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A one-dimensional Bose-Hubbard model with unidirectional hopping is shown to be exactly solvable.
Applying the algebraic Bethe ansatz method, we prove the integrability of the model and derive the Bethe
ansatz equations. The exact eigenvalue spectrum can be obtained by solving these equations. The
distribution of Bethe roots reveals the presence of a superfluid-Mott insulator transition at the ground state,
and the critical point is determined. By adjusting the boundary parameter, we demonstrate the existence of a
non-Hermitian skin effect even in the presence of interaction, but it is completely suppressed for the Mott
insulator state in the thermodynamical limit. Our result represents a new class of exactly solvable non-
Hermitian many-body systems, which has no Hermitian correspondence and can be used as a benchmark
for various numerical techniques developed for non-Hermitian many-body systems.
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Introduction.—Exact solutions of integrable quantum
many-body models, e.g., the Lieb-Liniger model [1,2],
Yang-Gaudin model [3.4], and Fermi Hubbard model [5],
provide crucial insights into the understanding of correla-
tion effect and have wide application in cold atomic and
condensed matter physics [6]. However, constructing a new
quantum integrable model with simple form and clear
physical meanings is a difficult and fascinating mission.
Recently, a great deal of progress has been made in the
theory of non-Hermitian physics [7-10]. Some novel
phenomena such as the enriched non-Hermitian topological
classification [11-16], non-Hermitian skin effect (NHSE)
[17-22], and scale-free localization [23—27] have attracted
intensive studies. At present, most novel phenomena and
concepts about the non-Hermitian effects are built based on
noninteracting systems. Then it is necessary to demonstrate
whether these concepts are applicable and what new effect
arises when the interaction is considered. Recently, there is
attracting growing interest in exploring non-Hermitian
phenomena in many-body systems, e.g., the interplay of
non-Hermitian skin effect and interaction [28-30], the fate
of the correlated phase in the presence of non-Hermiticity
[28,31-35], and non-Hermitian topological phases in
correlated systems [36-38].

Most of the existing studies on the non-Hermitian many-
body systems are carried out by numerical diagonalization,
which suffers from the many-body exponential wall prob-
lem and the problem of numerical errors and calculation
precision in the diagonalization of non-Hermitian systems
[39,40]. The current understanding of NHSE and scale-
free localization in correlated systems is quite limited.
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Exact solutions of non-Hermitian integrable many-body
systems can provide benchmarks for understanding novel
phenomena due to the interplay of non-Hermiticity and
interaction. In this work, we propose an integrable non-
Hermitian Bose-Hubbard model describing the interacting
bosons in a chain with unidirectional hopping, which is one
of the conserved quantities constructed from the expansion
coefficients of transfer matrix, whose integrability is
guaranteed by the Yang-Baxter equation. It is well known
that the Bose-Hubbard model is not integrable and cannot
be analytically solved [41,42]. Compared to the previously
reported exactly solvable non-Hermitian many-body sys-
tems [31,32,43-46], whose integrability is inherited from
their Hermitian corresponding models by either introducing
an imaginary gauge field or complex continuation of
parameters, our model is a new integrable system without
a Hermitian counterpart. By using an algebraic Bethe
ansatz method [47,48], we exactly solve the model and
obtain the exact energy spectrum. Although the spectrum of
a non-Hermitian many-body system is generally complex,
we find that the ground state (defined by the minimum of
real parts of eigenvalues) of our model is real. We unveil the
occurrence of a superfluid-Mott insulator transition for
integer filling cases by adjusting the ratio of interaction
strength and hopping amplitude. Additionally, based on the
obtained exact eigenstates, we also demonstrate the exist-
ence of a non-Hermitian skin effect even in the presence of
interaction, which is, however, found to be completely
suppressed for the Mott state in the thermodynamical limit.

Model and its exact solution.—The model Hamiltonian
reads

© 2024 American Physical Society
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H = —l|: E b;bﬂrl +€b;\]b1:| +5 E nj(nj - 1), (1)
j=1 j=1

