
Universal Scaling of Klein Bottle Entropy near Conformal Critical Points

Yueshui Zhang ,1,2 Anton Hulsch,3 Hua-Chen Zhang ,3,4 Wei Tang ,5 Lei Wang,1,6 and Hong-Hao Tu 3,*

1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2University of Chinese Academy of Sciences, Beijing 100049, China

3Institut für Theoretische Physik, Technische Universität Dresden, 01062 Dresden, Germany
4Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark

5Department of Physics and Astronomy, Ghent University, Krijgslaan 281, S9, B-9000 Ghent, Belgium
6Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China

(Received 10 December 2022; accepted 22 March 2023; published 14 April 2023)

We show that the Klein bottle entropy [H.-H. Tu, Phys. Rev. Lett. 119, 261603 (2017)] for conformal
field theories perturbed by a relevant operator is a universal function of the dimensionless coupling
constant. The universal scaling of the Klein bottle entropy near criticality provides an efficient approach to
extract the scaling dimension of lattice operators via data collapse. As paradigmatic examples, we validate
the universal scaling of the Klein bottle entropy for Ising and Z3 parafermion conformal field theories with
various perturbations using numerical simulation with continuous matrix product operator approach.
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Introduction.—The study of continuous phase transitions
and critical phenomena is an evergreen topic in theoretical
physics [1–3]. As the correlation length is diverging,
systems at and near criticality are described by few
variables (e.g., order parameters) that vary slowly in space
and time. Their physical properties are insensitive to
microscopic details and exhibit universal behaviors shared
by different models. From a theoretical perspective, these
systems, in the low-energy, long-wavelength limit, are
amenable to field theory descriptions.
Given a microscopic model at or near criticality, an

important task is to pinpoint the underlying field theory
description. While this task can be tremendously diffi-
cult, various methods have been made available for one-
dimensional (1D) quantum systems and, equivalently,
two-dimensional (2D) classical statistical models. The scal-
ing limit of such systems is often described by 2D conformal
field theories (CFTs) [4–6], possibly with additional per-
turbations that are relevant, marginal, or irrelevant in the
renormalization group (RG) sense [7–10]. As a characteristic
quantity of 2DCFTs, the central charge can be read out from
the finite-size scaling of the Casimir energy [11,12] or
entanglement entropy in the ground state [13–15].
In many circumstances, the central charge is not enough

for distinguishing different CFTs and one calls for a finer
distinction. Recently, it is found that 2D CFTs defined on
the Klein bottle exhibit a universal entropy [16]. This so-
called Klein bottle entropy only depends on conformal data
(e.g., modular S matrix for rational CFTs [16–21] and the
compactification radius for compactified boson CFTs [22])
and can be efficiently computed with various numerical
methods, making it a competitive tool for characterizing 2D
CFTs in numerics (see Refs. [23–25]).

In this Letter, we extend the scope of Klein bottle entropy
from CFT to the scaling region near criticality. By con-
sidering a unitary CFT perturbed by a relevant operator, we
show that the Klein bottle entropy, denoted by KðsÞ, is a
universal function of some dimensionless coupling s. This
universal function allows us to extract the conformal weight
of the perturbation operator via data collapse. By combin-
ing analytical and numerical approaches, we calculate the
Klein bottle entropy and verify the universal scaling for
Ising and Z3 parafermion CFTs with various perturbations.
Our results clearly suggest that the Klein bottle entropy not
only locates critical points accurately, but also provides an
efficient method to compute scaling dimension of lattice
operators. For the latter purpose, the current standard
method relies on extracting exponents from large-distance
correlation functions at criticality. In contrast, our present
approach deals with off-critical systems and uses data
collapse, which is numerically less challenging and can
provide more accurate estimates.
Universal scaling function.—We consider the following

1D Hamiltonian describing a perturbed CFT on a circle of
length L:

H ¼ HCFT − vg
Z

L

0

dxφðxÞ; ð1Þ

where HCFT ¼ ð2πv=LÞ½L0 þ L̄0 − ðc=12Þ� is the CFT
Hamiltonian. Here, L0 (L̄0) is the zeroth-level holomorphic
(antiholomorphic) Virasoro generator, and c and v are the
central charge and velocity, respectively. g is the coupling
constant of the perturbation. As the velocity v in Eq. (1) is
an overall unit, we set v ¼ 1 in field theory analysis and
restore it later when analyzing lattice models. We also set
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kB ¼ ℏ ¼ 1 (kB, Boltzmann’s constant) throughout this
work. The operator φ has conformal weight ðh; h̄Þ and, for
simplicity, we assume it has a vanishing conformal spin
(i.e., h ¼ h̄). The normalization of the operator φ is fixed
by limx→∞limL→∞x4hhφð0ÞφðxÞi ¼ 1, where the expect-
ation value is taken in the vacuum of the CFT. For h < 1,
the perturbation is RG relevant and drives the system away
from criticality.
At inverse temperature β, the partition function

