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Identifying the intrinsic anti-site defect in 
manganese-rich NASICON-type cathodes

Yuan Liu1,2,9, Xiaohui Rong    1,2,3,9, Rui Bai1, Ruijuan Xiao1, Chunliu Xu1, 
Chu Zhang1, Juping Xu4,5, Wen Yin4,5, Qinghua Zhang1,3, Xinmiao Liang6, 
Yaxiang Lu    1,7, Junmei Zhao    8  , Liquan Chen1 & Yong-Sheng Hu    1,2,3,7 

Manganese-rich NASICON-type materials have triggered widespread 
attention for developing advanced polyanionic cathodes, primarily driven 
by their abundant reserves and promising cycling performance with high 
operating voltages (~3.8 V for Mn2+/3+/4+, versus Na+/Na). However, the 
charge/discharge profiles exhibit significant voltage hysteresis, which 
leads to a limited reversible capacity, thereby preventing their application. 
Here, we demonstrate that the voltage hysteresis in manganese-rich 
NASICON-type cathodes (Na3MnTi(PO4)3) is closely related to the intrinsic 
anti-site defect (IASD), which forms during synthesis and is captured in our 
characterizations. Combining electrochemical analysis and spectroscopic 
techniques, we draw a comprehensive picture of sluggish Na+ diffusion 
behaviours in the IASD-affected structure during cycling, and rationalize 
the relationship of voltage hysteresis, phase separation and delayed 
charge compensation. Furthermore, a Mo-doping strategy is developed to 
decrease the defect concentration, which enhances the initial Coulombic 
efficiency from 76.2% to 85.9%. Overall, this work sheds light on the voltage 
hysteresis in NASICON-type cathodes and provides guidelines for designing 
high-performance polyanionic electrodes.

Electrical energy storage provides a well-established approach for 
integrating intermittent low-carbon energy sources1. Polyanionic-type 
Na-ion battery cathode materials are expected to meet the expanding 
demands for large-scale applications, due to their long-term stability, 
high safety and sustainable reserves, in addition to the abundance 
and low cost of sodium2,3. As a cost-effective choice, manganese-rich 
NASICON-type cathodes (such as Na3MnTi(PO4)3 and Na3MnZr(PO4)3) 
have been proposed4 and synthesized5,6 recently, and exhibit a theo-
retical specific capacity of ~117 mAh g−1 with high operating voltages 
(~3.6 V for Mn2+/3+ and ~4.0 V for Mn3+/4+ versus Na+/Na). Unfortunately, 

capacity loss and voltage hysteresis seriously deteriorate the reversible 
capability, and the mechanism of failure remains unclear.

Manganese-rich NASICON-type materials with three-dimensional 
(3D) Na+ diffusion channels7,8 normally exhibit voltage hysteresis in the 
charge/discharge profiles6,9,10, which is usually attributed to the low 
conductivity of polyanionic compounds. Although numerous delicate 
conductive networks have been designed to diminish the hysteresis, 
the voltage polarization is still present11,12. Recently, Yang et al.13,14 found 
that the voltage hysteresis in Na3VCr(PO4)3 is caused by the migration 
of high-valence V5+ to the Na1 site (the Wyckoff position is 6b), which 
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understanding failure mechanisms in a broader range of NASICON-type 
cathodes and provide an avenue for developing low-cost and 
high-energy-density batteries.

