6

(A) Weights of the bare term and various p-h excitation terms (see the wn definition in Levinsen and Parish4) in P7(0) as functions of ln(kFa2d).

(B–D) Contour plots of hole-hole correlation Dhðq0;qÞ and particle-particle correlation Dpðk0; kÞ for different ln(kFa2d) = 1.972 (B), 0.172 (C), and

�0.428 (D), which, respectively, belong to the polaron, trimer, and tetramer regimes as labeled by different stars in (A). Here, we take q0 = � kFex
and k0 = � 1:08kFex , as marked by white and red points in the plots. The white circle denotes the Fermi surface.

(E and F) Particle-particle angular correlation during the crossover from polaron to trimer (E) and from trimer to tetramer (F).

(G) Energy comparison between P7(0), Tr5(0), and Te4(0). Here, E4 = � 1:282E2b is the energy of the bare tetramer.
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Dh

�
q0;q

�
h

D�
1 � nf

q0

��
1 � nf

q

�E
; and (Equation 7)
Dpðk0; kÞh
D
nf
k0
nf
k

E
; (Equation 8)

with all q (k) stay below (above) the Fermi surface. In Figures 4B–4D, we plot Dh and

Dp together in momentum space (as varying q and k) while keeping q0 and k0 fixed

nearby the Fermi surface. In the polaron regime (Figure 4B), we can see that both Dh

andDp are extensively distributed in a broad angular range near the Fermi surface. In

comparison, the correlation develops a visible crystalline feature in the trimer and

tetramer regimes. Specifically, the crystallization displays as a diagonal structure

in the trimer regime (Figure 4C) and as a regular triangle in the tetramer regime (Fig-

ure 4D). To trace the evolution, we further examine the particle-particle angular cor-

relation, i.e.,
P

k;k0Dpðk; k0Þdqk � qk0 ;qkk0 , as a function of relative angle qkk0 (see

Figures 4E and 4F). We can see that during the polaron-trimer crossover (Figure 4E),

the angular dependence of Dp becomes gradually pronounced at qkk0 = p, signi-

fying a diagonal correlation (similar to Figures 3C and 3D), while during the

trimer-tetramer crossover (Figure 4F), the peaks of Dp gradually deviate from p

and finally end up at 2p/3 and 4p/3, signifying the emergence of triangular correla-

tion. All these processes can be well captured by the general ansatz P7(0), which pro-

duces a considerably lower variational energy than Tr5(0) and Te4(0) (see Figure 3E).

Again, the energy crossing between Tr5(0) and Te4(0) does not stand for any real

transition.

In the above, we have shown that the emergent crystalline correlations in trimer and

tetramer regimes all display high symmetries, i.e., either with a diagonal or a regular
Cell Reports Physical Science 3, 100993, August 17, 2022 9



Figure 5. Schematics of the crystalline p-h configurations and their mutual scattering

The blue and white points denote, respectively, the particle and hole of majority fermions, and the

orange point denotes the impurity.

(A and B) In the trimer or tetramer regime, the scattering between different diagonal configurations

(A) or between different triangular ones (B) is allowed by multiple scattering processes. All

configurations in are with the same total momentumQ = 0 (taking the Fermi sea jFSiN as reference).

(C) This is in contrast to the molecule case with jQj = kF , where different p-h configurations cannot

be scattered freely due to the conservation of total Q.
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triangular structure. Physically, it is because these highly symmetric structures are

associated with a large degeneracy manifold, in which they can be scattered freely

to other similar configurations to minimize the energy. As shown schematically in

Figures 5A and 5B, from a given p-h configuration with a diagonal or triangular struc-

ture near the Fermi surface, it can be coupled to another p-h configuration with the

same structure via interactions, without changing the total momentumor costing any

energy. This is quite similar to the facilitated three-body scattering between an im-

purity and two fermions with Rashba spin-orbit coupling.69 With such high symme-

try, the scattering phase space is maximized, and the variational energy is expected

to be significantly reduced. This is why the full P7(0) ansatz can produce reasonably

lower energy than the trimer or tetramer ansatz, as shown in Figures 3E and 4G, since

the latter just corresponds to a specific hole configuration in Figures 5A and 5B with

much smaller variational space. Moreover, we emphasize that the final state (P7(0)) is

a superposition of all these degenerate configurations, and thus the rotational invari-

ance of the whole system can be recovered. This is how the crystalline correlation can

only be reflected in the two- and higher-body correlation functions but not in the

one-body density profile, which obeys rotational symmetry. In this sense, the emer-

gent crystallization in high-order correlations can be regarded as a spontaneous

symmetry-breaking phenomenon.

