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Quadrupole topological insulators in Ta2M3Te5 (M=Ni, Pd)
monolayers
Zhaopeng Guo1,2, Junze Deng 1,2, Yue Xie1,2 and Zhijun Wang 1,2✉

Higher-order topological insulators have been introduced in the precursory Benalcazar-Bernevig-Hughes quadrupole model, but no
electronic compound has been proposed to be a quadrupole topological insulator (QTI) yet. In this work, we predict that Ta2M3Te5
(M= Pd, Ni) monolayers can be 2D QTIs with second-order topology due to the double-band inversion. A time-reversal-invariant
system with two mirror reflections (Mx and My) can be classified by Stiefel-Whitney numbers (w1,w2) due to the combined
symmetry TC2z. Using the Wilson loop method, we compute w1= 0 and w2= 1 for Ta2Ni3Te5, indicating a QTI with qxy= e/2. Thus,
gapped edge states and localized corner states are obtained. By analyzing atomic band representations, we demonstrate that its
unconventional nature with an essential band representation at an empty site, i.e., Ag@4e, is due to the remarkable double-band
inversion on Y–Γ. Then, we construct an eight-band quadrupole model with Mx and My successfully for electronic materials. These
transition-metal compounds of A2M1,3X5 (A = Ta, Nb; M = Pd, Ni; X = Se, Te) family provide a good platform for realizing the QTI
and exploring the interplay between topology and interactions.
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INTRODUCTION
In higher-order topological insulators, the ingap states can be
found in (d−n)-dimensional edges (n > 1), such as the corner
states of two-dimensional (2D) systems or the hinge states of
three-dimensional systems1–12. Different from topological insula-
tors with (d−1)-dimensional edge states, the Chern numbers or Z2
numbers in higher-order topological insulators are zero. The
higher-order topology can be captured by topological quantum
chemistry13–18, nested Wilson-loop method1,8 and second
Stiefel–Whitney (SW) class19–25. Using topological quantum
chemistry13, the higher-order topological insulator can be
diagnosed by the decomposition of atomic band representations
(aBRs) as an unconventional insulator (or obstructed atomic
insulator) with mismatching of electronic charge centers and
atomic positions16–18,26. In contrast to dipoles (Berry phase) for
topological insulators, the higher-order topological insulators can
be understood by multipole moments1. In a 2D system, the
second-order topology corresponds to the quadrupole moment,
which can be diagnosed by the nested Wilson-loop method1,8,23.
When the system contains space-time inversion symmetries, such
as PT and C2zT, where the P and T represent inversion and time-
reversal symmetries, the second-order topology can be described
by the second SW number (w2)23,27. The second SW number w2 is
a well-defined 2D topological invariant of an insulator only when
the first SW number w1= 0. Usually, a 2D quadrupole topological
insulator (QTI) with w1= 0,w2= 1 has gapped edge states and
degenerate localized corner states, which are pinned at zero
energy (being topological) in the presence of chiral symmetry.
When the degenerate corner states are in the energy gap of bulk
and edge states, the fractional corner charge can be maintained
due to filling anomaly28.
So far, various 2D systems are proposed to be SW insulators

with second-order topology, such as monolayer graphdiyne29,30,
liganded Xenes25,31, β-Sb monolayer18 and Bi/EuO32. However, no
compound has been proposed to be a QTI with Mx and My

symmetries. After considering many-body interactions in
transition-metal compounds, superconductivity, exciton conden-
sation and Luttinger liquid could emerge in a transition-metal QTI.
In recent years, van der Waals layered materials of A2M1,3X5 (A =
Ta, Nb; M = Pd, Ni; X = Se, Te) family have attracted attentions
because of their special properties, such as quantum spin Hall
effect in Ta2Pd3Te5 monolayer33,34, excitons in Ta2NiSe535–37, and
superconductivity in Nb2Pd3Te5 and doped Ta2Pd3Te538. In
particular, the monolayers of A2M1,3X5 family can be exfoliated
easily, serving as a good platform for studying topology and
interactions in lower dimensions.
In this work, we predict that based on first-principles calcula-