Capturing the Mn/Na2_v IASD in Na3MnTi(PO4)3
Given that the composition of transition metal sites can directly control 
the reversible capacity of Mn2+/3+/4+ redox pairs in Na3MnTi(PO4)3 
(denoted as NMTP), the element doping strategy (Al3+, Cr3+, Mo6+) was 
employed to adjust the charge/discharge behaviours (Supplementary 
Fig. 1) via the sol–gel synthesis method. To our surprise, only 5% Mo 
doping (Na2.9MnTi0.95Mo0.05(PO4)3, denoted as NMTP-M) can increase 
the reversible capacity from 82.1 mAh g−1 to 103.7 mAh g−1 at 2.5–4.2 V 
(Supplementary Fig. 2) and eliminate the voltage hysteresis at the same 
time. First, the structure and morphology of as-prepared NMTP and 
NMTP-M samples have been characterized to confirm the high quality 
of the samples. As shown in Supplementary Figs. 3 and 4, the NMTP 
and NMTP-M are indexed to the rhombohedral R ̄3C  space group12,16, 
and the small amount of Mo in NMTP-M is evenly distributed. Addition-
ally, impurities will occur when the doping amount further increases 
to 0.1 (Supplementary Figs. 5 and 6). The particles of as-prepared  
materials are nanosized, ranging from 100 to 500 nm, and coated with 
amorphous carbon (Supplementary Figs. 7–10). According to the  
combustion analyser, the carbon content of NMTP and NMTP-M was 
calculated as 6.43 wt% and 6.77 wt%, respectively, which was also  
supported by the thermogravimetric (TG) analysis results (Supple-
mentary Fig. 11)10.

leads to detrimental structural degradation during cycling, and it can 
be eliminated at low temperatures due to the inhibition of V5+ migra-
tion. This mechanism was also employed to explain the significant 
initial capacity loss of Na3MnTi(PO4)3 (ref. 15). However, Na3MnTi(PO4)3 
displays different cycling performance, with significant capacity loss 
after the initial cycle and outstanding reversibility for the following 
cycles11,15. The above findings imply that different mechanisms (other 
than that based on the migration of transition metal to alkali sites) 
might be at play.

Herein we define two types of defects in polyanionic materials 
to distinguish such different behaviours: derivative anti-site defects 
(DASDs) generated during the charge/discharge process and intrinsic  
anti-site defects (IASDs) produced during the synthesis process  
(Fig. 1a–j). Through spectroscopic, structural and theoretical studies, 
we reveal that the voltage hysteresis is caused by IASDs of Mn occu
pation in the Na2 (the Wyckoff position is 18e) vacancy (Mn/Na2_v) 
in a manganese-rich NASICON-type material (Na3MnTi(PO4)3). The  
Mn/Na2_v IASD blocks Na+ diffusion channels and hampers the redox 
reaction of Mn2+/3+/4+, resulting in voltage polarization and capacity  
loss. Therefore, we explore a practical strategy to overcome such  
voltage hysteresis via doping Mo in the transition metal site to  
increase the formation energy of the IASD so as to lower the defect 
concentration. As a result, the reversible specific capacity of Mo-doped 
Na3MnTi(PO4)3 increased from 82.1 mAh g−1 to 103.7 mAh g−1 at 0.1C, 
and retained 78.7% of the initial capacity after 600 cycles at 0.5C 
within the voltage range 2.5–4.2 V. These results have implications for 
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Fig. 1 | The differences between derivative anti-site defect and intrinsic 
anti-site defect. b,d,h,j, Voltage profiles of Na3VCr(PO4)3 (left panels) and 
Na3MnTi(PO4)3 (right panels) at 0.1C (1C = 117 mAh g−1) at room temperature 
(b,h) and 0 °C (d,j), respectively. Schematics of the crystal structure are shown 
on the side. a, There are two Wyckoff positions of Na atoms, 6b (denoted by Na1) 
and 18e (denoted by Na2). The atoms are orderly arranged within the pristine 
Na3VCr(PO4)3. b–e, After cycling (b), the DASD was generated during desodiation, 
where V5+ migrated to the Na1_vacancy (denoted by V5+ to Na1_v) (c), and voltage 
hysteresis was induced. However, a significant migration barrier of V5+ (e) hinders 