In addition, it is important to note that the diagonal and regular triangular p-h dis-

tributions guarantee that the system remain in the Q = 0 sector (take jFSiN as refer-

ence). This is quite different from the molecule state, which belongs to the jQj =
kF sector (note that the Q = 0 molecule belongs to an excited manifold, and see

Note S3 for more details). In this case, different hole configurations cannot be scat-

tered freely due to the conservation of total Q (see also Figure 5C). Such forbidden

scattering is a crucial reason why the molecule ansatz (corresponding to a

specific hole configuration in Figure 5C) can energetically well approximate the

full jQj = kF state in the strong coupling regime (see Figure 2B). To conclude,

when the two-body (dimer) correlation dominates, the system undergoes a first-or-

der transition from polaron (Q = 0) to molecule (jQj = kF ), while when the three-

(trimer), four- (tetramer), and even higher-body correlations dominate, the system
10 Cell Reports Physical Science 3, 100993, August 17, 2022
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just evolves smoothly, and all these highly correlated states can be adiabatically

approached from the polaronic regime within the same Q = 0 sector (Figures 3

and 4).

Finally, we comment on the difference between the crystalline correlation in Fermi

polarons and that in purely few-body systems. In the latter case, the emergence of

crystalline correlation only relies on the values of h compared with htr, hte, etc.,

with the crystalline radius changing solely with the scattering length.57 In contrast,

in the Fermi polaron system, the crystalline correlation gradually emerges near the

Fermi surface when the coupling is strong enough. For instance, the triangular cor-

relation appears only after a polaron-trimer-tetramer crossover (Figure 4) but does

not exist for arbitrary couplings as in the four-body system. In this sense, the majority

Fermi sea serves as a many-body reservoir to output few-body correlations required

for the Fermi polaron. Moreover, the crystallization in Fermi polarons first appears

near the Fermi surface, where the p-h excitations play an important role in its emer-

gence. More details can be found in Note S4 and Figure S4.
DISCUSSION

In summary, we have demonstrated the dominant three- and four-body correla-

tions in the mass-imbalanced Fermi polarons in 2D. As the mass ratio or attraction

strength between fermions and the impurity is increased, the system is found to

evolve smoothly from a polaronic to dressed trimer and tetramer states. Such a

crossover is accompanied by the emergence of momentum-space crystallization

of majority fermions, as featured by the diagonal or regular triangular structure

of p-h excitations nearby the Fermi surface. The emergent crystallization can be

detected through the density-density correlation function of majority fermions in

momentum space, as it has been successfully implemented in cold-atom systems

using the atom noise in absorption images70–75 or the single-atom-resolved im-

ages.76,77 Since all the Fermi-Fermi mixtures realized so far41–49 have the mass ra-

tio h> hte = 3:38,57 we expect that the polaron-trimer-tetramer crossover and its

associated crystalline correlations can be readily observed in these Fermi polaron

systems once confined in 2D. To achieve the effective 2D geometry, a strong axial

confinement can be applied in realistic quasi-2D setup with a confinement fre-

quency much larger than all relevant scales of the system (EF, E2b, etc.), under

which the effective interaction is solely described by the reduced 2D scattering

length.78

Given the robust intrinsic relation between polaron, trimer, and tetramer, the

conclusion in this work can be generalized to Fermi polaron systems with arbitrarily

high-order correlations and in higher dimension (3D). For instance, a (1 + 4) pen-

tamer can emerge in 2D at a larger h,57 which is expected to drive a smooth cross-

over of Fermi polarons further from the dressed tetramer regime to the pentamer

regime as the coupling strength is increased. Similar physics is also expected for