ZT ðL; β; gÞ ¼ trðe−βHÞ lives on a torus, and the trace
can be evaluated with the eigenstates of HCFT, denoted
by jα; γ̄i. The Klein bottle partition function ZKðL; β; gÞ ¼
trðΩe−βHÞ has an extra operatorΩ satisfyingΩ2 ¼ 1. In the
path integral picture, Ω has the intuitive meaning of gluing
the “field configurations” (before and after the imaginary-
time evolution) in a spatially inverted fashion and hence
changes the manifold from torus to Klein bottle. Rigorously
speaking, there are various choices of Ω for a self-
consistent definition of the Klein bottle partition function
[26], and we choose the one whose action on the eigenstates
ofHCFT isΩjα; γ̄i ¼ jγ; ᾱi. Formany latticemodels, one can
realize this by simply choosing spatial reflection [16–18].
We are interested in the Klein bottle entropy, defined as

the ratio of two partition functions:

Kðβ; gÞ ¼ lim
L→∞

ZKð2L; β
2
; gÞ

ZT ðL; β; gÞ : ð2Þ

At the critical point (g ¼ 0), K acquires a universal value
(i.e., independent of β and velocity v) and can be used for
distinguishing different CFTs [16–18,22]. When moving
away from criticality, it is natural to ask how the Klein
bottle entropy Kðβ; gÞ varies as a function of g and β.
In the limit L → ∞, β is the only length scale in the

theory. Since the Hamiltonian H has dimension ½β�−1 and
the operator φ has dimension ½β�−2h, dimension of the
coupling constant g is ½β�2h−2, and a dimensionless cou-
pling s ¼ gβ2−2h is hence the only parameter in the theory,
measuring the strength of the perturbation. Since the Klein
bottle entropy, Eq. (2), is also dimensionless, it must be a
universal function of the dimensionless coupling s, denoted
as KðsÞ.
The Klein bottle entropyKðsÞ being universal both at and

near criticality has immediate applications in numerical
studies: (i) It establishes a firm foundation for using the
Klein bottle entropy of the CFT to locate conformal critical
points. (ii) Using lattice operators as “probe perturbations,”
one can exploit data collapse of the Klein bottle entropy to
accurately determine conformal weights of lattice operators.
It is worth mentioning that the quantum transfer matrix

gives an alternative perspective of the universal Klein bottle
entropy. By using a “cut-and-sew” procedure [17], the
Klein bottle with size ð2L; β=2Þ is mapped to a cylinder
with length L, circumference β, and “crosscap” boundaries

(see Fig. 1). In this picture, the Klein bottle partition
function

ZK

�
2L;

β

2
; g

�
¼ hCje−LHvðβ;gÞjCi ð3Þ

is viewed as a spatial evolution generated by the quantum
transfer matrix Tðβ; gÞ≡ e−ϵHvðβ;gÞ (ϵ, short-distance cut-
off) between two crosscap boundary states, jCi and its
conjugate. For space-time symmetric theories addressed in
this work,Hv takes the same form as Eq. (1), except that the
imaginary time τ (inverse temperature β) plays the role of
the spatial coordinate x (length L). Using e−ϵEðβ;gÞ
(jψðβ; gÞi) to denote the leading eigenvalue (normalized
leading eigenvector) of Tðβ; gÞ, the evolution of the
quantum transfer matrix in Eq. (3), for L ≫ β, projects
onto the leading eigenvector of T :

ZK

�
2L;

β

2
; g

�
≃ e−Eðβ;gÞLjhCjψðβ; gÞij2: ð4Þ

We note that jψðβ; gÞi, as the ground state of Hvðβ; gÞ,
which describes the same theory as Eq. (1) but is defined on
a circle of length β, only depends on the dimensionless
coupling s ¼ gβ2−2h and can hence be written as
jψðβ; gÞi≡ jψðsÞi. Similarly, the torus partition function
is evaluated as ZT ðL; β; gÞ ¼ tr½e−LHvðβ;gÞ� ≃ e−Eðβ;gÞL for
L ≫ β. Using these results, the Klein bottle entropy,
Eq. (2), is simplified as