the above process at a low temperature, so the voltage hysteresis disappears (d). 
f–j, Mn occupation in Na2_vacancy (denoted by Mn/Na2_v) (f) during synthesis 
resulted in the formation of the IASD, and the structure is unchanged in the 
following cycles (f,g,i). RT, room temperature. Therefore, a notable capacity loss 
is only shown on the initial cycle (h), and it is even worse at a low temperature (j). 
Data in b and d were collected using Digitizer (OriginLab). Panels adapted  
with permission from: b, ref. 14, American Chemical Society; d, ref. 13, John Wiley 
and Sons.
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Despite similar phases and morphologies for the two materials, 
drastically different electrochemical behaviours are shown in the 
voltage profiles. Notably, these provide the opportunity to accurately 
capture the location of voltage hysteresis and benefit the interpretation 
of the failure mechanism afterwards. As illustrated in Fig. 2, the galva-
nostatic charge/discharge curves of NMTP and NMTP-M vary in the 
regions shown in A–C. For NMTP, the capacity within the range 3–3.8 V 
is only 22.3 mAh g−1, and the voltage suddenly rises with a plateau  
appearing at ~4.0 V (region A), which means a higher charging voltage 
is needed to fully realize the Mn2+/3+ oxidation reaction. Even so, only  
1.8 Na+ of NMTP can be extracted at the 4.2 V cutoff, as shown in  
region B. Similarly, the discharge capacity is only 80.0 mAh g−1 at the 
2.5 V cutoff, and an additional 2.4 V plateau presents upon further 
discharge (region C). In contrast, the voltage polarization and capacity 
loss are alleviated in NMTP-M. Furthermore, the two plateaus in regions 
A and C are widely present in manganese-rich NASICON-type cathodes 
and can be defined as characteristic curves of voltage hysteresis6,9.

To reveal the failure mechanism, the atomically resolved crystal 
structure was characterized. High-angle annular dark-field (HAADF) 
images of the as-prepared materials were collected to directly identify 
the structural differences at atomic resolution. Figure 3a,b shows 
HAADF-scanning transmission electron microscopy (STEM) images of 
NMTP and NMTP-M along the [2 ̄21] direction, respectively, and the 
corresponding structure models are shown in Supplementary Fig. 12. 
HAADF images were obtained using the Z-contrast imaging technique; 
thus, the bright spots correspond to the Mn/Ti atomic columns in the 
octahedral 12c sites, and the grey spots correspond to Na sites. There 
are two crystallographic Na sites, denoted as Na1 and Na2 (ref. 17); 
however, the grey spots of Na sites are easily disturbed by noise signals. 
To address this issue, grayscale statistics at Na sites were conducted. 
The grey-level histograms of Na1 (Fig. 3c) and Na2+P (Fig. 3d) sites  
were collected in normalized HADDF-STEM images (Fig. 3a,b), where 
the higher brightness and wider distribution of Na2+P sites in NMTP 

indicate that transition metal ions are located in the Na2 atomic  
columns. Furthermore, the Gaussian fitting based on least-squares 
minimization has been used to reveal the atomic columns information 
due to the noise following a normal distribution18–20. As shown in  
Supplementary Fig. 13a,b, the IASD-affected Na2+P atomic columns 
with a higher Z-contrast can be directly captured in the NMTP sample 
(details in Supplementary Note 1).

Then, ab initio density functional theory (DFT) calculations were 
implemented to reveal the type of transition metal ions occupying 
the Na vacancies. The crystal structure of NMTP is built on the 3D 
matrix of angle-sharing [MnO6]/[TiO6] octahedra and [PO4] tetrahedra. 
There are 18 Na+ ions for 24 sites; thus, incompletely occupied Na1 
and Na2 sites provide vacancies for disordered transition metal ions. 
All configurations in the primary cell (Mn/Na1_v, Mn/Na2_v, Ti/Na1_v,  
Ti/Na2_v) were taken into consideration to rationalize the anti-site 
defect model21, and the formation energies of IASD are collected in  
Fig. 3e. Schematic diagrams of the lowest energy structure correspond-
ing to every IASD species are displayed in the figure. It can be found 
that the O sites are distorted after the Ti occupies the Na site, and the  
Ti/Na_v shows higher formation energy (1.00, 0.85 eV/primary cell for 
Ti/Na1_v and Ti/Na2_v, respectively). Therefore, the transition metal  
in Na2_v can be attributed to Mn. As was captured in HADDF-STEM 
images, the formation energy of the Mn/Na2_V IASD is the lowest, which 
is 0.61 eV. Meanwhile, the mechanism of the Mo-doping strategy can also 
be revealed by DFT calculations. The unit cell was expanded threefold to 
approximate the low Mo-doping amount, and then the defect-free and 
Mn/Na2_v IASD structures of the Mo-doped materials were established 
(Supplementary Fig. 14a,b). Excitingly, the formation energy of the  
Mn/Na2_v IASD rises to 0.96 eV after Mo doping, which is 57.4% higher 
than that of the undoped sample. This finding reveals that the con-
centration of IASDs can be directly controlled by adjusting formation 
energies, and rationalizes the Mo-doping strategy. Furthermore, the 
Rietveld refinement profiles of neutron powder diffraction (NPD)  
patterns were performed to quantify the concentration of Mn/Na2_v 
IASD (Fig. 3f,g, Supplementary Fig. 15 and Supplementary Tables 1–3). 
As shown in Fig. 3f and Supplementary Table 1, the site occupancy 
factor of Mn/Na2_v IASD in pristine NMTP is as high as 4.99%. In con-
trast, the concentration drops precipitously to 0.51% in the NMTP-M, 
benefiting from the higher defect formation energy of the Mo-doped 
structure (Fig. 3g and Supplementary Table 2). On the basis of the 
above finding, we provide solid evidence of the Mn/Na2_v IASD in the 
NMTP pristine material.

