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To build up a collective emission, the atoms in an ensemble must coordinate their behavior by
exchanging virtual photons. We study this non-Markovian process in a subwavelength atom chain coupled
to a one-dimensional (1D) waveguide and find that retardation is not the only cause of non-Markovianity.
The other factor is the memory of the photonic environment, for which a single excited atom needs a finite
time, the Zeno regime, to transition from quadratic decay to exponential decay. In the waveguide setup, this
crossover has a time scale longer than the retardation, thus impacting the development of collective
behavior. By comparing a full quantum treatment with an approach incorporating only the retardation
effect, we find that the field memory effect, characterized by the population of atomic excitation, is much
more pronounced in collective emissions than that in the decay of a single atom. Our results maybe useful
for the dissipation engineering of quantum information processings based on compact atom arrays.
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It is well known since the 1960s [1,2] that the short-time
dynamics of an excited atom differs significantly from the
exponential decay based on the Weisskopf-Wigner formal-
ism [3]. The finite memory of the photonic reservoir leads
to a growth in the decay rate from zero that is quadratic in
time [4,5]. It has inspired attempts to prevent decay by
quickly repeating measurements [6–9], i.e., the Zeno effect.
Actually, the duration of the nonexponential decay, char-
acterized by the Zeno time τZ, is typically many orders of
magnitude shorter than the lifetime, rendering the field
memory effect undetectable. For example, an optimal
estimation of the 2P-1S transition of the hydrogen atom
reads τZ ∼ 10−13 s [10]. Instead of the decay of a single
atom, in this Letter, we study atom ensembles [11],
especially the subwavelength atom arrays, where the
separation between two adjacent atoms, d, is shorter than
the resonant wavelength λ, and reveal the prominent
memory effect in the Zeno regime.
The long-time collective emissions from an atomic

ensemble are well described by Lehmberg’s formalism
based on the Markov approximation [12,13]. For example,
it predicts a power-law scaling γ ∝ N−α, with N the number
of atoms for the subradiant states of a subwavelength atom
array [14–17]. However, Markovian theories are not able to
answer how the collective behaviors are built up. This
process must be non-Markovian because the atoms are
organized by the retarded photon-mediated interactions.
Instead, we may upgrade the Markovian description min-
imally by including delayed feedback: Every atom starts
from exponential decay independently but adjusts its decay
rate in response to the signal from another atom. This
physical picture has been analytically studied for two atoms

with the photonic reservoir being 3D free space [18] or 1D
waveguide [19–21]. Retardation effects of waveguide
quantum electrodynamics (QED) are also studied in
Refs. [22–27].
But how does the Zeno regime come into effect? The

Zeno time, exemplified by the 2P-1S transition of the
hydrogen atom satisfies τZ ≫ 2π=ω0 ∼ 10−15 s [10]. In a
subwavelength atom array, the minimal retardation time
tretard ¼ d=c, with c the speed of light, fulfills that
tretard < λ=c ¼ 2π=ω0 ≪ τZ. It means that the virtual pho-
tons sent from an atom have already passed many other
atoms, building up cooperativeness to a certain extent,
while an isolated atom has not yet entered exponential
decay. Thus, the development of the full collective
emission and the reduction to Markovian behavior are
two simultaneous processes highly intertwined. As illus-
trated in Fig. 1(a), the above-mentioned retardation-only
picture studied in Refs. [19–27] does not apply to compact
atom ensembles, i.e., there are memory effects beyond
retardation.
To show the memory effect beyond retardation, we shall

compare the retardation-only picture with a full quantum
treatment. Their difference is displayed by the evolution of
instantaneous decay rates and excited state populations.
Our findings indicate that this memory effect in collective
emissions is much more pronounced than that in the decay
of a single atom, making subwavelength atom array a
better platform to detect the non-Markovianity in the
Zeno regime. In this Letter, we shall concentrate on the
setup of waveguide QED. Experimental feasibilities and
memory effect of free space radiation field will also be
discussed.
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Zeno time of the waveguide QED.—Thewaveguide QED
setup consists of N two-level atoms with the ground state
jgi and the excited state jei, and a 1D continuum of bosonic
modes. The annihilation and generation operator of the
waveguide mode with wave number k are denoted by ak
and a†k, respectively. They satisfy the bosonic commutation
relation ½ak; a†k0 � ¼ 2πδðk − k0Þ. The Hamiltonian of the
system is conventionally written in analogy with the
multipolar gauge Hamiltonian of quantum optics, collo-
quially the “d · E” Hamiltonian [28–30], though the bosons
field may not be photonic, e.g., it could be surface acoustic
waves [31,32] and matter waves [33,34], etc.,