KðsÞ ¼ jhCjψðsÞij2; ð5Þ

which reaffirms KðsÞ is universal. For 1D quantum
Hamiltonians, the continuous matrix product operator
(cMPO) method [27] provides an efficient way to compute
the Klein bottle entropy via Eq. (5).
Although the Klein bottle entropy being universal has

very promising prospects, the calculation of its full ana-
lytical form is quite challenging. Nevertheless, there are at

FIG. 1. Klein bottle partition function ZK½2L; ðβ=2Þ; g� formu-
lated on a cylinder with length L, circumference β, and crosscap
boundaries. The (light red) thin ribbon represents the quantum
transfer matrix Tðβ; gÞ generating evolution along the spatial
direction.
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least two routes to proceed: (i) Treat the φ term in Eq. (1)
perturbatively and develop the perturbation theory based on
Eq. (3). This effectively generates a series expansion
KðsÞ ¼ P∞

n¼0 Knsn, where K0 is just the Klein bottle
entropy of the CFT, and higher-order coefficients Kn>0
are obtained order by order in the perturbation theory.
However, one has to be cautious about the possible non-
analyticity of KðsÞ at s ¼ 0, which might cause divergen-
ces in the perturbative expansion. (ii) For integrable field
theories, the overlap between Bethe vectors and the cross-
cap boundary state, which gives the Klein bottle entropy via
Eq. (5), might be calculable [28–31].
Perturbed Ising CFT.—As a concrete example, we

consider the perturbed Ising CFT:

H ¼ HIsing − g1

Z
L

0

dx εðxÞ − g2

Z
L

0

dx σðxÞ; ð6Þ

where HIsing is the Hamiltonian of the Ising CFT with
central charge c ¼ 1=2 and velocity v ¼ 1. ε and σ are
primary fields of the Ising CFT with conformal weight
ð1=2; 1=2Þ and ð1=16; 1=16Þ, respectively. This field theory
is known to describe the scaling limit of the 2D classical
Ising model [9,32], where ε (σ) corresponds to thermal
(magnetic) perturbation. For g2 ¼ 0, the field theory,
Eq. (6), can also be formulated with a free Majorana
fermion, where the ε term becomes the mass of the
Majorana fermion. This allows us to derive an exact
expression for the Klein bottle entropy [33],

Kðs1Þ ¼ 1þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2πs1

p ; ð7Þ

with dimensionless coupling s1 ¼ g1β. At the critical point
(s1 ¼ 0), Kð0Þ ¼ 1þ ð ffiffiffi

2
p

=2Þ restores the Klein bottle
entropy of the Ising CFT [16]. In two limits (s1 → −∞
and þ∞), Kð−∞Þ ¼ 2 ðKðþ∞Þ ¼ 1Þ reflects the twofold
degenerate (unique) ground state in the Ising ordered
(disordered) phase. For g1 ¼ 0, we are unable to derive
an analytical expression for the Klein bottle entropy Kðs2Þ
(dimensionless coupling: s2 ¼ g2β15=8) and have to resort
to numerical approaches.
For numerical simulations, we consider the following 1D

quantum Ising chain with both transverse and longitudinal
fields:

H ¼ −
XN
j¼1

σxjσ
x
jþ1 − h1

XN
j¼1

σzj − h2
XN
j¼1

σxj ; ð8Þ

where σαj (α ¼ x, z) are Pauli spin operators at site j, N is
the total number of sites, and periodic boundary condition
(σαNþj ¼ σαj ) is imposed. The Ising CFT is realized at
h1 ¼ 1 and h2 ¼ 0 with velocity v ¼ 2 (lattice spacing
set to unity here and hereafter). The Klein bottle partition

function on the lattice is defined by ZK ¼ trðPe−βHÞ, where
P is the spatial reflection operator whose action on the Ising
spin basis is given by Pjσ1; σ2;…; σNi ¼ jσN;…; σ2; σ1i
with σj ¼ �1.
To compare lattice and field theory results, one should

take into account the velocity as well as the normalization
of perturbation operators on the lattice. Similar to the field
theory prescription, the normalization of operators is
obtained from two-point correlators in the critical ground
state: N ε ¼ limr→∞limN→∞r2hσzjσzjþric ¼ 1=π2 and N σ ¼
limr→∞limN→∞r1=4hσxjσxjþric ≈ 0.645 [36], where h� � �ic
denotes connected correlators with local expectation values
subtracted. Taking into account the velocity, dimensionless
couplings for the lattice model [Eq. (8)] are given by
s1 ¼ ð

ffiffiffiffiffiffiffi
N ε

p
=vÞðh1 − 1Þvβ and s2 ¼ ð

ffiffiffiffiffiffiffi
N σ

p
=vÞh2ðvβÞ15=8.