Structural evolution and charge compensation 
during cycling
Previous studies indicated that the migration channel around the 
Na2 site is the rate-determining step, with a higher diffusion barrier 
in the NASICON-type structure22,23. Accordingly, the Mn/Na2_v IASD 
will directly increase the Na+ diffusion barrier due to the blocked  
pathway, and inhibit the intercalation and de-intercalation processes. 
As mentioned in Fig. 2, significant voltage hysteresis can be captured 
in regions A (4.0 V charging voltage) and C (2.4 V discharging voltage). 
Thus, it is essential to depict the whole picture of structural evolution 
and charge compensation in these two plateaus, and clarify the role of 
Mn/Na2_v IASD in voltage hysteresis.

Operando X-ray diffraction, ex situ X-ray absorption spectroscopy 
(XAS) and galvanostatic intermittent titration technique (GITT) charac
terization were used to reveal the structural evolution and charge com-
pensation. As shown in Fig. 4a, different phase transition behaviours of 
the NMTP and NMTP-M are illustrated by the operando X-ray diffraction 
patterns. The reflection peaks of the (003) plane during the charging 
process are ~35.4°, ~36.6° and ~37.7°, corresponding to Na3, Na2 and Na1 
phases, respectively (Supplementary Figs. 16 and 17)24. For NMTP, the 
Na3 and Na2 phases coexist in the 4.0 V charging plateau, and the Na3 
phase disappears slowly until the voltage rises to 4.05 V, which means 
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a delayed Na3→Na2 reaction occurs during charging. Similarly, the 
insertion reaction of the Na2 phase to the Na3 phase in NMTP cannot be 
fully completed at the 2.5 V cutoff voltage. As a result, the (003) peak of 
NMTP at 2.5 V is 35.5°, higher than the 35.4° of pristine material, which 
indicates the extracted Na sites are not fully embedded (Fig. 4b). Until 
discharge to 2.2 V, the Na2→Na3 reaction of NMTP can be achieved with 
the (003) peak shifted back to the pristine position. In sharp contrast, 
the NMTP-M shows a smooth phase transition behaviour without the 
separation of the Na3→Na2 reaction. Based on the above finding, we 
can find that the Na3→Na2 reaction of NMTP separates into the two 
step processes of Na3→Na2 and delayed Na3→Na2 reaction, and phase 
separation occurs (Supplementary Figs. 18 and 19). Therefore, we 
can speculate that a sluggish Na+ diffusion pathway around the IASD 
leads the Na2↔Na3 reaction in the IASD-affected domain out of the 
thermodynamic equilibrium potential. Of course, evidence of phase 
transition in NMTP and NMTP-M is not enough; the thermodynamic 
equilibrium potential and redox pairs in the voltage hysteresis plateau 
should also be confirmed.

