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Observation of entanglement transition of
pseudo-random mixed states

Tong Liu 1,2, Shang Liu3, Hekang Li 1, Hao Li1, Kaixuan Huang1,4,
Zhongcheng Xiang1,2,4,5,6,7, Xiaohui Song1,2,4,5,6,7, Kai Xu 1,2,4,5,6,7 ,
Dongning Zheng1,2,4,5,6,7 & Heng Fan 1,2,4,5,6,7

Random quantum states serve as a powerful tool in various scientific fields,
including quantum supremacy andblack hole physics. It has been theoretically
predicted that entanglement transitionsmay happen for different partitions of
multipartite random quantum states; however, the experimental observation
of these transitions is still absent. Here, we experimentally demonstrate the
entanglement transitions witnessed by negativity on a fully connected super-
conducting processor. We apply parallel entangling operations, that sig-
nificantly decrease the depth of the pseudo-random circuits, to generate
pseudo-random pure states of up to 15 qubits. By quantum state tomography
of the reduced density matrix of six qubits, wemeasure the negativity spectra.
Then, by changing the sizes of the environment and subsystems, we observe
the entanglement transitions that are directly identified by logarithmic
entanglement negativities based on the negativity spectra. In addition, we
characterize the randomness of our circuits by measuring the distance
between the distribution of output bit-string probabilities and the Porter-
Thomas distribution. Our results show that superconducting processors with
all-to-all connectivity constitute a promising platform for generating random
states and understanding the entanglement structure ofmultipartite quantum
systems.

Random quantum states, sampled from Haar measure, have broad
applications in quantum supremacy1,2, quantum communication3,
quantum metrology4, and fidelity benchmarking5,6. In addition,
reduced density matrices of random states have also attracted exten-
sive interest owing to the strong connection between quantum chaos
and black hole physics7–10. Entanglement is a crucial property of
quantumstates11–17, and it is expected that randomquantumstatesmay
hold universal entanglement characteristics, which can be classified
into different phases18–22.

The classification of phases is basedon the entanglement between
two subsystems of a tripartite random state, with the remaining party
regarded as an environment. The entanglement between subsystems is
quantified by the negativity, which is an effectively computable mea-
sure of entanglement for quantum states, particularly for mixed
states23–27. Negativity also plays a significant role in diagnosing finite-
temperature topological order of toric code28, entanglement proper-
ties of diffusive fermion model29, replica symmetry breaking in
holography30 and finite-temperature phase transitions31. By modifying
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the sizes of subsystems and environment, a transition from positive
partial transpose (PPT) states with a vanishing negativity to negative
partial transpose (NPT) states with a non-zero negativity was numeri-
cally predicted in the large Hilbert space limit19,20. Recently, another
phase transition between two types of NPT states was uncovered
theoretically22. However, the experimental observation is still absent
since the complexity of the generation of random quantum states
grows exponentially with the system size32, and the measurement of
entanglement is experimentally challenging33–42.

In this work, we report our experiments in probing entanglement
negativity transition for pseudo-random quantum states using a fully
connected superconducting quantum processor. A fully connected
quantum processor may enhance the entangling power of shallow
circuits compared with short-range connected processors and facil-
itate the realization of random quantum states. We apply the parallel
entangling gates to realize the pseudo-random quantum circuits for
generating pseudo-random states of 7–15 qubits, which can mimic
specific statistical properties of random states43–50. The all-to-all
architecture of our processor, which has been suggested to realize
polynomial or exponential improvements in some quantum
algorithms51,52, helps to decrease the circuit depth and exposure to
noise. Then,weutilize thequantumstate tomography (QST) todirectly
obtain reduced density matrices of subsystems with six qubits53–58 and
calculate the negativity spectra. Other proposals to explore negativity
require either multiple copies of target states25,27 or global random
unitary operators59, which are both demanding for the present noisy
intermediate-scale quantum devices. Our results represent the first
experimental investigation of the entanglement negativity transition
for random quantum states. It should be noted that many efforts have
been made in studying negativity experimentally60,61. Our results are
established on the reconstruction of reduced density matrices, which
contain complete entanglement information in the mixed states.