HM ¼
XN
i¼1

ω0σ
†
i σi þ

Z
Λ

−Λ

dk
2π

ωka
†
kak

− i
XN
i¼1

Z
Λ

−Λ

dk
2π

gkσi;Xðakeikxi − a†ke
−ikxiÞ; ð1Þ

where σi ¼ jgiihej, σi;X ¼ σi þ σ†i , xi denotes the coordi-
nate of atom i, Λ is the cutoff of the wave number.
The coupling strength gk will be specified below.
Here we assume a linear dispersion relation for the wave-
guide, ωk ¼ vgjkj, where vg is the group velocity of the
guided modes. (The Zeno time of a setup with nonlinear
dispersion relation is found qualitatively the same [35].)
The atomic transition frequency ω0 defines a resonant wave
number k0 ¼ ω0=vg. We assume k0 ≪ Λ so that the non-
Markovianity induced by reservoir band edges [38] is
irrelevant.

The counterrotating terms of Hamiltonian (1) cannot be
ignored for short-time dynamics [10]. Moreover, they
are found to lead to nonlinearity at the single-photon
level [39]. Fortunately, theoretical difficulties brought by
them can be avoided by turning to the gauge introduced
by Drummond [40], which is also called the Jaynes-
Cummings (JC) gauge [36,41]. The transformation from
the multipolar gauge to the JC gauge reads HJC ¼
e−iSHMeiS, where

S ¼
XN
i¼1

Z
Λ

−Λ

dk
2π

gk
ω0 þ ωk

σi;Xðakeikxi þ a†ke
−ikxiÞ: ð2Þ

At the first order of gk, we obtain

HJC ≈
XN
i¼1

ω0σ
†
i σi þ

Z
Λ

−Λ

dk
2π

ωka
†
kak

− i
XN
i¼1

Z
Λ

−Λ

dk
2π

gJCk ðσ†i akeikxi − σia
†
ke

−ikxiÞ; ð3Þ

where gJCk ¼ 2gkω0=ðωk þ ω0Þ. The neglected terms at the
order of Oðg2kÞ give corrections to the atom and waveguide
self-energies, while corrections to their couplings occur at
the order of Oðg3kÞ [10,42,43].
The absence of counterrotating terms grants HJC (3) a

nice property that its ground state is identical to that of its
free part jGi ¼ jg1; g2 � � � gN; 0i, an atom-field product
state, where 0 denotes the field vacuum. Then, the physical
state of exciting an atom from the overall ground state,
σ†i jGi, is also a product state. This kind of physical states
are exactly the initial states that we are interested in. With
respect to the multipolar gaugeHM, the same physical state
is written as eiSσ†i jGi, which is, however, an entangled state
between the atoms and the field. Recall that initial states in
the product form can greatly simplify the theoretical
analysis and are essential for theories of open quantum
system [44–46]. Thus, we choose to work with HJC instead
of HM.
Next, let us specify the coupling strength gk. In the

literature of waveguide QED, a localized atom-field inter-
action is often assumed [47] so that gk is a k-independent
constant [28–30,47]. It can be spelled by the Markovian
decay rate Γ0 as g2k ¼ Γ0vg=2. Another option for gk is
gk ∝ jkj1=2, the same as the multipolar Hamiltonian of
atoms in free space [30] (recall that an atom does not couple
to the full displacement field but only its transverse
component, which is a nonlocal field [48]). In this case,
we have g2k ¼ Γ0vgjkj=ð2k0Þ. The above two choices for gk
correspond to a constant and a linear spectral density, hence
will be denoted by “const-wQED” and “lin-wQED,”
respectively.