The thermodynamic equilibrium potential can be measured 
using the GITT characterization technique. GITT measurements were  
conducted after the third cycle of 0.1C cycling (versus Na+/Na) with a 
titration step at 0.1C of 15 min and a relaxation step of 2 h. As shown  
in Fig. 4c, the GITT profiles of NMTP illustrate that the open-circuit  
voltage of the additional 4.0 V plateaus back to 3.63 V after fully relaxing 
(corresponding to the Mn2+/3+ oxidation reaction). It turned out that  
the thermodynamic equilibrium potential of the delayed Na3→Na2  
reaction is unchanged. Figure 4d shows the overpotential of 
as-prepared materials, and the polarization voltage of NMTP is as 
high as 0.33 V during charging. Meanwhile, the overpotential of NMTP 
is higher than NMTP-M during the whole Mn2+/3+/4+ redox process and 
shows voltage hysteresis. On the basis of the above findings, we deduce 
that the voltage hysteresis is caused by the high diffusion barrier  
around the IASD-affected domains. Furthermore, the calculated  
Na+ diffusion coefficients share a similar phenomenon, in which the 
diffusion coefficient of NMTP-M during the Mn2+/3+/4+ redox reaction 
has been significantly improved (Supplementary Figs. 20 and 21).
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To determine the charge compensation processes of the 
as-prepared materials, the total electron yield mode of ex situ soft XAS 
was obtained. The Mn L edge XAS spectra of the two materials were col-
lected in pristine, 3.8 V charged, 2.5 V discharged and 2.2 V discharged 
states (Fig. 4e,f)25,26. As shown in Fig. 4e, NMTP and NMTP-M have an 
Mn2+ initial state that is also supported by Mn K edge XAS (Supple
mentary Figs. 22 and 23). Note that the absorption spectra differ at 3.8 V 
charged. NMTP clearly shows a low-energy peak (~642.9 eV) belonging 
to Mn2+ at the left of the Mn3+ absorption peak (~644.0 eV). However, 
a single absorption peak (~644.0 eV) dominated by Mn3+ presents in 
NMTP-M. This result reveals that the oxidation reaction of the Mn2+/3+ 
redox pair in the NMTP structure cannot be fully carried out at the 3.8 V 
cutoff (Supplementary Fig. 24). Similarly, the Mn L edge XAS spectra at 
2.5 V and 2.2 V discharged states demonstrate that the charge compen-
sation of Mn3+ in the NMTP structure is inadequate at the 2.5 V cutoff 
(Fig. 4f), which is consistently confirmed by the Mn K edge XAS (Sup-
plementary Fig. 22a,b). Finally, X-ray photoelectron spectroscopy (XPS) 
spectra results demonstrate that Mo in NMTP-M is hexavalent during 
cycling (Supplementary Fig. 25)27. As a result, in agreement with the 
findings of operando X-ray diffraction and GITT, the charge compen-
sation result also demonstrates that the voltage hysteresis behaviour 
during charge/discharge is caused by a sluggish kinetic process around 
the Mn/Na2_v IASD rather than a different thermodynamic process.

In the voltage hysteresis plateau of NMTP (such as the addi-
tional 4.0 V plateau), the evolution of phase (Na3→Na2) and valence 
(Mn2+→Mn3+), even the thermodynamic equilibrium potential, coin-
cides with that of the material without IASD. Therefore, we can deduce 

that the voltage hysteresis is caused by the inhibited kinetic process 
around IASD-affected domains. On the basis of the above finding, we 
summarize the phase transition and charge compensation processes 
of NMTP with colour-coded squares, and provide a comprehensive 
picture in Fig. 5 to illustrate the origin of voltage hysteresis affected 
by the Mn/Na2_v IASD. The x = 3 of NaxMnTi(PO4)3 is defined as the 
initial state (Na3 phase), and the IASD-affected domains are marked by 
red squares. When the charging voltage rises to 3.8 V, the unaffected 
domain is transformed from the Na3 phase to the Na2 phase. However, 
the IASD-affected domain maintains the Na3 phase due to the Na+ dif-
fusion barrier. Therefore, the Na2 and Na3 phases coexist in the addi-
tional 4.0 V plateau during further charging, and the XAS results reveal 
a delayed Mn2+/3+ reaction. Then, delayed Mn2+/3+→Mn3+/4+→delayed 
Mn3+/4+ takes place in a sequence. As mentioned in Fig. 2 (region B), 
the delayed Mn3+/4+ cannot be fully achieved at 4.2 V cutoff, and only  
1.8 Na+ can be extracted. So, the capacity corresponding to the delayed 
Mn3+/4+ reaction is less than for the delayed Mn2+/3+ reaction. It should 
be noted that the discharging reactions are not symmetrically distri
buted. As shown in Supplementary Fig. 26a–c, the capacity corres
ponding to the delayed Mn3+/4+ reaction disappears when the NMTP 
cathode cycles within the voltage range 2.5–4.2 V, which means  
the delayed Mn3+/4+ reaction is achieved under the additional 2.4 V 
plateau during discharge. Therefore, the reactions during discharge 
are Mn3+/4+→Mn2+/3+→delayed Mn2+/3+/4+.

