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Exceptional points (EPs) are peculiar band singularities and play a vital role in a rich array of unusual optical
phenomena and non-Hermitian band theory. In this Letter, we provide a topological classification of isolated EPs
based on homotopy theory. In particular, the classification indicates that an nth order EP in two dimensions is
fully characterized by the braid group Bn, with its eigenenergies tied up into a geometric knot along a closed
path enclosing the EP. The quantized discriminant invariant of the EP is the writhe of the knot. The knot
crossing number gives the number of bulk Fermi arcs emanating from each EP. Furthermore, we put forward
a non-Hermitian no-go theorem, which governs the possible configurations of EPs and their splitting rules on a
two-dimensional lattice and goes beyond the previous fermion doubling theorem. We present a simple algorithm
generating the non-Hermitian Hamiltonian with a prescribed knot. Our framework constitutes a systematic
topological classification of the EPs and paves the way towards exploring the intriguing phenomena related
to the enigmatic non-Hermitian band degeneracy.
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Introduction. Non-Hermitian (NH) systems are ubiquitous
in physics [1–9] as epitomized by various photonic platforms
with gain and loss [4,10–27]. One of the most remarkable
features of NH systems is that they exhibit level degener-
acy of their complex eigenenergies, called exceptional points
(EPs) [28,29]. At an EP, two or more eigenvalues and their
corresponding eigenvectors simultaneously coalesce (i.e., the
Hamiltonian is defective), giving rise to phenomena without
any analogs in the Hermitian realm. The intriguing properties
of EPs have been widely exploited, such as in unconventional
transmission or reflection [30], enhancing sensing [31–33],
single-mode lasing [34,35], and nonreciprocal phase transi-
tions [36].

EPs can be categorized into different types [37]. An EP is
of nth order or n-fold (EPn) if n eigenstates simultaneously co-
alescence, i.e., the Hamiltonian is diagonalized into an n × n
Jordan normal form. Similar to the well-known Dirac point
or Weyl point in Hermitian systems, the EP can be charac-
terized by assigning an integer invariant, such as the vorticity
of eigenvalues [38] or discriminant number [39]. Despite the
explosive theoretical and experimental research of exceptional
degeneracies during the past few years, a comprehensive
understanding of their exotic features and topological classi-
fication has been achieved yet. The characterization using a
discriminant number is far from satisfactory and incomplete.
First, EPs of different types (especially of higher order) that
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cannot smoothly evolve from one to another may have the
same integer invariant introduced before. Second, NH Hamil-
tonians generally have complex eigenenergies compared to
Hermitian systems, bringing critical differences in their topo-
logical characterizations [40–44]. Near an EP, the energy
levels may braid and tangle together, and a full description of
EPs requires the information of their nearby braiding patterns
and branch cuts, hence, they cannot be captured solely by
simple integer invariants. Moreover, the richness of the band
braiding near an EP may induce novel types of EPs previously
unidentified.

In this Letter, we formulate a homotopic classification of
EPs in arbitrary dimensional NH systems (or generic pa-
rameter space), which enables the calculation of topological
invariants using the machinery well developed in algebraic
topology. Particularly in two dimensions (2D), our main find-
ings are as follows: (i) An isolated nth order EP is fully
characterized by braid group Bn, which reduces to integer
group Z for EP2. Our classification reveals the existence
of infinitely many kinds of EPs which one to one corre-
spond to the geometry knots. (ii) We demonstrate that the
quantized vorticity (or discriminant number) and the num-
ber of bulk Fermi arcs emanating from the EP is the writhe
and crossing number of the knot, respectively. (iii) Based
on the classification, we put forward a NH no-go theorem
that goes beyond the previous fermion doubling theorem and
dictates the possible configurations of EPs and their split-
ting rules on a 2D lattice. (iv) To facilitate experimental
realizations, we show how to generate a NH Hamiltonian
hosting an EP of a prescribed knot pattern. Our framework
bridging the NH physics, algebraic topology, and knot the-
ory, manifests the beauty and diversity of EPs and opens a
broad avenue for investigating the exotic features of NH band
degeneracies.
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Homotopy classification. Let us consider an n-band NH
Hamiltonian H (k) = H (k1, k2, . . . , kd ) of the d-dimensional
(dD) system (or parameter space) and suppose an isolated
nfold EP located at k = 0. At the EP, the Hamiltonian can
be brought to the Jordan normal form (for simplicity, the
EP is set at zero energy unless otherwise noted). Deviating
from the EP, the energy levels are separated from each other.
We denote the eigenvalues and corresponding eigenvectors
of H (k) as Xn = (z1, z2, . . . , zn; ψ1, ψ2, . . . , ψn). As an iso-
lated EP in dD can be enclosed by a (d − 1)-dimensional
[(d − 1)D] sphere Sd−1. From the homotopy point of view,
classifying the band structures near the EP is to find all the
nonequivalent classes of the nonbased maps from Sd−1 to
Xn, denoted as [Sd−1, Xn]. Whereas our main focus here is
for isolated EPs, the classification scheme can be directly
extended to some other kinds of exceptional degeneracies
[45–49], such as exceptional lines in three dimensions (3D).
For generic exceptional band degeneracy of dimension dE