FIG. 1. (a) Sketch of the idea: For closely separated atoms,
development of collective behaviors by exchanging virtual
photons (dotted blue arrows) and the transition from quadratic
to exponential decay of a single atom (Zeno regime caused by the
memory effect of the field, represented by the red backflow
arrows) are highly intertwined. (b) The instantaneous emission
rate ΓinstðtÞ of the decay of a single atom (in units of Γ0). Legend:
const-wQED (solid curves), lin-wQED (dashed curves). Values
of Γ0=ω0 are distinguished by coloring: 10−2 (red), 10−3 (pink),
and 10−6 (blue). (c) Enlarged view of (b) for t ≤ 50=ω0.
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We are now in a position to calculate the Zeno time.
Given an initial state jΨ0i and a Hamiltonian H, the Zeno
time τZ is defined from the short-time expansion of the
nondecay probability

���hΨ0je−iHtjΨ0i
���2 ¼ 1 − t2=τ2Z þ � � � : ð4Þ

The Zeno time is a characterization to the duration of
nonexponential decay, but not an exact measure.
Nevertheless, we substitute jΨ0i ¼ je; 0i and HJC with
N ¼ 1 into Eq. (4) and obtain

τ−2Z ¼
�
2Γ0ω0=π const

2Γ0ω0 lnðΛ=k0Þ=π lin
ð5Þ

Remarkably, τZ of const-wQED is independent of the
cutoff Λ, which is introduced in Eq. (1). This is not seen
elsewhere. The above result implies that τZ ≫ 1=ω0, hence
τZ ≫ τretard, is valid if ω0=Γ0 ≫ 1 (for const-wQED) or
ω0=Γ0 ≫ lnðΛ=k0Þ (for lin-wQED). Such weak atom-field
couplings are satisfied commonly. Zeno time for N > 1 is
discussed in Ref. [35].
Equation of motion.—Suppose that the system is initial-

ized with only one atomic excitation. Note that HJC
preserves the number of excitations, thanks to the absence
of counterrotating terms. Thus, the evolution is captured by
the singly excited ansatz

jΨðtÞi ¼
XN
i¼1

αiðtÞσ†i jGi þ
Z

Λ

−Λ

dk
2π

βkðtÞa†kjGi; ð6Þ

where αiðtÞ and βkðtÞ are superposition coefficients to be
determined. The Schrödinger equation in the interaction
picture implies the integro-differential equation

d
dt

αiðtÞ ¼ −
XN
j¼1

Z
Λ

−Λ

dk
2π

���gJCk
���2
Z

t

0

dτ αjðτÞ

× eikðxi−xjÞþiðωk−ω0Þðt−τÞ: ð7Þ

This equation is further transformed into an integral
equation and solved numerically [35].
The above equation will be compared with the following

one embodying only the non-Markovianity caused by
retardation [20,21]

dαiðtÞ
dt

¼ −
Γ0

2

�
αiðtÞ þ

X
j≠i

eik0rijαj

�
t −

rij
vg

�
Θ
�
t −

rij
vg

��
;

ð8Þ

where rij ¼ jxi − xjj and ΘðtÞ ¼ 1 for t > 0 and vanishes
otherwise. It can be derived from Eq. (7) via an approxi-
mation introduced in Ref. [18], see also Ref. [35]. Note that

while the right-hand side of Eq. (7) incorporates the entire
history τ∈ ½0; t�, the right-hand side of Eq. (8) includes only
a distance-dependent delay. Ignoring this delay immedi-
ately aligns it with the Markovian effective non-Hermitian
Hamiltonian of waveguide QED [30]. Hereafter, data
produced by Eq. (8) will be labeled by “retard.”
We shall characterize the nonexponential decay by

instantaneous decay rate Γinst and population in excited
state PeðtÞ of the whole chain:

ΓinstðtÞ≡−
d
dt
lnPeðtÞ; PeðtÞ ¼

XN
i¼1

��αiðtÞ��2: ð9Þ

These two quantities can also be defined for every
individual atom in an apparent way.
Individual decay.—Let us start from the decay of a single

atom. We plot ΓinstðtÞ in units of Γ0 in Figs. 1(b),1(c) for
both const-wQED (solid curves) and lin-wQED (dashed
curves). Either one is calculated with three values of Γ0=ω0,
10−2 (red), 10−3 (pink), and 10−6 (blue). The cutoff is set at
Λ=k0 ¼ 104. For either const-wQED or lin-wQED, curves
belonging to the three Γ0=ω0 almost overlap; for each value
of Γ0=ω0, ΓinstðtÞ of lin-wQED increases faster at first
(t≲ 1=ω0) but soon becomes more gradual than that of
const-wQED. The latter increases to roughly 1.4Γ0 and
turns to oscillating around Γ0 with a waning amplitude.
The non-Markovianity of const-wQED is more pro-
nounced, as what we learn from its Zeno time (5). It is
shown in Fig. 1(c) that the oscillation of the curves of const-
wQED is still visible at t ¼ 50=ω0, equivalent to a distance
of eight wavelengths for photon propagation.
Although the curves of ΓinstðtÞ clearly demonstrate the