Furthermore, we reveal the insertion/extraction behaviours  
of the subsequent cycles in the IASD-affected domain. Supplementary 
Fig. 26a,c shows charging voltage profiles of the first five cycles of 
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NMTP between 2.5 and 4.2 V. It can be found that the capacity of the 
delayed Mn2+/3+/4+ reaction in NMTP significantly decreases, and exhibits 
a limited reversible capacity with good cycle stability. Here, the capacity 
loss and the diminishing voltage hysteresis of the following cycles indi-
cate that the Na+ sites in the IASD-affected domains are not embedded 
at 2.5 V cutoff. More importantly, the overlapping charging curve of 
two to five cycles demonstrates that the IASDs in the NMTP structure 
are unchanged, and no more IASDs are generated during cycling. The 
schematics for these findings are illustrated in Supplementary Fig. 26d.

Electrochemical performance
To evaluate the excellent electrochemical performance of the 
Mo-doping materials, we constructed half-cells with NMTP and 
NMTP-M as cathodes, and all tests were performed at room tempera-
ture. The voltage profiles of NMTP and NMTP-M at different current 
rates (0.1C, 0.2C, 0.5C, 1C, 2C and 5C, where 1C is defined as 117 mAh g−1) 
are shown in Fig. 6a,b, respectively. Surprisingly, NMTP-M exhibits 
a reversible capacity of 103.7 mAh g−1 at 0.1C, which is much higher 
than that of NMTP (82.1 mAh g−1). Figure 6c shows that the Mo-doped 
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materials have higher specific capacities at different current rates. 
Furthermore, NMTP-M can be cycled stably for up to 600 cycles at 
0.5C, while maintaining a high Coulombic efficiency of ~99.9% (Fig. 6d 
and Supplementary Figs. 27–29). The outstanding results demonstrate 
that Mn/Na2_v IASD is the dominant factor limiting the electrochemi-
cal performance, and Mo doping is a simple and effective method for 
improving performance. Interestingly, Mo-doped NMTP-M with an 
Mn content of 1.2 was synthesized in this work, and its pure phase was 
confirmed by the X-ray diffraction pattern (Supplementary Fig. 30). It 
should be noted that the Mo-doping method is equally valid and deliv-
ers a high reversible capacity of 111.4 mAh g−1 (Supplementary Fig. 31).

A full-cell with NMTP-M cathode, hard carbon (HC) anode and 1 M 
NaPF6 in ethylene carbonate/diethyl carbonate (EC/DEC) (1:1) as the 
electrolyte was demonstrated. The performance of the HC anode was 
investigated in a half-cell first, as shown in Supplementary Fig. 32, which 
delivers a specific capacity of 324 mAh g−1 at 0.1C. The charge/discharge 
curve of the NMTP-M||HC full-cell is illustrated in Supplementary Fig. 
33a, which presents a high reversible capacity of 89.3 mAh g−1 at 0.5C. 
Moreover, the full-cell still retained good cycling stability even at a high 
cutoff voltage of 4.2 V (Supplementary Fig. 33b).