However, if one simply aims at determining conformal
weights from the universal scaling (rather than quantitative
comparison with field theory calculations), it suffices to
use, e.g., s̃1 ¼ ðh1 − 1Þβ and s̃2 ¼ h2β15=8 without the
extra rescaling.
We calculate the Klein bottle entropy numerically for the

quantum Ising chain in Eq. (8), using the cMPOmethod [27]
and plot the results in Fig. 2. For the case of thermal
perturbation, numerical data shown in Fig. 2(a) agree very
well with the analytical result in Eq. (7), which confirms the
universality ofKðs1Þ. For the case of magnetic perturbation,
the data collapse is also excellent [see Fig. 2(b)] and the
fitting Kðs2Þ ¼ Kð0Þ þ Ajs2jα near s2 ¼ 0 yields α ≈ 1.95
and A ≈ −3.54 [inset of Fig. 2(b)]. The exact value for α is
expected to be 2, which is the second-order term in the series
expansion of Kðs2Þ. The field theory calculation of the
(universal) coefficient A is an interesting task for a future
work. When both thermal and magnetic perturbations are

(a) (b)

FIG. 2. Klein bottle entropy for the Ising CFT with (a) thermal
and (b) magnetic perturbations. The numerical data are obtained
from the cMPO calculation (bond dimension χ ¼ 20) with the
quantum Ising chain, Eq. (8). The field theory result for Kðs1Þ
[Eq. (7)] is shown as the solid line in (a). Horizontal and vertical
dashed lines indicate the critical point and the Klein bottle
entropy of the Ising CFT, respectively. Left inset of (b):
Enlargement near s2 ¼ 0. Right inset of (b): Fitting the data
near s2 ¼ 0 with ΔKðs2Þ ¼ Kðs2Þ − Kð0Þ ≈ Ajs2jα.
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present, we have numerically calculated Kðs1; s2Þ and also
observed excellent data collapse (not shown).
Perturbed Z3 parafermion CFT.—As the second exam-

ple, we consider the perturbed Z3 parafermion CFT:

H ¼ HParafermion − g
Z

L

0

dx εðxÞ; ð9Þ

where HParafermion is the Hamiltonian of the Z3 parafermion
CFT with central charge c ¼ 4=5. The torus partition
function of the Z3 parafermion CFT is the nondiagonal
modular invariant of the Mð6; 5Þ minimal model [5]. The
field theory, Eq. (9), describes the scaling limit of the 2D
classical three-state Potts model, where the operator ε is a
primary field of the Mð6; 5Þ minimal model with con-
formal weight ð2=5; 2=5Þ and corresponds to the thermal
perturbation. Different from the Ising case, Z3 parafermion
CFT is an interacting theory without free-field representa-
tion. In the presence of thermal perturbation, the Klein
bottle entropy is difficult to calculate directly from the field
theory.
Here, we consider the lattice realization of Eq. (9) in the

three-state quantum clock chain

H ¼ −
XN
j¼1

ðσ†jσjþ1 þ σ†jþ1σjÞ − h3
XN
j¼1

ðτj þ τ†jÞ; ð10Þ

where

σ ¼

0
B@

0 1 0

0 0 1

1 0 0

1
CA; τ ¼

0
B@

1 0 0

0 e2πi=3 0

0 0 e4πi=3

1
CA ð11Þ

are Z3 spin matrices. The Z3 parafermion CFT describes
the critical point of Eq. (10) at h3 ¼ 1, and the velocity is
v ¼ ð3 ffiffiffi

3
p

=2Þ [37]. The normalization of the perturba-
tion operator is obtained by numerically calculating the
correlator at the critical point using the variational uni-
form matrix product state method [38,39]: N ε¼ limr→∞
limN→∞r8=5hðτ†jþτjÞðτ†jþrþτjþrÞic≈0.315. Taking into
account the velocity and the normalization of the perturba-
tion operator, the dimensionless coupling s for the lattice
model [Eq. (10)] is defined as s¼ð

ffiffiffiffiffiffiffi
N ε

p
=vÞðh3−1ÞðvβÞ6=5.