Results
Our processor contains 20 frequency-tunable transmon qubits and one
central resonator. We use 15 qubits in the experiments and tune the
frequencies of remaining qubits lower than 4GHz. All qubits are capa-

citively coupled to the central resonator, as shown in Fig. 1a, where
qubits used in the experiments are labeled by Qj with j 2 f1,2, . . . ,15g
and the central resonator is denoted asR. Each qubit can be addressed
by its separate XY line and Z line, which allows us to apply single-qubit
or multi-qubit gates to specified qubits. Each layer of the pseudo-
random circuit is composed of N random single-qubit gates sampled
from Haar measure on the SU(2) group and a global entangling gate U.
By controlling the amplitudes and phases of Gaussian-enveloped
microwave pulses transmitted by the XY lines, as shown in Fig. 1b, we
can fulfill different rotation gates RφðθÞ within a 15 ns duration τrot,
where Rφ θð Þ= e�iðcosφσx + sinφσyÞ=2. In order to realize a random single-
qubit gate, we decompose each single-qubit gate into two successive
rotationgatesRφðθÞ ofwhich rotation axes both lie in the xyplane62. The
global entangling gate U acting on the N qubits is defined as

U = exp �iτent
XN
i < j

Jij σ +
i σ

�
j + σ +

j σ
�
i

� �" #
, ð1Þ

where
PN

i< j Jijðσ +
i σ

�
j + σ +

j σ
�
i Þ is the effectiveHamiltonianof selectiveN

qubits by equally detuning them from resonator R with the other
qubits being far off-resonant63,64. σ +

j (σ�
j ) is the raising (lowering)

operator forQj, Jij is the effective coupling strength betweenQi andQj

(Fig. 1c), and τent is the evolution time of about 40 ns. As the layer of
circuits increases, the measure over pseudo-random circuits con-
verges to the Haar measure exponentially though the rate of
convergence decreases exponentially with the number of qubits43,65.

By dividing all qubits into three parts, A1, A2 and B, which are
comprised ofNA1

,NA2
andNB qubits, respectively, we regard the union

ofA1 andA2 as a systemA andB as the environment ofA. After applying
a d-layer pseudo-random circuit to the initial state ∣0i�N , we perform
QST on the system qubits to estimate the reduced density matrix ρA.
The tomography of states relies on measuring all system qubits in the
eigenvectors of σx

j , σ
y
j , and σz

j . The measurement of σz
j is direct by

defining σz
j � ∣0jih0j ∣� ∣1jih1j ∣. By inserting aπ=2 rotation pulseX/2 (Y/

2) before the readout pulse of Qj , we can measure the state in the σy
j

(σx
j ) basis. The whole pulse sequence for the QST including the state

generation, the tomography operation, and the readout takes about

Jij/2π(MHz)
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Fig. 1 | Quantum simulator and experimental pulse sequences. a False-color
optical micrograph with highlighting various circuit elements. Qubits (yellow) are
labeled from Q1 to Q15 and the central resonator (red) capacitively coupled to all
qubits is labeled asR. Each labeled qubit can be controlled by itsXY line (red) andZ
line (blue), and measured through the readout resonator (green). The device used

here is the same one used in refs. 63, 69. b The pulse sequences of a pseudo-
randomcircuit and its equivalent gatemodel.U is a global entangling gate and each
cubic box is a random single-qubit gate. c The schematic representation of the
effective coupling graph of 15 qubits with an equal detuning Δ=2π≈� 360 MHz
from the central resonator.
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two μs.With 3NA tomography operations and 2NA probabilities for each
operation, we can reconstruct the state of system qubits (see Supple-
mentary Note 5). Then we calculate the negativity N A1 :A2

between A1

and A2 according to

N A1 :A2
=
∣∣ρT 1

A ∣∣1 � 1
2

, ð2Þ

where ∣∣O∣∣1 = Trð
ffiffiffiffiffiffiffiffiffiffi
OyO

p
Þ is the trace norm and ρT 1

A represents the par-
tial transpose of the density matrix of A with respect to the subsystem
A1. N A1 :A2

can also be written as the absolute value of sum of all
negative eigenvalues of ρT 1

A . All eigenvalues of ρT 1
A constitute the

negativity spectrum. Another associated entanglement measure,
logarithmic negativity, can be deduced from negativity by
EA1 :A2

= logð2N A1 :A2
+ 1Þ. In the following context, the negativity is

referred to as the logarithmic negativity.
The volume or size Li of part i is defined as the dimension 2Ni of

the Hilbert space Hi where i = A1, A2 and B. ρA is a PPT state if
LA � 2NA =2NA1 +NA2 >LB=4; otherwise, it is an NPT state19,20,22. NPT states
canbe furthermore classified intomaximally entangled (ME) states and

entanglement saturation (ES) states via negativity22. Thephasediagram
of the reduced density matrix ρA (when N ! 1) shown in Fig. 2a, is
divided into three phase regions PPT (I), ME (II), and ES (III), dependent
on the ratio NA1