(dE = 0–2 corresponds to exceptional point/line/surface, re-
spectively), the topology can be revealed by taking a nearby
surface of dimension Ds = d − dE − 1 with the topological
invariants carried by the homotopy invariants [SDs , Xn].

The eigenvalue part is the configuration space of ordered
n-tuples Confn(C). As each eigenvector is unique up to multi-
plying a nonzero phase factor, the eigenvector space (denoted
as �) is � ∼= U(n)/Un(1) [49]. By further removing the re-
dundancy of permutation of eigenvalues (together with their
associated eigenvectors), we have the classifying space Xn

∼=
(Confn × �)/Sn with Sn as the symmetric group of degree n.
Using the relations π1(Confn) = PBn (pure braiding group)
[50,51] and πm(Confn) = 0 (m � 2) [52], and the long se-
quence of homotopy relations [40,41,53], we have

π1(Xn) = Bn, d = 2; (1)

π2(Xn) = Zn−1, d = 3; (2)

πd−1(Xn) = πd−1[U(n)], d � 4. (3)

For d = 2, n = 2, the homotopy group B2
∼= Z, consistent

with the previous characterization of EP2 through vortic-
ity [38] or discriminant number [39]. The above homotopy
groups are all Abelian except for d = 2, n � 3, which is the
braid group Bn. If we travel along a circle around a 2D EP,
the energy levels braid together. Equation (1) indicates that
the topology of a 2D EPn is entirely captured by such a
braiding pattern. The ordinary nondefective point degeneracy
has trivial band braidings. Equation (2) means a 3D EPn is
characterized by assigning a Chern number to each of the
separable n bands with the constraints that they sum to zero.

The nonbased map relates to the homotopy group through
the action of the fundamental group [53],

[Sd−1, Xn] ∼= πd−1(Xn)/π1(Xn). (4)

The right-hand side is the orbit set. [Sd−1, Xn] is not neces-
sarily a group and usually decomposed into several distinct
sectors, induced by the fundamental group. Whereas the non-
based homotopy can be worked out in a case-by-case manner
in 2D, [S1, Xn] is the conjugacy class of the braid group
Bn [40–42]. In fact, choosing a different starting point on

the encircling path may end up with another braid, which,
however, conjugate to the original one, hence, they are in
the same conjugacy class. In 3D, [S2, Xn] is a collection of
n integer Chern numbers. Due to the unsortability of the
complex energy levels, the two integer sets [s1, s2, . . . , sn] and
[sb1 , sb2 , . . . , sbn ] [the set induced by the band permutation of
any b ∈ π1(Xn)] are identified as the same [40,41].