tions, Ta2Ni3Te5 monolayer is a 2D QTI. Using the Wilson-loop
method, we show that its SW numbers are w1= 0 and w2= 1,
corresponding to the second-order topology. We also solve the
aBR decomposition for Ta2Ni3Te5 monolayer, and find that it is
unconventional with an essential band representation (BR) at an
empty Wykoff position (WKP), Ag@4c, which origins from the
remarkable double-band inversion on Y–Γ line. To verify the QTI
phase, we compute the energy spectrum of Ta2Ni3Te5 monolayer
with open boundary conditions in both x and y directions and
obtain four degenerate corner states. Then, we construct an eight-
band quadrupole model with Mx and My successfully. The double-
band-inversion picture widely happens in the band structures of
A2M1,3X5 family. The Ta2M3Te5 monolayers are 2D QTI candidates
for experimental realization in electronic systems.

RESULTS
Band structures
The band structure of Ta2Ni3Te5 monolayer suggests that it is an
insulator with a band gap of 65 meV. We have checked that
spin–orbit coupling (SOC) has little effect on the band structure
(Supplementary Fig. 2b). We also checked the band structures
using GW method and SCAN method, and we find that the band
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gap remains using these methods (the corresponding band
structures are shown in Supplementary Note 1). As shown in the
orbital-resolved band structures of Fig. 3a–c, although low-energy
bands near the Fermi level (EF) are mainly contributed by Ta-dz2
orbitals (two conduction bands) and NiA-dxz orbitals (two valence
bands), the inverted bands of {Y2; GM1−, GM3−} come from Te-px
orbitals. The irreducible representations (irreps)39 at Y and Γ are
denoted for the inverted bands in Fig. 1b. We notice that the
double-band inversion between {Y2; GM1−, GM3−} bands and
{Y1; GM1+, GM3+} bands is remarkable, about 1 eV.

Atomic band representations
To analyze the band topology, the decomposition of aBR is
performed. In a unit cell of Ta2Ni3Te5 monolayer in Fig. 1a, four
Ta atoms, four NiB atoms and eight Te atoms are located at
different 4e WKPs. The rest two Te atoms and two NiA atoms are
located at 2a and 2b WKPs, respectively. The aBRs are obtained
from the crystal structure by pos2aBR16–18, and irreps of
occupied states are calculated by IRVSP39 at high-symmetry k-
points. Then, the aBR decomposition is solved online—http://
tm.iphy.ac.cn/UnconvMat.html. The results are listed in Supple-
mentary Table 2 of Supplementary Note 2. Instead of being a
sum of aBRs, we find that the aBR decomposition of the
occupied bands has to include an essential BR at an empty WKP,
i.e., Ag@4c. As illustrated in Fig. 1a, the charge centers of the
essential BR are located at the middle of NiB-NiB bonds (i.e., the

4c WKP), indicating that the Ta2Ni3Te5 monolayer is a 2D
unconventional insulator with second-order topology.

Double-band inversion
In an ideal atomic limit, Te-p orbitals and Ni-d orbitals are
occupied, while Ta-d orbitals are fully unoccupied. Thus, all the
occupied bands are supposed to be the aBRs of Te-p and Ni-d
orbitals, as shown in the left panel of Fig. 2a. However, in the
monolayers of A2M1,3X5 family (see their band structures in
Supplementary Note 1), a double-band inversion happens
between the occupied aBR A″@4e (Te-px and Ni-d) and unoccu-
pied aBR A0@4e (Ta-dz2 ), as shown in the right two panels of
Fig. 2a. When the double-band inversion happens between {Y2;
GM1−, GM3−} and {Y1; GM2−, GM4−} on Y–Γ line, it results in a
semimetal for Ta2NiSe5 monolayer (215-type; Fig. 2b). When it
happens between {Y2; GM1−, GM3−} and {Y1; GM1+, GM3+} in
Fig. 2c, the system becomes a 2D QTI for Ta2Ni3Te5 monolayer
(235-type), resulting in the essential BR of Ag@4c.