The Klein bottle entropy for the three-state quantum
clock chain, Eq. (10), has been calculated using the cMPO
method and the results are shown in Fig. 3. The data
collapse for different β is again observed. The numerical
result at the critical point (s ¼ 0) agrees very well with the
expected Klein bottle entropy of the Z3 parafermion CFT,

Kð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 6=

ffiffiffi
5

pq
[17]. In two limits (s → −∞ and

þ∞), Kð−∞Þ ¼ 3 (Kðþ∞Þ ¼ 1) indicates the threefold
degenerate (unique) ground state in the Z3 symmetry
breaking (disordered) phase.

The analytical and numerical results for perturbed Ising
and Z3 parafermion CFTs give some hints on possible
general features of the Klein bottle entropy. The CFT under
a relevant perturbation (with dimensionless coupling s)
separates two off-critical phases, denoted by A (s < 0) and
B (s > 0). There are two typical scenarios: (i) phase A (B)
has a broken (an unbroken) discrete symmetry with (with-
out) ground-state degeneracy. The Klein bottle entropy
Kð−∞Þ (an integer greater than one) equals the number of
degenerate ground states in phase A, while Kðþ∞Þ ¼ 1

signals a unique ground state in phase B. In this case, we
conjecture that KðsÞ monotonically decreases from Kð−∞Þ
to 1 as s increases from −∞ to þ∞. (ii) If neither phase A
nor B spontaneously breaks a symmetry, the ground state is
unique in both phases, indicated by the Klein bottle entropy
Kð�∞Þ ¼ 1. In this situation, we conjecture that KðsÞ
achieves its maximum at the critical point s ¼ 0 and
monotonically decreases as s increases (decreases) from
zero to þ∞ (−∞). In addition to the present work (as well
as numerical evidences in Refs. [18,23]), rigorous results
[28] obtained from certain integrable field theories (stair-
case model [40] and its generalization) also support these
conjectures.
Discussion.—In summary, we have shown that for

conformal critical points perturbed by a relevant operator,
the Klein bottle entropy KðsÞ is a universal function of the
dimensionless coupling constant s. This allows us to devise
an efficient method to determine the conformal weight of
perturbation operators via data collapse. The analytic and
numerical results of Ising and Z3 parafermion CFTs with
various perturbations illustrate an excellent agreement with
the prediction.

FIG. 3. The Klein bottle entropy KðsÞ as a function of the
dimensionless coupling s for the three-state quantum clock chain
near criticality. The numerical data are obtained with the cMPO
approach (bond dimension χ ¼ 24) for different β (shown in
legend). The critical point and the Klein bottle entropy of the Z3

parafermion CFT are indicated by horizontal and vertical dashed
lines, respectively.
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The universal scaling of the Klein bottle entropy has
opened a new venue in the study of 2D field theories. To
proceed, a plausible direction is to develop methods for
computing the universal scaling function KðsÞ. For in-
stance, it should be possible to establish a conformal
perturbation theory to calculate the leading-order terms
in the series expansion of KðsÞ. The exact form of KðsÞ
might also be extracted for some integrable field theories or
spin chains [28–31].
For future works, it would be interesting to study, both

perturbatively and nonperturbatively, under which condi-
tions KðsÞ decreases or increases monotonically. The
answer to this question might uncover a deep relation
between the Klein bottle entropy and the bulk RG flow,
analogous to Zamolodchikov’s c theorem [41]. Apart from
the relevant perturbations considered in this work, it is
desirable to study the effect of marginal perturbations on
the Klein bottle entropy, too. Needless to say, it would be
fruitful if a suitable generalization of the Klein bottle
entropy could be found in higher dimensions. As a
higher-dimensional CFT perturbed by a relevant operator
is also controlled by the dimensionless coupling, a dimen-
sionless entropy, possibly arising on certain closed mani-
fold, would be a universal function of the dimensionless
coupling and can characterize the critical theory.
Considering the wide adoption of an alternative dimension-
less ratio, the Binder cumulant of order parameters, in the
study of critical phenomena [42], we believe further
exploration of Klein bottle entropy will be fruitful.
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