Knot around EP. In the following, we focus on 2D EPs.
It turns out there is a one-to-one correspondence between
the conjugacy class of braid group Bn and geometric knot
in the solid torus [54], culminating in a knot classification
of the EPs. Different types of EPs are represented by topo-
logically distinct knots, thus, characterized by knot invariants
[42,51], e.g., Jones polynomials [55]. Intuitively, let us take a
closed path �(θ ) (θ ∈ [0, 2π ]) surrounding the EP. Along �,
the θ -dependent energy levels (z1, z2, . . . , zn) trace n strands
which tangle together in the 3D space spanned by (ReE,
ImE, θ ) as depicted in Fig. 1(a). The trajectory returns to
itself to form a closed knot during the θ evolution from 0
to 2π (θ = 0 and θ = 2π is identical). The knot topology of
a given EP is best represented using the braid word. It can
be determined by projecting the above energy-level strings
onto the Im E = 0 plane. As θ evolves, the strings undergo a
sequence of crossings. In Artin’s notation, we label a crossing
as τi (τ−1

i ) if the ith string crosses over (under) the (i + 1)th
string from the left. τi’s satisfy the braid relation: τiτ j = τ jτi

for | j − i| � 2, and τiτi+1τi = τi+1τiτi+1. The entire level set
is specified by a product of braid operators. For example, τ n

1
corresponds to twisting two-level strands n times; n = 1–3
represents unknot, Hopf link, and Trefoil knot, respectively.
We note the difference from the one-dimensional (1D) knotted
separable bands [42], here, the knots of EPs are attributed to
the nontrivial nearby braiding around the band singularities.

The knot near an EP can be regarded as the roots (or nodal
set) of the ChP. Denote z = k1 + ik2 and H (z) = H (k1, k2),
the ChP reads

f (λ, z) = det[λ − H (z)] =
n∏

j=1

(λ − z j ). (5)

The well-known complex polynomial for the (p, q)-torus knot
is f (λ, z) = λp − zq with p roots z j = zq/pei2π ( j−1)/p, ( j =
1, 2, . . . , p). By tracing a closed path around the EP, the
energy levels wind q times around a circle in the interior of
the torus and p times around its axis of rotational symmetry.
The simplest Hamiltonian realizing the (p, q)-torus knot can,
thus, be chosen as

HTp,q =

⎛
⎜⎜⎝

0 0 0 (k1 + ik2)q

1 0 0 0

0 . . .
. . . 0

0 0 1 0

⎞
⎟⎟⎠

p×p

. (6)

Figures 1(b) and 1(c) plot the band structures of EP2 asso-
ciated with T2,1 (unknot) and T2,3 (trefoil knot), respectively.
The unknot case is the most studied EP2 in the literature.

To find the Hamiltonian for an EPn with a prescribed knot
(denoted as K), we need to construct the proper ChP f (λ, z).
As λ, z ∈ C, f (λ, z) defines a mapping from C2 to C. The
energy-levels (z1, z2, . . . , zn) are the nodal sets of the ChP, and
the EPn is the isolated singularity located at (λ, z) = (0, 0).
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FIG. 1. Exceptional points (EPs) with energy-level braiding and knot topology. (a) Braid diagram marked by Artin’s braid word notation:
τi (τ−1

i ) represents the ith strand crosses over/under the (i + 1)th strand when traveling upwards. Closure of the braid by identifying the up and
bottom ends forms a knot (in this case, it is the figure-8 knot). (b)–(e) Band structures (real part) and their associated knots along a closed path
enclosing the EP (lower panels) for some representative EPs. (b) EP2 of unknot, braid word: τ1, the characteristic polynomial (ChP) is λ2 − z
with z = kx + iky; (c) EP2 of the trefoil knot, braid word: τ 3

1 , the ChP is λ2 − z3; (d) EP3 of the figure-8 knot, braid word (τ−1
1 τ2)2. The ChP for

the figure-8 knot is given by fF8 = 1/64[64λ3 − 12λa2[3(zz̄)2 + 2z2(zz̄) − 2z̄2(zz̄)] − 14a3(z2 + z̄2)(zz̄)2 − a3(z4 − z̄4)(zz̄)] with a = 1/4; (e)
EP4 of the L6a1 link, braid word: (τ−1

1 τ−1
3 τ2)2.

Mathematically, the closure of the band braiding near the EPn

is the algebraic knot around the singular point. Akbulut and
King [56] showed (albeit in a nonconstructive way) that any
knot can arise as the knot around such a singular point of a
polynomial in the context of complex hypersurfaces. As elab-
orated in Ref. [49], the desired Hamiltonian with the desired
knotted EP pattern can be intuitively constructed from the
Fourier parametrization of the associated braid diagram. Fig-
ure 1(d) depicts an EP3 with its nearby energy levels forming
a figure-8 knot, described by braid word (τ−1

1 τ2)2. Figure 1(e)
depicts an EP4 associated with the L6a1 link of braid word
(τ−1

1 τ−1
3 τ2)2. By further replacing k1,2 with sin kx,y in HK(z),

we get a 2D lattice Hamiltonian hosting the desired EPn with
K knot topology.

