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Operator spreading, often characterized by out-of-time-order correlators (OTOCs), is one of the central
concepts in quantum many-body physics. However, measuring OTOCs is experimentally challenging due
to the requirement of reversing the time evolution of systems. Here we apply Floquet engineering to
investigate operator spreading in a superconducting 10-qubit chain. Floquet engineering provides an
effective way to tune the coupling strength between nearby qubits, which is used to demonstrate quantum
walks with tunable couplings, reversed time evolution, and the measurement of OTOCs. A clear light-cone-
like operator propagation is observed in the system with multiple excitations, and has a nearly equal
velocity as the single-particle quantum walk. For the butterfly operator that is nonlocal (local) under the
Jordan-Wigner transformation, the OTOCs show distinct behaviors with (without) a signature of

information scrambling in the near integrable system.

DOI: 10.1103/PhysRevLett.129.160602

Introduction.—Spreading of quantum operators, probed
by out-of-time-order correlators (OTOCs) [1-8], is a new
viewpoint to study the dynamics of quantum many-body
systems. For instance, it is closely related to the Lieb-
Robinson bound [9,10] in local quantum systems and
information scrambling in quantum chaotic systems
[1-3,11-14]. Given two local operators W and V, the
OTOC with a pure state |y) is defined as [5]

C(1) = o W) VW' (1) V' o). (1)

where W (1) = e"We=" is the butterfly operator, and A
is the system Hamiltonian. The OTOC is related to the
commutator between W(¢) and V. In a dynamical process,
it usually starts from unity where two operators fully
commute, and decays when they no longer commute
and the system may become scrambled [6,7]. To probe
C(t), one generally needs to reverse the time evolution of
the system [4,15-20], which is experimentally very chal-
lenging [21]. In the digital quantum simulation paradigm
[22,23], the dynamics of quantum many-body systems can
be digitalized via a series of quantum gates according to the
Trotter-Suzuki decomposition, and the reversed time evo-
lution can be easily implemented in a similar way. These
have been investigated in various physical systems such as
nuclear magnetic resonance [15,16], trapped ions [17,18],
and superconducting circuits [19]. On the other hand, it is

0031-9007/22/129(16)/160602(7)

160602-1

efficient to encode the reversed dynamics of the target
system with a fully controllable quantum simulator, which
is a task of analog quantum simulations [22,23]. In the
system with special symmetry, the reversal of time evolu-
tion is realized with a combined digital-analog scheme in
superconducting circuits [20], which nevertheless cannot
be simply generalized to other systems without the corre-
sponding symmetry. Hence a method to encode the
reversed time evolution of a quantum many-body system
in a full analog quantum simulation paradigm is highly
desirable.

Floquet engineering, using time-periodic driving, is a
powerful tool for the coherent manipulation of quantum
many-body states and the control of their dynamics. It has
achieved a great success in cold atom systems [24] for a
number of studies [25-29]. It has also been applied in
superconducting circuits for realizing qubit switch [30],
high-fidelity quantum gates [31], quantum state transfer
[32], and the model of topological magnon insulators [33].
Floquet driving can be used to tune both the magnitude and
phase of the coupling between nearby qubits, thus offering
a possible way for reversing the dynamics of a quantum
system [24], measuring OTOCs [4], and probing operator
spreading.

In this Letter, we present a systematic study of operator
spreading using Floquet engineering in a 1D array of 10
superconducting qubits. By precisely adjusting the ac

© 2022 American Physical Society
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Device and quantum walk with tunable coupling. (a) Optical micrograph of the superconducting processor containing 10

transmon qubits arranged into a chain. Each qubit has a microwave line for the XY control, a flux bias line for the Z control, and a
readout resonator for measurement. The NN qubits are coupled capacitively with almost the same strength [49]. The parameters of the
device are presented in the Supplemental Material in detail [49]. (b) Experimental results of excitation oscillation between Q; and Q5.
The two qubits are prepared in the initial state of |01), and ac magnetic flux is applied on Q; with an amplitude &. The color bar
represents the expectation value of the photon number of Q,. (c) Experimental coupling strength geff versus ac magnetic flux amplitude
&, which satisfies gj’ff /g1 = Jo(e/v). Two arrows indicate the values, ¢, and ¢,, used in the measurement of OTOCs for the forward and
backward time evolution, respectively. Single-photon quantum walks for (d) /27 = 120, (e) /27 = 288.6, and (f) /27 = 400 MHz,
observed on Q,-Q;, with the initial state |000010000). (g) Normalized group velocity v/ v, of photon propagation versus &/v, where
vy = 117 £ 4 sites/us corresponds to the value with € = 0 [49]. The error bar is estimated by fitting errors. Each point is the average

result of 8000 single-shot readouts.