nonexponential decay, it is defined as the derivative with
respect to time so that producing the curves requires a high
temporal resolution (≪ 1=ω0) of measuring PeðtÞ. This is
of course experimentally challenging. The requirement of
temporal resolution might be relaxed if the non-
Markovianity can be manifested by PeðtÞ itself, or equiv-
alently, ΔPeðtÞ ¼ PeðtÞ − Peð0Þ. Unfortunately, we will
see in Fig. 2(e) that it is not the case for N ¼ 1: ΔPeðtÞ is
averaged out to the memory-less Markovian result quickly.
But fortunately, it would be possible for subwavelength
atom arrays (N > 1).
Superradiance.—We consider a chain of atoms initial-

ized in the timed-Dicke state

jΨki ¼
1ffiffiffiffi
N

p
XN
j¼1

eikxjσ†j jGi: ð10Þ

This kind of states are experimentally accessible [49,50].
State (10) with k ¼ �k0 are the single-photon superradiant
state [51]. We substitute jΨk0iwithN ¼ 20, Γ0=ω0 ¼ 10−4,
and atom-atom separation d ¼ 0.1π=k0 (see results of
d ¼ 0.5π=k0 in [35]) into Eqs. (7) and (8) and show the
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results of ΓinstðtÞ in Fig. 2(a) for t ≤ 10=ω0. Curves of
Eq. (7) (red for lin-wQED and blue for const-wQED) show
continuous growth while that of Eq. (8) (gray) gives a
steplike increase. They agree well after t ≈ 6=ω0.
Next, we pick five atoms, No. 1, 2, 5, 10, 20 (xi < xj if

i < j), and plot the individual instantaneous decay rate,
Γj;instðtÞ ¼ −dðln jαjj2Þ=dt in Fig. 2(b). It shows that the
atoms decay at different rates. Atom 1 decays slowly while
atom 20 accelerates to 20Γ0 (the opposite is obtained if
we choose jΨki with k ¼ −k0). The three curves (const-
wQED, lin-wQED and retard) agree better for atoms in the
middle, i.e., atom 10. In particular, for atom 1, significant
derivations between three curves of Γ1;const are visible: The
gray curve (retard) shows two cycles of emission and
absorption, the red curve (const-wQED) shows only
emission while absorption is dominant for the blue curve
(lin-wQED).

Such discrepancy inspires us to look at the change of
individual population ΔPe ¼ jαjðtÞj2 − jαjð0Þj2, where
jαjð0Þj2 ¼ 1=N for state (10). In Fig. 2(c), we plot it for
atom 1 of a shorter chain (N ¼ 10) within a longer time
window t ≤ 50=ω0. To compare with Fig. 1, we apply the
same three values of Γ0=ω0 and the same coloring as in
Fig. 1. Figure 2(c) shows that for Γ0=ω0 ¼ 10−3 (pink) and
10−6 (blue) there is a gap of ≲10Γ0=ω0 between const-
wQED (solid curves) and lin-wQED (dashed curves),
while the predictions of Eq. (8) (dotted curves) are roughly
in the middle. For stronger atom-waveguide coupling
Γ0=ω0 ¼ 10−2, the curves of const-wQED (red solid)
and that of Eq. (8) (red dotted) have a tendency toward
getting closer. We also plot ΔPeðtÞ for the last atom
(No. 10) in Fig. 2(d). It shows gaps between const-
wQED (solid) and lin-wQED (dashed) of roughly the same
scale as atom 1, except for the case of Γ0=ω0 ¼ 10−2. An
enlarged view for ω0t∈ ½45; 50� is shown in the left-most
panel of Fig. 2(e).
To compare, we plot ΔPeðtÞ for the case of N ¼ 1 in the

right three panels of Fig. 2(e), each for one choice of
Γ0=ω0. We find that predictions of the three models (solid,
dashed, and dotted curves) are almost indistinguishable
for ω0t∈ ½45; 50�. Thus, in terms of ΔPeðtÞ, the non-
Markovian effect in the Zeno regime is much more
prominent in collective emissions than in the decay of a
single atom. And it is reasonable to conclude that the
requirement of temporal resolution is significantly relaxed
to the level of ≲10=ω0.
Subradiance.—The effective Hamiltonian of wave-

guide QED defines a subradiant eigenstate approximated
by jΨsubi ¼ ðjΨki − jΨ−kiÞ=

ffiffiffi
2

p
with kd ¼ πN=ðN þ 1Þ

[14–16]. We suppose the same parameters as in
Figs. 2(a) and 2(b) and plot ΓinstðtÞ for a chain initialized
in jΨsubi in Fig. 3(a). In all cases, the subradiance is built
through quick oscillations between emissions and absorp-
tions. But the amplitudes are different: The piecewise curve