where bj. and b; are bosonic creation and annihilation
operators at jth site, respectively, n; = b;b ; 1s the particle
number operator on the jth site, N is the number of sites, ¢
quantifies the hopping between two sites with the nearest
neighbor, € is the boundary parameter, and U characterizes
the strength of on-site interaction. For simplicity, we
consider 7> 0 and the on-site interaction is repulsive,
i.e., U > 0. Since the Hamiltonian includes only a unidi-
rectional hopping term, it is a non-Hermitian model.
First, we prove that the model (1) is integrable in the
framework of the quantum inverse scattering method [47].
A series of conserved quantities of the Hamiltonian (1) can
be generated by a transfer matrix
t(u) = tro[Loy(u)Lon—1(u)...Lo(u)Kol,  (2)
where u is the spectral parameter, tr, means the trace in the
two-dimensional auxiliary space V,, the subscripts
{1....,N} denote the physical spaces, L ;(u) is the Lax
operator defined in the tensor space V() ® V;, and K is the
2 x 2 diagonal matrix given by K, = diag(1l,¢). In the
auxiliary space, the Lax operator can be expressed by

the matrix
u—n; gb;
Loyt = ) ()
! gbt  -¢

where the elements are the bosonic operators defined in the
jth site and ¢ is a constant. The Lax operator (3) satisfies
the Yang-Baxter relation

Roo(u—v)Loj(u)Lg ;(v) =Lg j(v)Lo j(u)Rop(u—v), (4)

where Ryg(u) is the R matrix defined in the auxiliary
spaces 0 and 0 with the form of

u—1 0 0 0

Rop(u) = : (5)

Using the Yang-Baxter relation (4), it can be proven that
the transfer matrices with different spectral parameters
commute with each other, ie., [t(u),?(v)]=0.
Expanding the transfer matrix #(u) with respect to u,

t(u) = uV + Cu = + CuV 2 4 (6)

then all the expansion coefficients C, (n =1,...,N) are
commutative and can be taken as conserved quantities.

Choosing one of them or a certain combination of them as a
Hamiltonian H, then [H,C,] =0 and the model is inte-
grable. Direct calculation gives the operators C; and C, as

¢ = —Z”p (7)

Z nnj+ ¢ <§ bibjy + ebj'vb1>. (8)

l#/ J=1

The integrable Hamiltonian (1) is constructed as

t
sz_gz(c%"i'cl_zCZ)’ )

where the on-site interaction is parameterized as U = t/g”.

Using the algebraic Bethe ansatz and considering the
number of bosons to be M, we obtain the eigenvalues of the
transfer matrix #(u) as [49]

u—p;/U- u—p;/U+1
_uNl;[ - Jﬁ]/U /U Nl;[ - Jﬁ]/U ,
(10)

where the M Bethe roots {f5;} should satisfy the Bethe
ansatz equations (BAEs)

pi—ph+U

&)N: M -
<—t €gﬂj—ﬂz—

Taking the logarithm of BAEs (11), we have

Nln ( f\%) —ﬁj@( ,Uﬁ,> +2ixl;,  (12)

where ©(z) = 2arctanh(z) and /; is the quantum number.
Each set of integers {/,[j = 1,2, ..., M} characterizes one
eigenstate. The eigenvalue of Hamiltonian is

= Z/}j' (13)

The solutions of BAEs (11) or (12) determine the energy
spectrum of the Hamiltonian (1) completely.

The superfluid-Mott transition.—First, we consider the
case of ¢ = 1. At the limit of U = 0, the Bethe roots take
p; = texplin(N + 21)/N] with [ = 1, ..., N. When U # 0,
the Bethe roots can be obtained by solving BAEs (11). To
verify the accuracy of our analytical results, we calculate
the solutions of BAEs (11) and, thus, obtain all the
eigenvalues for a small system with N =4 and M = 4.

j=1....M. (11)
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FIG. 1. (a)—(c) Distribution of Bethe roots of the ground state for U = 1, N = 200, and M = 200 (a), 199 (b), and 201 (c) with ¢

varying from 0.3 to 0.05 (the step size is 0.01). The inset in (c) displays a part of the Bethe roots with a finer step size of 0.001.
(d) Numerical results of u, and p_ for the system of N = M = 200 and U = 1 with ¢ varying from 0.4 to 0.05 (step size 0.0001). (e) The
ground state energy E, (red point) and the second derivative of E,/N with respect to t/U (blue point) for N = 200 and M = 200 with ¢
varying from 0.4 to 0.05 (step size 0.0001). (f) The extreme values of (dzEg /Ndt?) plotted against 1/v/N from N = 20 to N = 350
(p=1). The dashed fitted line is 1/(d2Eg/th2) = C,/V/N +C,. The fitting parameters are C, = —0.44558 and

C, = —4.9649 x 107*. (g) The value of #,, (blue points) and f, (red points) versus 1/N with N = 20-350 (p = 1). The dashed
lines are fitted to determine the values of 7,, and ¢, as the system size tends to infinity. Fitting results with N — oo give ¢,, = 0.17155 and

t, = 0.17156.