Second Stiefel–Whitney class w2= 1
To identify the second-order topology of the monolayers, we
compute the second SW number by the Wilson-loop method. The
first SW class (w1) is

w1jC ¼ 1
π

I
C
dk � TrAðkÞ (1)
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Fig. 1 Crystal structures and electronic structures of Ta2Ni3Te5 monolayer. a The crystal structure, Wyckoff positions and Brillouin zone (BZ)
of Ta2Ni3Te5 monolayer. b Band structure and irreps at Y and Γ of Ta2Ni3Te5 monolayer. c The 1D ky-direct Wilson bands as a function of kx
calculated in the DFT code. d Close-up of the green region in (c), with one crossing of Wilson bands at θ= π indicating the second SW class
w2= 1.
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where AmnðkÞ ¼ umðkÞh ji∇k unðkÞj i22. The second SW class (w2)
can be computed by the nested Wilson-loop method, or simply by
m module 2, where m is the number of crossings of Wilson bands
at θ= π. It should be noted that w2 is well-defined only when
w1= 0. With w1= 0, w2 can be unchanged when choosing the
unit cell shifting a half lattice constant. The 1D Wilson-loops are
computed along ky. The computed phases of the eigenvalues of
Wilson-loop matrices Wy(kx) (Wilson bands) are shown in Fig. 1c as
a function of kx. The results show that the first SW class is w1= 0.
In addition, there is one crossing of Wilson bands at θ= π [Fig. 1d],
indicating the second SW class w2= 1. The quadruple moment
qxy= e/2 calculated by the nested Wilson-loop method in
Supplementary Note 3. Therefore, the Ta2Ni3Te5 monolayer is a
QTI with a nontrivial second SW number.

Edge spectrum and corner states
From the orbital-resolved band structures (Fig. 3), the maximally
localized Wannier functions of Ta-dz2 , NiA-dxz and Te-px orbitals are
extracted, to construct a 2D tight-binding (TB) model of Ta2Ni3Te5
monolayer. As shown in Fig. 3d, the obtained TB model fits the
density functional theory (DFT) band structure well. First, we
compute the (01)-edge spectrum with open boundary condition
along y. Instead of gapless edge states for a 2D Z2-nontrivial
insulator, gapped edge states are obtained for the 2D QTI [Fig. 3e].
Then, we explore corner states as the hallmark of the 2D QTI. We
compute the energy spectrum for a nanodisk. For concreteness,
we take a rectangular-shaped nanodisk with 50 × 10 unit cells,
preserving both Mx and My symmetries in the 0D geometry. The
obtained discrete spectrum for this nanodisk is plotted in the inset
of Fig. 3f. Remarkably, one observes four degenerate states near
EF. The spatial distribution of these four-fold modes can be
visualized from their charge distribution, as shown in Fig. 3f.
Clearly, they are well localized at the four corners, corresponding
to isolated corner states.

Minimum model for the 2D QTI
As shown in Fig. 2, the minimum model for the 2D QTI should be
consisted of two BRs of A0@4e and A″@4e. Based on the situation
of Ta2Ni3Te5 monolayer in Fig. 2c, the minimum effective model is
derived as below:

HTBðkÞ ¼
HTaðkÞ HhybðkÞ
HhybðkÞy HNiðkÞ

 !
(2)

The terms of HTa(k), HNi(k) and Hint(k) are 4 × 4 matrices, which
read

HTaðkÞ ¼ ½εs þ 2ts1 cosðkxÞ�σ0τ0 þ ts2γ1ðkÞ þ ts3σ0τx ;

HNiðkÞ ¼ ½εp þ 2tp1 cosðkxÞ�σ0τ0 þ tp2γ2ðkÞ þ tp3σ0τx ;

HhybðkÞ ¼ 2itsp sinðkxÞγ3ðkÞ:
(3)

The γ1,2,3(k) matrices are given explicitly in Supplementary Note 4.
We find that ts1 < 0 and tp1, tp2 > 0 for the A2M1,3X5 family (ts3

and tp3 are small). When εs+ 2ts1− 2∣ts2∣ < εp+ 2tp1+ 2tp2, the
double-band inversion happens in the monolayers of this family.
By fitting the DFT bands, we obtain ts2 > 0 for the 215-type, while
ts2 < 0 for the 235-type. When εp=− εs and tpi=− tsi(i= 1, 2, 3),
the model is chiral symmetric (i.e., δ= 0 in Table 1). Since the
second SW insulator or QTI is topological in the presence of chiral
symmetry, we would focus on the model (almost respecting chiral
symmetry) in the following discussion.