=NA and NA=N
22. To characterize the transition from

PPT to NPT, which occurs at NB =NA +2
19,20,22, we fix the sizes of two

subsystems as NA1
= 2 and NA2

= 4, and decrease the number of envir-
onment qubits NB from 9 to 7 by biasing the unused qubits far off-
resonant, as shown in Fig. 2b. After drawing 20 instances of pseudo-
random circuits with five layers, of which depth is enough to capture
statistical features in the simulation (see Supplementary Note. 3), the
negativity spectra of ρA for different environment sizes are illustrated
in Fig. 2d–f. The distribution of the negativity spectrum is in close
agreement with the semi-circle law18–22, i.e.,

P ξð Þ= 2LA
πa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � ξ � 1

LA

� �2
s

,∣ξ � 1
LA

∣<a, ð3Þ

where PðξÞ is the probability density of negativity spectrum and a �
2=

ffiffiffiffiffiffiffiffiffiffi
LALB

p
is the radius. Note that NA1

, NA2
and NB are chosen to satisfy

LBLA2
≫LA1

to meet the prerequisite of semi-circle law19,20,22. When
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Fig. 2 | Phase diagram and negativity spectra. a Analytical phase diagram of
reduced densitymatrix ρA whenN ! 1. Green arrow indicates a path along which
the negativity is plotted in Fig. 3a. Blue or brown arrows indicate paths along which
the negativity is plotted in Fig. 3b. b, c Cartoons of subsystems and environment.
Green, blue, and orange sectors represent subsystems A1, A2 and environment B,

respectively. d–f Negativity spectra sampled from pseudo-random circuits where
NA1

= 2, NA2
= 4 and NB = 9, 8, or 7. g–i Negativity spectra sampled from pseudo-

random circuits where NA1
= 2, NA2 = 4 and NB = 3, 2 or 1. One of the density

matrices sampled from circuits with different sizes of environment is shown in the
northeast corner of d–i.
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NB =9, the negativity spectrum contains no negative values, which
indicates that the system belongs to the PPT phase. Then we remove
one environment qubit, sample new pseudo-random circuits, and
apply them to the remaining qubits. Now the minimum of the
negativity spectrum is close to zero, which shows an expected
correspondence with the phase transition condition. Repeating the
above procedure for seven environment qubits yields the distribution
of the negativity spectrum which partly covers the negative domain,
ensuring the existence of non-zero negativity between subsystems.

The second phase transition from ES to ME occurs at
∣NA1

� NA2
∣=NB. We still keep NA1

= 2 and NA2
= 4, and lower NB from 3

to 1 to detect the phase transition. The negativity spectra drawn from
20 instances of four-layer pseudo-random circuits are shown in
Fig. 2g–i. In contrastwith thenegativity spectraobtained forNB ≥ 7, the
negativity spectrum for NB =3 has a wider distribution and the center
of the distribution is close to zero, as displayed in Fig. 2g. In Fig. 2h, we
can observe a sharp peak located at zero emerging in the distribution
of negativity spectrum with NB = 2, which is diverging for N ! 1 22.
Next, we set NB = 1 and show the distribution of negativity spectra in
Fig. 2i where we exclude some eigenvalues in the vicinity of zero (see
Supplementary Note. 4). The remaining eigenvalues are split into two
disjoint parts. The distribution of each part can be approximated by
the Marčenko-Pastur distribution22.

Figure 3a incorporates the logarithmic negativities derived
from the negativity spectra for different environment sizes. We
average the negativities over all combinations of subsystem
qubits for each sampled density matrix. We also show the nega-
tivities derived from the density matrices modified to alleviate
decoherence errors in Fig. 3, where we use truncated eigenvalue
decomposition such that the purity of the modified density
matrix is close to the mean purity of density matrices sampled
without decoherence errors (see Supplementary Note. 6). We
start from the PPT (I) phase with zero negativity, enter the ES (III)
phase at NB =8, and arrive at the ME (II) phase when NB =2. The
related path in the phase diagram can be described by the vertical
green line shown in Fig. 2a. To distinguish the ME and SE phases,
we change the ratio between the two subsystems A1 and A2, but
keep the environment invariant. Another benefit of QST is that we
can compute the negativity between any two parts of the system
without additional measurements. As a comparison to the afore-
mentioned results, we also measure the density matrices of six
system qubits without environment qubits. When NB =0, the
negativity grows linearly with the number of NA1