Bulk Fermi arc and discriminant number. A direct physical
consequence of the EP topology is the appearance of bulk
Fermi arcs [57]. For example, a pair of EPs split from a Dirac
point is connected by an open-ended Fermi arc as identified as
the isofrequency contour in photonic experiments [57]. Here
we extend this notion to generic higher-order EPs and define
the bulk Fermi arcs as the loci in the (k1, k2) space when any
two levels have the same real energy, i.e., Re[zi] = Re[z j] for
i �= j. As the EP satisfies this condition, a bulk Fermi arc must
start from an EP and end at another; The EPs are the end
points of Fermi arcs. The constraint imposed by the condition
Re[zi] = Re[z j] yields some 1D loci in the (k1, k2) space.
The bulk Fermi arcs trace open-ended curves emanating from
the EPs. From the braid representation, the bulk Fermi arc is
formed whenever there is a crossing either over or under in
the braid diagram. Hence, we have

narc = n+ + n− = c(K). (7)

Here n± denotes the number of over/under crossings, respec-
tively. c(K) is the knot crossing number. The number of Fermi
arcs narc emanating from each EP equals to c(K) associated
with the EP.

Moreover, the braid crossing dictates the discriminant in-
variant ν [39]. In its neat form, ν is the sum of band vorticity
[38] for any pair of band,

ν = − 1

2π

∑
i �= j

∮
�

∇k arg(zi − z j ) · dk. (8)

Along the closed path �, the EP knot contributes to the
vorticity through braid crossings. An over/under crossing
contributes a ±1, yielding

ν = n+ − n− = W (K), (9)

where W (K) ≡ n+ − n− is the writhe of the knot K. It is
obvious two different EPs of different braids may have the
same discriminant number, e.g., figure-8 knot and Borromean
ring (L6a4). We stress that, the full information of an EP is
encoded in its knot structure; either the bulk Fermi arc or
discriminant number is determined by the braiding and has
limited discriminant power to specify an EP.

No-go theorem. The knot classification assigns a specific
braiding pattern to a given EP. On a 2D lattice, there may
exist multiple different EPs featuring distinct braidings. So
what kind of EP configurations is allowed? It turns out the
possible EPs on a 2D lattice are governed by the following
no-go theorem:

b1b2 · · · bJ ∈ [Bn, Bn], (10)

where J is the total number of isolated EPs in the 2D Brillouin
zone (BZ) [see Fig. 2(a)], b j is the braid for the jth EP along
a small surrounding path. [Bn, Bn] = {uvu−1v−1|(u, v) ∈ Bn}
is the commutator subgroup. It is easy to check taking a
conjugate element of any bi, or switching its order in Eq. (10)
is irrelevant [58]. We can continuously expand and deform
the enclosing path to the BZ boundary as sketched in Fig. 2(a)
without passing through any singularity. The resulting over-
all band braiding b1b2 · · · bJ equals to the band braiding
cdc−1d−1 along the four edges of the BZ as the upper (left)
and lower (right) edge are identical. Specifically, if the two
neighboring braidings c, d (or two braidings along any orthog-
onal line cut of the BZ) commute, the composite braiding must
be trivial b1b2 · · · bJ = I.

The no-go theorem indicates that the braiding of the EP
inside the BZ is determined by that of the boundary. It dictates
the possible braiding configurations of the isolated EPs and
imposes strong constraints on their splittings: the no-go theo-
rem holds for all the isolated split EPs, e.g., a Dirac point splits
into two EPs of opposite charges. Note that the commutator
subgroup is the set of braids with total exponent sum zero
in the braid generator τi. According to Eq. (9), the doubling
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FIG. 2. Non-Hermitian no-go theorem on a 2D lattice. (a) Sketch
of the proof of the theorem. The jth EP ( j = 1, 2, . . . , J) is labeled
by level braiding bj along the nearby path (cyan). The paths can
be continuously deformed to the orange curves and finally to the
BZ boundary. (b) Band structure of model (11). m = 0.3. (c) EPs
and their associated Fermi arcs. The EP3 of the figure-8 knot (red
dot) at the origin connects with the four neighboring twofold EPs
(green dots) through bulk Fermi arcs (green lines). (d) Knots formed
along the red path �1 (left panel) and purple path �2 (right panel)
in (c).

theorem [39] naturally arises: The sum of the discriminant
number of all EPs vanishes. Hence, a single EP of a nonzero
discriminant invariant must be paired with another one of
opposite discriminant number.