Conclusions
On the basis of the aforementioned experimental results, we clearly 
defined and classified DASD and IASD in polyanionic compounds. The 
IASD in pristine material is caused by the low defect formation energy, 
and the low diffusion barrier of transition metal to alkali sites leads to 
the generation of the DASD during cycling. This finding rationalizes the 
significant voltage hysteresis and capacity loss of NMTP. We demon-
strate that the voltage hysteresis of NMTP is closely related to the forma-
tion of the Mn/Na2_v IASD. As a result, a sluggish Na+ de-intercalation 
behaviour with significant voltage polarization was captured, which is 
the cause of the phase separation and incomplete valence evolution. To 
tackle these issues, we developed a Mo-doping strategy, which markedly 
increased the formation energy of Mn/Na2_v IASD in the Na3MnTi(PO4)3 
structure, thereby decreasing the defect concentration and improving 
the reversible capacity from 82.1 mAh g−1 to 103.7 mAh g−1.

In addition, we believe the Mn/Na2_v IASD is also present in the 
majority of the manganese-rich NASICON-type cathodes (for example, 
Na4MnAl(PO4)3 (ref. 9), Na3MnZr(PO4)3 (ref. 6), etc.) because they share 
very similar structures and voltage profiles with NMTP. Moreover, 
characteristic curves of voltage hysteresis (as mentioned in Fig. 2) 
were also observed in these compounds. In a broad sense, this work 
provides guidelines for designing high-performance manganese-rich 
NASICON-type cathodes, and delivers in-depth views of defects in 
polyanionic materials.

Methods
Synthesis
The sol–gel method was used to prepare Na3MnTi(PO4)3 and Na2.9M
nTi0.95Mo0.05(PO4)3 samples. Stoichiometric amounts of NaCH3COO  
(99.0%, Alfa), Mn(CH3COO)2 (98.0%, Alfa), Ti(OCH(CH3)2)4 (97.0%, 
Alfa) and critic acid (99.5%, Alfa) were dissolved in ethanol to form 
the pre-NMTP gel. Then, the aqueous solutions of NH4H2PO4 (99.5%, 
Sigma-Aldrich) and (NH4)6Mo7O24 (99.0%, Sigma-Aldrich) were  
added to ethanol, followed by stirring, evaporation and drying at  
85 °C. Finally, the precursor powder was heated for 10 h at 650 °C  
under an argon atmosphere.

Electrochemical characterization
As-synthesized materials were mixed with conductive additive 
(Super P) and binder (PVDF, Solef5130, Solvay) (80:10:10 ratios) in 
N-methylpyrrolidone (NMP, Tci) to prepare composite cathodes. 
The obtained slurry was coated onto the aluminium foil, predried 
in a drying/heating chamber with forced convection at 55 °C for 4 h 
and thoroughly dried in the vacuum drying oven at 120 °C for 6 h. 

Then, the coated foil was punched into discs with a diameter of  
10 mm (~3.0 mg cm−2). The sodium ingot (99.8%, Alfa) was rolled into 
sodium foil, and cut into a diameter of 12 mm. The glass fibre filter paper 
(Whatman, GF/D) served as the separator. A 1.0 M NaClO4 (98%, Alfa) 
solution in propylene carbonate (PC, Sigma-Aldrich) containing 2 vol% 
4-fluoro-1,3-dioxolan-2-one (FEC, Hairong) was used as the electrolyte. 
For the Na3MnTi(PO4)3 and Na2.9MnTi0.95Mo0.05(PO4)3 half-cells, the 2032 
coin-type cells were fabricated in an Ar atmosphere glovebox. The 
full-cell was fabricated with Na2.9MnTi0.95Mo0.05(PO4)3 cathode, HC as 
the anode and 1.0 M NaPF6 in EC/DEC (Hairong) as the electrolyte. All 
electrochemical tests were carried out using a LAND CT3200A battery 
cycler (LANHE SYSTEM). GITT measurements were then conducted 
after the three precycles at 0.1C between 1.5 and 4.3 V (versus Na+/Na) 
with a titration step at 0.1C of 15 min and a relaxation step of 2 h.