Analytic solution of (01)-edge states
As the remnants of the QTI phase, the localized edge states can be
solved analytically for the minimum model. For the (01)-edge, one
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can treat the model HTB(k) as two parts, H0(k) and H0ðkÞ,

H0ðkÞ ¼ ts2γ1ðkÞ þ ts3σ0τx 0

0 tp2γ2ðkÞ þ tp3σ0τx

� �

H0ðkÞ ¼ ½εs þ 2ts1 cosðkxÞ�σ0τ0 HhybðkÞ
HhybðkÞy ½εp þ 2tp1 cosðkxÞ�σ0τ0

 !

(4)

Note that there is a pair of Dirac points ð± kDx ; 0Þ, with

kDx ¼ arccos 1
2 ðts3ts2Þ

2 � 1
h i

. Since kx is still a good quantum number

on the (01)-edge, expanding ky to the second order, the zero-
mode equation H0(kx,− i∂y)Ψ(kx, y)= 0 can be solved for
y∈ [0,+∞). Taking the trial solution of Ψ(kx, y)= ψ(kx)eλy, we
obtain the secular equation and the solution of λ= ±λ±, where

λ± ¼ 1 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2s3

ð1þ cosðkxÞÞt2s2
� 1

s
(5)

With the boundary conditions Ψ(kx, 0)=Ψ(kx,+∞)= 0, only− λ±
are permitted.
In the kx regime of �kD

x ; k
D
x

� �
, the edge zero-mode states are

Ψ(kx, y)= [C1(kx)ϕ1(kx)+ C2(kx)ϕ2(kx)]ðe�λþy � e�λ�yÞ with

ϕ1ðkxÞ ¼ � ð1þe�ikx Þts2
ts3

0 1 0 0 0 0 0
� �T

ϕ2ðkxÞ ¼ 0 0 0 0 � tp3
ð1þeikx Þtp2 0 1 0

� �T (6)

The edge zero states are Fermi arcs that linking the pair of
projected Dirac points ð± kDx ; 0Þ. Once H0ðkÞ included, the effective
(01)-edge Hamiltonian is,

Heff
01 ¼ Φh jHðkÞ Φj i

¼ εs þ 2ts1 cosðkxÞ 0

0 εp þ 2tp1 cosðkxÞ
� �

(7)

where Φj i � ϕ1ðkxÞ;ϕ2ðkxÞj i. Two edge spectra are obtained in
Fig. 4a.

Effective Su–Schrieffer–Heeger model on (10)-edge and corner
states
Similarly, we derive the (10)-edge modes as ½F1ðkyÞφ1ðkyÞ þ
F2ðkyÞφ2ðkyÞ� e�Λþx � e�Λ�xð Þ with

φ1 ¼

0

1� Δs

1� Δseiky

0

�1þ Δp

0

0

�1þ Δpe�iky

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
;φ2 ¼

e�iky 1� Δsð Þ
0

0

1� Δse�iky

0

�1þ Δp

�e�iky þ Δp

0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
: (8)

Here, Λ± ¼ 2tsp ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t2sp�2ð2ts1þts2Þð2ts1þ2ts2þεsÞ

p
2ts1þts2

, Δs ¼ ts3
2ts2

� �2
, and

Δp ¼ tp3
2tp2

� �2
. Then we obtain the effective Hamiltonian on (10)

edge below,

Heff
10 ¼ 0 v þ we�iky

v þ weiky 0

 !
;

w ¼ ts3 þ tp3 � 4ts3Δs;

v ¼ ts3 þ tp3 � 4tp3Δp

(9)

Table 1. Parameters of the TB model for the QTI with chiral symmetry
when δ= 0.
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When δ= 0, the minimum QTI model is chiral symmetric and it is
gapless on the (10) edge (preserving My symmetry). When the
chiral symmetry is slightly broken (δ ≠ 0), the Heff

10 becomes an
Su–Schrieffer–Heeger model (δ < 0 nontrivial; δ > 0 trivial), as
presented in Fig. 4b–d. As a result, we obtain a solution state on
the end of the edge mode, i.e., the corner. As long as the energy of
the corner state is located in the gap of bulk and edge states, the
corner state is well localized at the corners, as shown in Fig. 4c, d.