3D, namely a polaron-molecule transition occurs when h< htr = 8:2,51 while a

smooth polaron-trimer crossover with diagonal crystallization occurs when htr <

h<hte, and a promising system for its observation is 53Cs-6Li mixture.48,49 Surely,

the emergence of crystalline tetramer and pentamer correlations would be even

more intriguing on a 3D Fermi surface, which would require even larger h as in-

ferred by the cluster formation in few-body sector.54,56 In comparison, the situation

in 1D is quite different, where the polaron-molecule transition is absent even for

the equal-mass case.35,79,80 In fact, in 1D, the trimer emerges exactly at equal

mass (h = 1),81 and one thus expects no sharp transition for any h > 1, and the
Cell Reports Physical Science 3, 100993, August 17, 2022 11
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ground state is always at Q = 0. The higher-body correlations can also play an

important role in 1D Fermi polarons in view of various cluster bound states sup-

ported at larger h.82

Our results shed light on the quantum phases of highly polarized Fermi-Fermi mix-

tures with mass imbalance. First, the results suggest that if the majority fermions

have a much heavier mass than the minorities, the dominant correlation can switch

from two- to three- and even higher-body sectors. As a result, the ground state is

no longer a pairing superfluid, as extensively studied in literature, but a new quan-

tum state dominated by n-body (nR3) correlation. Secondly, the results suggest

the absence of a sharp phase transition or phase separation in the highly polarized

Fermi-Fermi mixtures with large mass imbalance, where the evolution from the

normal to the trimer- or tetramer-correlated phases is a smooth crossover. This is

in contrast to the equal-mass case, which supports a first-order transition from the

normal to the pairing superfluid as well as a phase separation between them.38 In

the future, a precise description of such a highly polarized n-body-correlated state

requires the knowledge of effective interactions within trimers and tetramers and be-

tween trimer/tetramer and majority fermions. Finally, the regime with intermediate

polarization may exhibit even richer physics due to various competing orders asso-

ciated with different few-body correlations. Our study thus opens an avenue for

searching for novel quantum phases beyond the traditional pairing superfluids in

mass-imbalanced fermion systems.
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SUPPLEMENTAL INFORMATION

note S1: Coupled integral equations for P7

Given the P7(Q) ansatz Equation 2 in the maintext, we rescale the coefficients as α(l) ≡ ψ(l)/ψ(0) and
define three auxiliary functions fascilitated by the contact interaction:

f(q) ≡ g

S
(1 +

∑
k

α
(1)
kq ),

G(k,q′,q) ≡ g

S

∑
k′

(α
(2)
k′kq′q + α

(1)
kq′ − α(1)

kq ),

h(k′,k,q′′,q′,q) ≡ g

S

∑
k′′

α
(3)
k′′k′kq′′q′q. (S1)

In this way, the original equations for ψ(l) (l = 0, 1, 2, 3) obtained from the Schrödinger equation can be
reduced to the following four equations:

E − εaQ =
∑
q

f(q), (S2)
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g
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1

Ek1q1
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, (S3)
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[
1
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[h(k1,k2,q1,q2,q3)− h(k1,k3,q1,q2,q3)], (S5)

Here the energies are defined as Ek1...kiq1...qi
= E − εaP +

∑i
j=1(εfqj

− εfkj
), with P = Q+

∑i
j=1(qj − kj).

The scaled coefficients can be represented by the auxiliary functions via

α
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, (S6)
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q
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α
(3)
k1k2k3q1q2q3

=
1

Ek1k2k3q1q2q3

[h(k1,k2,q1,q2,q3)− h(k1,k3,q1,q2,q3)

+h(k2,k3,q1,q2,q3)]. (S8)

It is noted that above equations can well reproduce the trimer and tetramer bound states in vacuum
by sending kF to zero. For instance, by only keeping G(k,q1,q2) → G(k) terms, Equation S4 can be
reduced to the equation of trimer bound state. Similarly, the tetramer binding energy can be extracted
from Equation S5 by only keeping h(k1,k2,q1,q2,q3)→ h(k1,k2) terms.



note S2: Numerical details for P7 ansatz

In principle, the coupled Equations S2-S5 can be transformed as matrix equation by discretizing each
momentum q and k. The energy and wavefunction can then be obtained by directly solving the matrix
equation. However, the numerical cost can be very large. We first analyze the complexity of directly
solving a large matrix equation for P7. If we perform the discretization 7 − 13 − 8 − 13 with respect to
q − θq − k − θk in the polar coordinates, the dimension of the corresponding matrix will be ∼ 1010 ×
1010. Though the dimension can be reduced by utilizing the antisymmetry (due to Fermi statistics) and
rotational symmetry of the wavefunctions, the direct solution of the matrix equation is still out of reach.