magnetic flux at specific qubits, we are able to tune the
coupling strength of nearby qubits and demonstrate the
single-photon quantum walk with varying coupling, rever-
sed time evolution, and the measurement of OTOCSs. The
Pauli operators 6° and 6* are taken as butterfly operators,
which are local and nonlocal under the Jordan-Wigner
transformation, respectively. We show that, with multiple
excitations, a clear light-cone-like operator propagation can
be observed with a velocity nearly equal to the group
velocity of single-photon quantum walks. The OTOC with
W = 6% shows a revival to the initial value after a quick
decay and finally approaches zero, which characterizes the
nonthermalized process in the absence of scrambling. In
contrast, no such revival is observed for the OTOC with
W = 6%, showing a signature of scrambling. Our results
demonstrate distinct behaviors of OTOCs in the nearly
integrable system, some of which resemble those in non-
integrable chaotic systems [6,7].

Experimental setup and protocol.—Superconducting
qubits can be manipulated individually as well as simulta-
neously, which provide a convenient platform for simulat-
ing quantum many-body systems [34—48]. Our experiment

is performed on a 1D array of 10 coupled transmon qubits,
shown in Fig. 1(a). In the rotating frame with a common
frequency, the system is described by the 1D Bose-Hubbard
model [38,41,43]

10

9
Z (@fag, +He) +) (1)
j=1 j=1

10
+szn (A= 1), (2)

where &; (a;) is the bosonic creation (annihilation) oper-
JT-& ; 18 the number operator, U; is the on-site
interaction, and g; is the nearest-neighbor (NN) coupling
strength. In our experiment, we bias the qubit frequency
with ac magnetic flux, i.e., we have w;() = €, cos(vt),
with v and ¢; being the ac frequency and amplitude,

ator, ﬁj =a

respectively. Thus (1) describes a Floquet system satisfy-
ing H(t) = H(t+ T) with a period of T =2z/v [49].
When v > g;, under the hard-core boson approximation
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with |U| > g;, we obtain an effective time-independent
Hamiltonian [24]

cff
etf -

where 6% = (6* £ i6”)/2 with 6% being Pauli matrices.
The effective coupling strength has the form [24]

61 +6]+16 ): 3)

o 8 — &1
A a0, (@)

where J(x) is the Bessel function of order zero.

We tune the effective coupling strength between NN
qubits by changing ¢; with fixing v/27 = 120 MHz.
Figure 1(b) shows the experimental results of the excitation
oscillation between Q; and Q,, where the e-dependent
oscillation period can be seen. Using the Fourier trans-
formation, we obtain the effective coupling strength as a
function of €, plotted in Fig. 1(c), which fits well with
Eq. (4). In order to have a common coupling strength
between each NN qubit pair, we only drive the odd qubits
with the same amplitude |¢;| = &, so the coupling strength
approximates g;7¢(¢/v). In addition, we stagger the phase
of the applied flux with &, ¢&5,69 = € and &3,&7 = —¢ to
partly reduce the unwanted next-nearest-neighbor (NNN)
coupling [49]. Hence we are able to set identical coupling
strength for each NN qubit pair with adjustable values from
positive to negative.

Quantum walks with tunable coupling.—The quantum
walk is a fundamental process for quantum simulation and
computation [41,43,56-58]. Figures 1(d)-1(f) show the
experimental observation in a 9-qubit system (Q, — Q1)
with varying effective coupling strength. The experiment
starts with all qubits biased at their idle points, and the
central qubit Qg is excited from the ground state |0) to the
first-excited state |1) by an X, gate to prepare an initial state
|000010000) [49]. Afterwards, they are biased to the same
frequency and the periodic driving is applied. The system
then evolves with almost homogeneous coupling strength
between NN qubits. The photon density distribution P; is
measured after the system’s evolving for a time ¢, where
Pj(1) = (w(1)|67 67 |y(r)) with |y(r)) being the wave
function at time t. Figure 1(d) shows the result for
e/27 = 120 MHz, which displays a single-photon light-
cone-like propagation [41,43] in both the left and right
directions.