DISCUSSION
In Ta2NiSe5 monolayer, the double-band inversion has also
happened between Ta-dz2 and Te-px states, about 0.4 eV, resulting
in a semimetal with a pair of nodal lines in the 215-type. The
highest valence bands on Y–Γ are from the inverted Ta-dz2 states.
However, in Ta2Ni3Te5 monolayer, the double-band inversion
strength becomes remarkable, ~1 eV, which is ascribed to the
filled B-type voids and more extended Te-p states. On the other
hand, the highest valence bands become NiA-dxz states (slightly
hybridized with Te-px states). It is insulating with a small gap of 65
meV. When it comes to A2Pd3Te5 monolayer, the remarkable
inversion strength is similar to that of Ta2Ni3Te5. But the PdA-dxz
states go upwards further due to more expansion of the d orbitals
and the energy gap becomes almost zero in Ta2Pd3Te5. In short,
the double-band inversion happens in all these monolayers, while
the band gap of the 235-type changes from positive (Ta2Ni3Te5),
to nearly zero (Ta2Pd3Te5 with a tiny band overlap), to negative
(Nb2Pd3Te5), as shown in Supplementary Fig. 1. Although the
band structure of Ta2Pd3Te5 bulk is metallic without SOC33,34,38,
the monolayer could become a QSH insulator upon including SOC
in ref. 33. Since their bulk materials are van der Waals layered
compounds, the bulk topology and properties strongly rely on the
band structures of the monolayers in the A2M1,3X5 family.
As we find in ref. 33, the band topology of Ta2Pd3Te5 monolayer

is lattice sensitive. By applying >1% uniaxial compressive strain
along b, it becomes a Z2-trivial insulator, being a QTI. On the other
hand, due to the quasi-1D crystal structure, the screening effect of
carriers is relatively weak and the electron-hole Coulomb
interaction may be substantial for exciton condensation. The 1D
in-gap edge states as remnants of the QTI are responsible for the
observed Luttinger-liquid behavior.
In conclusion, we predict that Ta2M3Te5 monolayers can be QTIs

by solving aBR decomposition and computing SW numbers.
Through aBR analysis, we conclude that the second-order topology
comes from an essential BR at the empty site (Ag@4c), and it origins
from the remarkable double-band inversion. The double-band
inversion also happens in the band structure of Ta2NiSe5
monolayer. The second SW number of Ta2Ni3Te5 monolayer is

w2= 1, corresponding to a QTI. Therefore, we obtain edge states
and corner states of the monolayer. The eight-band quadrupole
model with Mx and My has been constructed successfully for
electronic materials. With the large double-band inversion and
small band energy gap/overlap, these transition-metal materials of
A2M1,3X5 family provide a good platform to study the interplay
between the topology and interactions (Fig. 4e).

METHODS
Calculation method
Our first-principles calculations were performed within the frame-
work of the DFT using the projector augmented wave method40,41,
as implemented in Vienna ab-initio simulation package (VASP)42,43.
The Perdew–Burke–Ernzerhof (PBE) generalized gradient approx-
imation exchange-correlations functional44 was used. SOC was
neglected in the calculations except in Supplementary Fig. 2b. We
also used SCAN45 and GW46 method when checking the band gap.
In the self-consistent process, 16 × 4 × 1 k-point sampling grids were
used, and the cut-off energy for plane wave expansion was 500 eV.
The irreps were obtained by the program IRVSP39. The maximally
localized Wannier functions were constructed by using the
Wannier90 package47. The edge spectra are calculated using surface
Green’s function of semi-infinite system48,49.
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