We illustrate the no-go theorem through an explicit model,

H = HF8 + m

(
cx,y 0

1 − cx,y −cx,y

)
⊕ 01×1, (11)

with cx,y = 2 − cos kx − cos ky. Here HF8 is the 3 × 3 lattice
Hamiltonian [49] of the figure-8 EP. Without the second term,
HF8 hosts four EP3 located at (0,0), (0, π ), (π, 0), and (π, π ),
respectively. For a finite m, only the EP3 at (0,0) survives. A
typical band structure is depicted in Figs. 2(b) and 2(c) for
m = 0.3. Besides the EP3 of the figure-8 knot with the braid
word (τ−1

1 τ2)2 at the origin, four isolated twofold EPs with the
braid words τ1, τ−1

2 , τ1, and τ−1
2 , respectively, emerge nearby.

Each EP2 connects to the central EP3 through a bulk Fermi
arc. The number of Fermi arcs emanating from each EP co-
incides with the knot crossing number [see Eq. (7)]. The knot
along a closed path is shown in Fig. 2(d). If the loop is small,
enclosing only the central EP3, the energy levels close to a

figure-8 knot. In contrast, if the loop encloses all the EPs, the
knot is composed of three unlinked components (i.e., trivial
braiding) since τ−1

2 τ1(τ−1
1 τ2)2τ−1

2 τ1 = I, consistent with the
no-go theorem.

Discussions. To conclude, we have established a homo-
topy classification of isolated EPs and demonstrated that the
knots tied up by energy levels fully characterize the 2D EPs.
Based on this classification scheme, we have demonstrated
how to construct NH Hamiltonians corresponding to a given
knot. We further proposed a no-go theorem for the EPs on a
2D lattice. Our scheme elegantly relates the bulk Fermi arc,
discriminant number to the crossing number, and writhe of
the knot, respectively. It is worth mentioning that the knot
topology we presented refers to the knotted structures intrinsic
to non-Hermitian EPs from the homotopy perspective, which
should not be confused with the usual topological phase in
the presence of a well-defined chemical potential. Transitions
between different kinds of knotted EPs must be through band
touching and rearranging.

The various EP knots and their associated NH Hamilto-
nians could, in principle, be realized in platforms, such as
photonic lattice [25,59,60] or electric circuits [61–65]. For the
former, the asymmetric coupling between the ring resonators
can be implemented via auxiliary microring cavities. The
consequent bulk Fermi arcs should be extracted through reso-
nances in frequencies [57]. For the latter, the NH Hamiltonian
is simulated by the circuit Laplacian, with its band structures
given by the admittance spectra. We note that the model
Hamiltonian in Eq. (11) no-go theorem is merely chosen for
illustrative purpose of the no-go theorem and the figure-8 EP
therein requires the fine-tuning of parameters. However, the
stability of such knotted EPs can, in fact, be ensured by, e.g.,
parity time, chirality-parity, pseudo-Hermiticity, pseudochi-
rality symmetries [66,67] due to the symmetry reduction of
constraints of EPs. Under a symmetry-breaking perturbation,
the knotted EP may locally split into other types of band
singularities, however, the geometry knot formed by encir-
cling the overall band singularities after splitting remains
unchanged as dictated by the no-go theorem. The various
knotted EPs discovered here should naturally emerge as the
critical point of the nonreciprocal phase transition [36]. Be-
yond the isolated EPs considered here, more intricate line or
surface degeneracies may exist. For example, in 2D, encir-
cling the EP line yields the so-called singular knots. It would
be interesting to extend the analysis to such singular knots and
reveal their physical consequences.
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