Instead of solving a large matrix equation, we obtain the energy and wavefunctions by iteratively
solving the coupled Equations S2-S5. Specifically, we first set the initial wavefunctions fi, gi hi and
energy Ei. Then by substituting them into the right-hand side of the coupled Equations S2-S5, we can
obtain new wavefunctions ff , gf hf and energy Ef , which will be treated as the updated initial inputs.
In addition, to avoid divergency during the iteration, we introduce a step factor s to control the changes
between successive iterations, i.e., we take (1− s)fi + sff → fi, (1− s)gi +sgf → gi, (1−s)hi +shf → hi
and (1− s)Ei + sEf → Ei. The iterations stop once the changes of wavefunctions and energies between
successive iterations are smaller than the criterions we set. In Figure S1, we show an example for the
numerical process of the iteration.

In our numerics, we have also ensured the convergence of the results with respect to different momen-
tum cutoffs (kc) and discretization scheme. In Figure S2, we show the energy and weight distributions for
mass ratio η = 3 by choosing different kc and different momentum discretizations, which show agreement
to a good extent.

note S3: An additional solution from P7(0)

Interestingly, in the strong coupling regime P7(0) can produce another type of solution that has very
close energy with M4(0). This solution is very different from the one that is adiabatically evolved from
the polaronic state in the weak coupling regime, and thus cannot be approached adiabatically from the
weak coupling regime. As shown in the inset of Figure S3(A), this state involves a special type of p-h
excitations on the Fermi surface, namely, two holes (q1, q2) distribute evenly in each side of the particle
(k) with relative angle θq1k = θq2k = π/3, which gives q1 +q2−k = 0. In this way, if we take the (N−1)

Fermi sea state in the molecule ansatz as |FS〉N−1 = f†kfq1
fq2
|FS〉N , the molecule ansatz M2n+2(0) can

be well covered by P2n+5(0). Namely, the latter can reproduce the former by setting ψ(0) = ψ(1) = 0 and
requiring the rest high p-h excitations share the same structure as illustrated above.

In our numerics, we have obtained such a solution from P7(0) ansatz by choosing a special initial state
at the beginning of iterative evolution, which incorporates both the molecule feature (we have taken M2(0)
for simplicity) and the special structure of additional p-h excitations. To distinguish different solutions,
from now on we call this state as P7(0,M), and the one adiabatically evolved from the weak-coupling
polaronic state as P7(0, P ). In Figure S3(A-C), we show the energies of different ansatz and the properties
of P7(0,M) near the polaron-molecule transition for the case of η = 2. Three remarks on P7(0,M) are
as follows:

(i) P7(0,M) is orthogonal to P7(0, P ) and they have a level crossing at certain point. As shown in
Figure S3(A), the energy of P7(0,M) closely follow M4(0) and crosses the energy of P7(0, P ) near the
polaron-molecule transition point. The negligible overlap between P7(0,M) and P7(0, P ), as shown in
Figure S3(B), signifies the orthogonality of the two states and confirms the level crossing behavior.

(ii) P7(0,M) can only be supported in the strong coupling regime beyond certain interaction strength.
For the case of η = 2, a convergent solution of P7(0,M) exists for ln(kFa2d) ≤ −1.1, but not for weaker
couplings (Figure S3(C)). For instance, we have checked that at ln(kFa2d) = −0.9, no convergent energy
can be found to be close to M4(0), and the iteration can evolve to states that are very different from the
initial one and the energies quickly depart from that of M4(0). In this case, P7(0,M) is no longer locally



stable in the large scattering phase space, and the iteration will finally result in the true ground state
P7(0, P ).

(iii) In the regime where P7(0,M) is stabilized, it always has a higher energy than P7(kF ) (see Figure
S3(A)). Physically, this is because in the strong coupling limit P7(kF ) approaches M6(0) while P7(0,M)
approaches M4(0); clearly, M4(0) is always energetically unfavorable than M6(0) due to the lower level
of p-h excitations. Therefore, the ground state in strong coupling limit, up to three p-h excitations, is
given by P7(kF ) instead of P7(0,M). In this way, the polaron-molecule transition is still present and still
given by the energy crossing between P7(0) and P7(kF ).