, which resembles
a Page curve. However, the growth of negativity is depressed and
saturated at NA1

=NA2
= 3 when considering three environment

qubits. These results can be interpreted heuristically as follows:
First, if there exists no environment B, system A is totally entan-
gled. Thus, the entanglement between two subsystems is

proportional to the size of the minimal one. Second, if subsystem
A1 is larger than A2 plus B, A2 and B will be entangled entirely to
A1. Then we can deduce that there are NA2

pairs of entangled
qubits in system A. Since the number of maximally entangled
pairs between A1 and A2 is NA2

, we call this phase the maximally
entangled phase. Third, if A1 and A2 are comparable in size and
ðNA1

+NA2
Þ>NB, environment B will be entangled with A1 and A2 in

a way where A1 and A2 have the same number of remaining qubits
to entangle with each other. Hence, the entanglement between A1

and A2 is roughly ðNA � NBÞ=2, and we call this phase the entan-
glement saturation phase. Finally, these results can be recapped
by the following formula22

EA1 :A2

D E
≈

0, NA <NB,
1
2 NA � NB

� �
+ c, NAs

< N
2 , s = 1,2 andNA >NB,

min NA1,NA2

� �
, otherwise,

8>><
>>: ð4Þ

where c= logð8=3πÞ.
Another distinctive aspect of random circuits is that the output

bit-string probabilities p xð Þ � ∣hx∣ψi∣2 approaches the Porter-Thomas
(PT) distribution, i.e., PrðLpÞ= e�Lp, with increasing depth, where ∣ψi is
the output state of a circuit and x ∈ {0, 1}N 1,2,66–68. Figure 4a illustrates
three histograms of the full output bit-string probabilities collected
from 300 pseudo-random circuit instances for nine qubits with layers
d =2, 3 and 4, where small probabilities ð<1=LÞ show more often
compared to the largeprobabilities ð>4=LÞ. Thedark solid line inFig. 4a
represents the PT distribution. It is clear that the distribution from
three-layer circuits is closest to the PT distribution. To quantify the
distance between the measured distribution and the PT distribution
over layers, we use the Kullback-Leibler divergence, defined as
DKL = S Pmeas,PPT

� �� SðPmeasÞ where SðPmeas,PPTÞ is the cross entropy
between the measured distribution Pmeas and the PT distribution PPT,
and SðPmeasÞ is the self-entropy of the measured distribution67,69.
DKLð≥0Þ is zero if and only if two distributions are identical. As shown
in Fig. 4b, DKL reaches the minimum after three layers, which verifies
the observation. Then DKL increases over layers attributed to the
decoherence errors67,69. Although the output of three-layer circuits for
nine qubits is closest to the PT distribution in experiments, we observe
that three-layer circuits are not deep enough for the negativity spectra
to converge (see Supplementary Note. 3), suggesting the states to be
not random enough, hence we implement deeper circuits in the
negativity experiments. See also Supplementary Note. 9 where we
discuss the effect of decoherence on bitstring probability
distributions.

Experiment modified

experiment modified
experiment modified

Experiment

Simulation

experiment
experiment

Fig. 3 | Averaged logarithmic negativity hEA1 :A2
i. The error bars represent stan-

dard error of the mean over circuit instances. a Fix NA1
= 2 and NA2

= 4, then
decreaseNB from9 to 1.b FixNB = 3or0 and increaseNA1

from0 to6.WhenNB =0,

the negativity approximately obeys volume law. In contrast, the negativity is
saturated from NA1

= 2 to 4 when NB = 3.
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Discussion
We investigate the negativity spectrum of pseudo-random mixed
states through QST on a fully-connected quantum processor. On
account of the flexibility of tuning qubits, we can observe two phase
transitions, from the PPT phase to the ES phase and from the ES
phase to the ME phase, by biasing specified qubits far off-resonant.
From the PPT phase to the ES phase, the distributions of negativity
spectra can be well described by the semi-circle law19,20,22. From the
ES phase to the ME phase, the distributions of negativity spectra in
experiments are more concentrated at zero than in simulations due
to decoherence errors. We also check the randomness of our circuits
over different layers by comparing the distribution of probabilities
of output bit-string with the Porter-Thomas distribution. The KL
divergence between two distributions over layers decreases from 1
to 3 and increases from 3 to 8. Decoherence errors are the main
obstructions in precisely measuring the negativity in experiments,
which mix a random density matrix with a maximally mixed state
and diminish the entanglement1,2. However, major features of
the negativity spectrum of different phases can still be captured
by our processor. Based on the pseudo-random circuit approach
proposed in this work, our processor can also be a promising
platform to study the measurement-induced phase transitions in
all-to-all circuits by inserting local measurements70,71, which can be
realized after suppressing decoherence errors of the processor in
the future.