We find that the propagation velocity v decreases with
increasing ¢ and vanishes at about ¢/27 ~288.6 MHz
(¢/v =~ 2.4), corresponding to the first zero of 7. At this
point, the effective NN coupling reduces to zero, leading to
dynamic localization [25-27] as illustrated in Fig. 1(e).
Further increasing ¢ results in reappearing of the linear
propagation, see Fig. 1(f) for the case of ¢/27 = 400 MHz.

In Fig. 1(g), we show the normalized group velocity v/ v,
versus &/v, where vy = 117 £ 4 sites/us is the value at
& = 0. It can be seen that the data are also well described by
the Oth Bessel function, and the difference mainly origi-
nates from the unwanted NNN coupling [49]. Specifically,
the group velocity for e/2z =400 MHz is v = 46+
4 sites/us, which will be compared with the operator
spreading velocity below. These results indicate a free
single-photon propagation [41,43] that is limited by the
Lieb-Robinson bound [9,10].

Reversed time evolution.—Reversing the dynamics of a
quantum many-body system is of great interest and faci-
litates the OTOC measurement [5,20]. Equation (4) indi-
cates that the effective coupling geff can be positive or
negative. For single-photon quantum walks, the last term in
Eq. (2) vanishes, so the system is governed by the
Hamiltonian (3). In this case, the time evolution can be
precisely reversed by changing the sign of the Hamiltonian.
However, OTOCs provide a technique for studying oper-
ator spreading and quantum information propagation in
systems with multiparticle filling, which cannot be probed
via single-particle propagation. Hence we will focus on the
multiphoton system and discuss the effect of high-level
occupations.

To observe the reversed time evolution, we choose the
initial state as the Néel state [1010101010). The system
evolves with a driving amplitude ¢ = ¢, = 213.6 MHz for
the first 125 ns and with € = ¢, = 400 MHz for the last
125 ns. Here we have Jy(e,/v) =—Ty(e,/v), corre-
sponding to ¢¢" ~ +4 MHz for &, and &, respectively,
as indicated by arrows in Fig. 1(c). The experimental
results, plotted in Fig. 2 as symbols, are fairly reproduced

e Exp. —— Num.3 Levels £a/2m =213.6 MHz
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FIG. 2. Reversed time evolution of the 10-qubit chain with the
initial state [1010101010), realized by using ¢, and ¢, for the time
before and after 125 ns, respectively. Symbols are the exper-
imental results. Solid and dashed lines are the calculated results
based on the Hamiltonian in Eq. (2) by considering three and two
energy levels for each qubit, respectively.
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by numerical simulations (lines). We can see that P;(z) is
nearly symmetric about ¢ = 125 ns during the time evo-
lution, demonstrating that two effective time-independent
Hamiltonians are almost opposite in sign.

OTOCs and operator spreading.—To measure OTOCs
and probe operator spreading, we consider two cases [6,7].
First, we choose W = 655 V= 6'? (j=1,...,10), and the
initial state is |y) =|0101010101). Since V|y/1>:8§|y/1>:
—(=1)/|y), from Egq. (1), the corresponding OTOC
reads C74(1) = —(=1)/(¢.(1)|65|¢- (1)), where |, (1)) =
&5 (Olwy) [16]. Second, we let W=6}, ‘A/:&j
(j =1,...10), and the initial state is |y») = | + + + ++
+ + + + +), where |[+) is the eigenstate of 6° with an
eigenvalue +1. Similarly, the OTOC is measured as
CX(1) = (p(1)[5]1x (1)), where [¢h,(1)) = &{o(1)|w2)
[16]. In the experiment, we first set € = ¢, and let the
system evolve for a time ¢ from the initial state. Then we
apply a Z (or X) gate on Qo and let the system evolve
reversely for time ¢ by setting € = ¢,. Finally, we measure
the observable &7 (or 6}) to evaluate OTOC.

The experimental and numerical results of CjZZ are
presented in Fig. 3. We can observe a clear light-cone-like
operator propagation in Fig. 3(a). The velocity of operator
spreading is calculated to be 40 + 7 sites/us [49], which
almost equals to the group velocity of single-photon
quantum walks with the identical coupling strength. The
small difference between these two velocities mainly comes
from the NNN coupling, which enlarges the group velocity
of single-photon quantum walks [49]. These results dem-
onstrate that operator spreading with the local Hamiltonian
is also limited by the Lieb-Robinson bound. The measured
OTOC:s are also plotted in Fig. 3(c) as symbols. They show
a clear decay at the early stage and then revive almost back
to the initial value of +1 for qubits near Q,, which implies
the absence of information scrambling. This can be
explained considering that the effective Hamiltonian in
Eq. (3) is integrable [3,15]. It maps to free fermions under
the Jordan-Wigner transformation and the 6° operator does
not change under the map. Finally, C#* gradually decays to
zero at later time, indicating that |¢_(7)) tends to a steady
state. Since the initial state is in the half-filling sector and
|¢p.(2)) is spin conserved, C7* represented by spin distri-
bution will finally stabilize at zero.