To prepare ex situ samples for characterization, the cathode was 
charged/discharged with Swagelok-type cells. A self-standing cathode 
film was fabricated by the rolling method with as-prepared materials, 
conductive additive (Super P) and polytetrafluoroethylene as the 
binder (80:10:10 ratio). The anode, electrolyte and separator were 
consistent with the coin-type half-cell. After cycling, ex situ samples 
were extracted in an Ar atmosphere glovebox. Subsequently, dimethyl 
carbonate (DMC, Sigma-Aldrich) was used to wash samples.

Combustion analyser
The combustion analyser (CS844 carbon/sulfur determinator) was 
used to obtain the accurate carbon content. A preweighed sample 
was combusted in a stream of purified oxygen. As the temperature 
increased, the carbon present in the sample was oxidized to carbon 
dioxide (CO2) and carbon monoxide (CO). The gas flow continued past 
a heated catalyst, where CO was converted to CO2. Finally, the amount 
of CO2 was accurately determined using a flow meter and infrared 
spectroscopy.

Diffraction measurements
X-ray diffraction data were collected using a Bruker D8 Advance diffrac-
tometer (CuKα radiation source, λ Kα1 = 1.54056 Å, λ Kα2 = 1.54439 Å). 
Operando X-ray diffraction measurements were performed using an 
airtight electrochemical cell, and the carbon-coated aluminium foil 
served as the window. The neutron data were characterized at the China 
Spallation Neutron Source (Multiple Physics Instrument). As-prepared 
pristine sample (~2 g) was measured for 6 h under ambient conditions. 
Furthermore, GSAS2 was performed to calculate the Rietveld refine-
ment profile of the neutron data.

Electron microscopy
The morphology of the cathode particle was observed by scanning 
electron microscopy (S-4800, Hitachi) with acceleration voltages 
of 10 kV. The transmission electron microscope ( JEOL ARM-200F) 
was used to capture the atomic-resolution STEM image (operated 
at 200 keV), and electrons from 90–370 mrad were collected for the 
HAADF-STEM images. The Fourier filter was used to minimize the 
effect of contrast noise.

X-ray photoemission spectroscopy
XAS measurements were conducted at beamline BL11W and BL02B02 
at the Shanghai Synchrotron Radiation Facility. XAS tests were carried 
out in transmission mode with a Si(111) double-crystal monochromator, 
and analysed using the ATHENA software package.

Solid-state nuclear magnetic resonance
23Na MAS NMR was measured on a Bruker AVANCE III 400 MHz NMR 
spectrometer (9.4 T) with a 3.2 mm commercial probe using a one-pulse 
programme with a pulse of 1.4 μs. The spin rate was 15 kHz. The 23Na 
chemical shifts were referenced to a 1 mol l−1 solution of NaCl(aq)  
at 0 ppm.
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Raman spectroscopy
The Raman measurements were performed at room temperature using 
a HORIBA LabRAM HR Evolution Raman spectrometer with a 532 nm 
excitation wavelength between 200 and 1,600 cm−1.

DFT calculations
Spin-polarized DFT calculations were performed using the Vienna 
ab initio simulation package code28–30 using the generalized gradient 
approximation of Perdew–Burke–Ernzerhof31. The rotationally invari-
ant Dudarev method32 (DFT+U) was used to correct the self-interaction 
error of conventional DFT for correlated d electrons. A cutoff energy 
of 520 eV was used for all calculations. The force exerted on each atom 
was ensured to be less than 0.01 eV Å−1 for structural relaxation. The 
Brillouin zone was sampled by a 3 × 3 × 3 and 2 × 2 × 1 Γ-centred k-mesh 
for the rhombohedral and hexagonal models, respectively. We used 
enumlib to enumerate possible orderings33 and selected 20 configu-
rations with the lowest electrostatic energy as candidate structures, 
further stimulated by the DFT structural relaxation and static energy 
calculations. In this way, the configurations with high energies, which 
have little possibility of existing in the real material, were eliminated. 
The ab initio molecular dynamics simulations of the rhombohedral 
phase have been carried out for the no-anti-site model, the anti-site-Mn 
model and the no-anti-site Mo-doped model at 900 K.

Data availability
The data supporting the findings of this study are available within 
the article and its Supplementary Information files. Source data are 
provided with this paper.
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