To summarize, (i) and (ii) shows that a stable P7(0,M) cannot be approached adiabatically from
the polaronic state in weak coupling limit, and it can only survive in the strong coupling regime by
molecule formation. (iii) shows that with a fixed truncated level of p-h excitations on top of |FS〉N , the
lowest molecule state is given by P2n+1(kF ), rather by a special solution of P2n+1(0) (in the current case
n = 3). Because of all above, the presence of P7(0,M) does not affect the occurrence and the nature of
polaron-molecule transition in Fermi polaron system with small mass ratios.

note S4: Comparison of crystalline correlation between Fermi polarons and
few-body systems

The crystalline correlation in Fermi polarons is very different from that in pure few-body systems. As
a concrete example, in Figure S4 we take the mass ratio η = 40/6 and show the difference of tetramer
correlations in Fermi polaron and in 1 + 3 system.

As shown in Figure S4(A-D) for the few-body system, the crystalline triangular correlation of heavy
fermions exists for all couplings, with the crystalline radius changing solely with a2d. In comparison, the
triangular correlation in Fermi polaron gradually emerges after the polaron-trimer-tetramer crossover as
increasing the coupling strength, see Figure S4(E-H). Moreover, the triangular structure first shows up
near the Fermi surface, indicating an important role of the Fermi sea background and the particle-hole
excitations therein for its emergence. All these features are distinct from the few-body case. However,
for extremely strong coupling, such as in Figure S4(D,H), the correlation profiles are essentially identical
between the few-body and polaron systems, due to the very deep tetramer bound state and a much larger
crystalline radius (� kF ). In this case the Fermi sea plays little roles in affecting the correlation profiles.



Figure S1: Details of the iterations for mass ratio η = 3 and interaction strength ln(kFa2d) =
−1.15. (A) Changes of wavefunctions between successive iterations. (B) Energy evolution during the
iteration. The discretization is taken as 7 − 13 − 8 − 13 with respect to q − θq − k − θk in the polar
coordinates and the cutoff of momentum is taken as kc = 50kF .

Figure S2: Convergency of the results for mass ratio η = 3. (A) Energies obtained from dis-
cretization 7−13−8−13 and 7−7−14−19 with respect to q−θq−k−θk in the polar coordinates. The
cutoff of momentum is taken as kc = 50kF and kc = 180kF , respectively. (B) Weight distributions with
discretization and momentum cutoff the same as in (A). Lines: 7− 13− 8− 13 and kc = 50kF ; Symbols:
7− 7− 14− 19 and kc = 180kF .
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Figure S3: Additional solutions from P7(0). (A) Energy comparison between P7(0,M), P7(0, P ),
P7(kF ) and M4(0) in the regime near polaron-molecule transition for η = 2. Note that P7(0, P ) is the same
as P7(0) in the main text, which adiabatically evolves from the polaronic state in weak coupling limit.
To obtain P7(0,M), we have chosen a very different initial state to start the numerical iteration(see
text). (B) Overlap between P7(0,M) and P7(0, P ). In the stabilized regime of P7(0,M), its overlap
with P7(0, P ) is below 10−13 and negligible. (C) Energy evolution in the iteration process of P7(0,M)
for two typical coupling strengths. The convergent result is obtained at ln(kFa2d) = −1.1 but not at
ln(kFa2d) = −0.9. The energies of M4(0) for both cases are marked by horizontal gray lines.

Figure S4: Comparison of particle-particle correlation,Dp(k0,k), between the pure four-body
system (A-D) and the Fermi polaron system (E-H) at mass ratio η = 40/6. The coupling
strengths are ln(kFa2d) = 1.272(A,E), 0.172(B,F), −0.328(C,G), −0.728(D,H). Here we take a fixed
k0 = −1.08kFex (as marked by red circle) and show the contour plot of Dp in k space. In (A-D), kF is
just a constant momentum unit without any physical meaning; the triangular correlation appears for all
couplings and its radius is solely determined by the scattering length. In (E-H), the white round area
denotes the Fermi sea; the triangular correlation is absent for weak couplings and shows up gradually
from the polaron(E)-trimer(F)-tetramer(G) crossover.
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