These results show that OTOCs can well characterize the
nonthermalized process and operator spreading in the
multiparticle system. The effect of the last term in
Eq. (2) can also be seen, where it is not time reversible
under the Floquet driving leading to a discrepancy from
ideal time reversal [20]. For the results in Fig. 2, numerical
simulations show that the population of the second-excited
state varies with a maximum value up to 10%, as compared
to those of the first-excited state around 50%. In Fig. 2, we
present two results calculated by three- and two-level
approximation of H (1), respectively. The result considering
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FIG. 3. (a) Experimental results of CJZZ, with the initial state
10101010101) and operators W = &7y, V =563 (j =1.....10).
The postselection is applied due to the U(1) symmetry, i.e., only
the single-shot results that have the same number of bosons as the
initial state are considered. (b) Numerical results considering ZZ
interaction between NN qubits. (c) Comparison between exper-
imental CJZ-Z (symbols) and two calculated results using H.q
(dashed lines) and considering ZZ interaction (solid lines).

three levels is closer to experimental data. For the OTOC
results in Fig. 3, where the postselection is used, we take
into account the influence of the third level through ZZ
interaction [20,59]. In Fig. 3(c), we can find that this
numerical result is closer to experimental data than those
calculated using H in Eq. (3) [49].

The corresponding results of C3X are shown in Fig. 4.
A significant difference from C]Z.Z is that no similar revival
back to +1 is observed, which suggests the presence of
scrambling with the &* butterfly operator [6,7]. In the
results, several features are blurred due to the high level
participation [20]. The solid lines in Fig. 4(c) are the results
calculated by considering the qubit third level [49], show-
ing a satisfactory fit to experimental data. In addition, the
results calculated by using two levels (dashed lines)
demonstrate clear properties that C?X would have: First,
the wavefront of OTOC can be better defined and prop-
agates to the other edge of the qubit chain at a time nearly
equal to that for C#%. Second, C}* decreases at early times
from +1 to —1 and almost retains in the rest of time
range up to 250 ns. Here, the difference between butterfly
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FIG. 4. (a) Experimental results of C}* with the initial state
|+ +++++++++) and operators W =5}, V= o
(j=1,...,10). (b) Numerical results considering the qubit thlrd
energy level (c) Comparison between experimental CXX (sym-
bols) and two numerical results using two (dashed lines) and three
(solid lines) qubit levels.

operators 6° and 6" is that the former is local under the
Jordan-Wigner transformation, whereas the latter maps to
nonlocal Pauli-string operators giving rise to the behavior
characteristic of scrambling [6,7]. We emphasize that the
scrambling here is fundamentally different from that in
nonintegrable systems, in which it persists in a long
timescale [3]. For both integrable and nonintegrable sys-
tems, the length of the string operators would increase
linearly until approaching the system size. Afterwards, it
will start to decrease and saturate for the two systems,
respectively [2]. In the Supplemental Material [49], we
show the periodic behavior of C¥* by numerical simulation
in a larger timescale, which demonstrates the existence of
string operator shrinking in our near integrable system.
Summary and outlook.—We have used Floquet engineer-
ing, a full analog method, for probing operator spreading.
Quantum walks with tunable coupling, reversed time
evolution, and the measurement of OTOCs were demon-
strated in a superconducting qubit chain. We observed a
linear propagation of quantum operator with a velocity
nearly equal to the group velocity of single-photon quan-
tum walk, and also found that the OTOCs behave differ-
ently between 6° and &* butterfly operators. The method

may have further applications for the simulation of quan-
tum many-body physics, e.g., quantum information scram-
bling and thermalization in nonintegrable systems [1-3,11—
14], dynamics of systems with weak integrability breaking
[60,61], artificial gauge field [28], topological band theory
[62], and topological edge mode [49] in the Su-Schrieffer-
Heeger model [63].
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