FIG. 2. The decay of superradiant state jΨk0i. (a) The instanta-
neous decay rate ΓinstðtÞ for const-wQED (red) and lin-wQED
(blue), both of which are determined by Eq. (7), and the
retardation-only solution retard (gray) given by Eq. (8). Other
parameters: Γ0=ω0 ¼ 10−4, N ¼ 20, and d ¼ 0.1π=k0. (b) The
individual instantaneous decay rate of five selected atoms [the
legend is the same as in (a)]. The change of individual excited
state population ΔPeðtÞ (in units of Γ0=ω0) for (c) atom 1;
(d) atom 10. In (c),(d), we have N ¼ 10, d ¼ 0.1π=k0 and
Γ0=ω0 ¼ 10−2 (colored by red) 10−3 (pink), and 10−6 (blue).
Predictions of const-wQED, lin-wQED and the retardation-only
solution retard are plotted by solid, dashed, and dotted curves,
respectively. (e) Left panel: Enlargement of (d) for ω0t∈ ½45; 50�;
the three right panels: ΔPeðtÞ of a single atom coupled to the
waveguide with Γ0=ω0 ¼ 10−2, 10−3 and 10−6, respectively.

FIG. 3. The decay of the subradiant state jΨsubi with N ¼ 20.
(a) The instantaneous decay rate ΓinstðtÞ (in units of Γ0). The other
parameters and the legend are the same as in Fig. 2(a). (b) The
change of population on the excited state ΔPeðtÞ (in units of
Γ0=ω0).

PHYSICAL REVIEW LETTERS 131, 193603 (2023)

193603-4



predicted by Eq. (8) has the largest amplitudes. In Fig. 3(b),
we plot ΔPeðtÞ of the whole chain. It also shows apparent
relative discrepancies between the three predictions.
Discussions.—It is of fundamental interest to extend the

theory to atoms in free space. However, a controversial
issue is that on which Hamiltonian all calculations
should be based. Most works chose the Coulomb gauge
(A · p interaction) disregarding the A2 term, see, e.g.,
Refs. [52–56]. Taking the counterrotating terms into
account, it has been found that τ−2Z ∼ lnΛ [10], the same
as lin-wQED. Thus, we expect the same non-Markovianity,
or perhaps even more pronounced, because the resonant
dipole-dipole interaction in free space diverges as 1=r3 for
short distances, resulting in strong photon blockade [57].
But recently Hamiltonians of quantum optics is revisited by
causal perturbation theory [58]. In this sense, non-
Markovianity beyond retardation might be viewed as a
probe to determine which theory better captures the true
physics.
For experimental tests, our plots show that temporal

resolution at the scale of ≲10=ω0 is favorable. Among
various platforms of waveguide QED, superconducting
circuits have the highest coupling efficiency [30] and
fabricating the transmon qubits into a subwavelength chain
is straightforward [59]. The transition frequency ω0 is in
the GHz regime so that temporal resolution at nanosecond
is sufficient. Subwavelength atom arrays can also be
realized by trapping Sr atoms in optical lattices [60].
The wavelength of 3P0 − 3D1 transition is 2.6 μm so the
temporal resolution should be ≲10 fs. Scenarios where the
boson fields are surface acoustic waves [31,32] and matter
waves [33,34] need further studies.
Conclusions.—We have studied the Zeno regime of the

decay of subwavelength atom arrays coupled to a 1D
waveguide. Non-Markovianity beyond retardation, charac-
terized by instantaneous decay rates and population in the
excited states, is addressed by comparing the full quantum
treatment Eq. (7) with Eq. (8), which includes only the
retardation effect. Specifically, the evolution of excited
state population (in the single-photon superradiant state)
manifests reservoir memory effect with a significantly
relaxed temporal resolution. Our results might be useful
for protecting the quantum information stored in compact
atom ensembles [14,61] via dissipation engineering [62],
and studying the correlated noise in quantum computing
processors [63], etc. For future works, one may explore
such possibilities using the theoretical tools of non-
Markovian open systems [44–46].
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