Methods
Experimental device
As shown in Fig. 1a, the device consists of 20 transmon qubits
coupled to a central resonator busR . In our experiment, we choose
15 qubits of them labeled by Qj with j 2 f1,2,:::,15g, which can be
individually controlled by their XY lines and Z lines. The anharmo-
nicities of qubits ηj all lie within the range −260MHz <ηj=2π <
−240MHz. After arranging the idle frequency ωj of each qubit by its
Z line, we can decrease the crosstalk of XY lines between different
qubits when performing single rotation gates such as X gates to all
qubits simultaneously. In Supplementary Table 1, we list more
details of 15 qubits used in the experiment. The frequency of central
resonatorR is fixed at ωr=2π = 5.51 GHz. The full Hamiltonian of the

device can be written as (_= 1)

H =ωra
y
r ar +

X15
j = 1

ωj ∣1j
h E

1j ∣+ gj σ +
j ar +a

y
rσ

�
j

� �D i
+
X15
i< j

Jcij σ +
i σ

�
j +σ +

j σ
�
i

� �
, ð5Þ

where ar (ay
r ) denotes the annihilation (creation) operator of R, σ�

j
(σ +

j ) denotes the lowering (raising) operator of qubit Qj, gj represents
the coupling strength between qubit Qj and resonator R, and Jcij
represents the small direct coupling between Qi and Qj . By equally
detuning the frequencies of all qubits from that of R by Δ and elim-
inating the resonatormode, we can realize the interactions between all
pairs of qubits through the resonator. Now the Hamiltonian can be
written as

H =
X15
i < j

Jij σ +
i σ

�
j + σ +

j σ
�
i

� �
, ð6Þ

where Jij = J
c
ij + gigj=Δ. The effective coupling strength Jij , as shown in

Supplementary Fig. 1, can be determined in the experiment through
the single photon swapping process between Qi and Qj .

Sample from the Haar measure on SU(2)
As shown in the main text, we decompose an arbitrary SU(2) operator
into two rotations of which rotation axes both lie in the xy plane, so
that the SU(2) operator can be described by the following parameters:
1. φ, the angle between the rotation axe of the first rotation

and x axis;
2. θ, the rotation angle of the first rotation;
3. ϕ, the angle between the rotation axis of the second rotation

and x axis.

The rotation angle of the second rotation is always π. Then the
total operation can be written as

Rϕ πð ÞRφ θð Þ= � sin
θ
2
cos φ� ϕð Þ � i cosϕ cos

θ
2
σx

� i sinϕ cos
θ
2
σy � i sin

θ
2
sin φ� ϕð Þσz :

ð7Þ

Since any SU(2) operator sampled from Haar measure can be
written as32,72

cosα eiβ sinα eiγ

� sinα e�iγ cosα e�iβ

 !
= cosα cos β+ i sinα sin γ σx

+ i sinα cos γ σy + i cosα sinβσz ,

ð8Þ

where α, β and γ are taken from the intervals

0≤α ≤
π
2
,0≤β<2π,0≤ γ <2π, ð9Þ

we obtain

θ=π � 2α, ϕ=
π
2
� γ, φ=ϕ+β: ð10Þ

For each random single-qubit gate in experiments, we firstly
draw β and γ uniformly from the intervals in Eq. (9), then we draw
another parameter ξ from ½0,1� uniformly and take the angle α as
arcsin ð

ffiffiffi
ξ

p
Þ 32,72. Then we can obtain the experiment parameters θ, ϕ

andφ by substituting α, β and γ into Eq. (10). Besides, virtual Rz gates
are applied to each qubit after each frequency switch between the
idle frequency ωj and the entanglement frequency ωent.

a
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b

Fig. 4 | Histograms of output bit-string probabilities sampling from pseudo-
random circuits for nine qubits and KL divergence. a Three histograms are
sampled from two, three and four layers of circuits. Dark solid line represents the
PT distribution. b The KL divergence between the sampling distribution and the PT
distribution over layers.
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Data availability
The datasets generated in this study have been deposited in the
Zenodo repository, https://doi.org/10.5281/zenodo.7714334, and are
available from the corresponding author H.F. upon request.

Code availability
The codes for numerical simulation of pseudo-random circuits and
data analysis are available from the corresponding author H.F. upon
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