We compare the results of BAEs with exact diagonalization
and confirm that they are consistent (see Supplemental
Material [49]).

For the Bose-Hubbard model with integer filling, the
system undergoes a superfluid-Mott insulator transition as
the ratio of U/t is varied [55]. The critical value of U/t has
been determined using various methods such as mean field
theory, quantum Monte Carlo simulation [56,57], and
density matrix renormalization group method [58].

Now we explore the superfluid-Mott phase transition for
the Bose-Hubbard model with unidirectional hopping. We
shall focus on the case with unity filling factor p = M/N =
1 and study its ground state properties. At U = 0, the
ground state of the system is characterized by N Bethe roots
located at f; = —t, indicating the condensation of N
bosons. As U/t increases from zero, the Bethe roots
gradually move away from this point, forming a curve
on the complex plane. When U/t exceeds a critical value,
the curve closes up and the Bethe roots fill a single ring. To
visualize this behavior, we plot the distribution of the Bethe
roots of the ground state for various ¢ in Fig. 1(a) while

fixing U = 1. It can be seen that, as ¢ decreases, the arc of
the curve gradually expands until it closes. When U/t is
sufficiently large, the Bethe roots distribute uniformly on a
circle with radius ¢, which is consistent with the hard-core
limit of U/t — oo.

When a boson is removed from the system, we have
M = N — 1, and the distributions of the Bethe roots are
similar to those in the case of M = N, as shown in Fig. 1(b).
However, adding a boson to the system, i.e., M = N + 1,
leads to a markedly different behavior in the distribution of
Bethe roots when U/t exceeds a critical value. As shown in
Fig. 1(c), the two roots with the largest real part, denoted as
Py and By |, approach the real axis as ¢ decreases. At = ¢,,
they coincide. For ¢ < ¢,, they repel each other and move
oppositely along the real axis. If U /7 is large enough, we have
Pyi1 =Py +U=2t, and the other N Bethe roots are
distributed on a circle similar to the M = N case.

Next, we reveal that the change in the patterns of Bethe
root across f, is a key indicator of the superfluid-
Mott transition. Define y, = Ey(pN + 1) — Ey(pN) and
u_=Ey(pN)—Eyn(pN — 1), where Ey(M) is the ground
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FIG. 2. Exact diagonalization results of the expected values of
particle number at each site 72; of all eigenstates and the
corresponding eigenvalues with U = 0 (a), 0.2 (b), 1 (c¢), and
6 (d), respectively. Each point on the complex plane represents an
eigenvalue, while each line corresponds to the particle number
distribution of a single state. The ground state particle number
distribution and the corresponding energies are marked with
crosses. Common parameters: N = 6, M = 6,1t = 1,and ¢ = 0.5.

state energy for the system with M bosons and N sites. If
the system is in the Mott phase, there exists a nonzero gap
Ap =pu, —p_ >0, whereas the excitation in the super-
fluid phase is gapless. As the parameter U/t changes, the
position where the energy gap opens or closes marks the
superfluid-Mott transition point. In the thermodynamic
limit N (M) — oo, the Bethe roots of the ground state
distribute continuously. Adding or removing a boson
corresponds to adding or removing a Bethe root at the
position with the largest real part on the Bethe root
distribution curve. Therefore, we have

i = Re(fy 1), 1 =Re(By). (14)
When ¢ > 1,, we have Re(fy,;) = Re(fy) and, thus,
Ap=0. When r<t, Au=Re(fy.)—Re(By)>0.
Since ¢, (U/t,) defines the position where the gap opens
[see Fig. 1(d)], the Mott-superfluid phase transition point
can be determined from U/z, in the thermodynamic limit.

In addition to the Bethe root patterns, the quantum phase
transition is also manifested in the ground state energy E,
as a function of U/t (or equally 7/ U). We demonstrate the
change of E, and the second-order derivative of E,/N
versus the scaled interaction ¢/U in Fig. 1(e), where E,
shows a steep descent when ¢ exceeds a specific value ¢,,,
accompanied by a peak in —(d*E,/Nd:?) at t,,. With the
finite-size scaling of the maximum of (d°E,/Ndt*) shown

in Fig. 1(f), we get (d*E,/Ndt*)|,_, « /N, indicating that

t=t,,

the second-order derivative of E,/N at t = t,, is divergent
in the thermodynamic limit.

The finite-size scaling behavior of ¢, and z,, is depicted
in Fig. 1(g), and it is observed that the critical points
determined by the analysis of BAEs and the divergence
point of the ground state energy are nearly identical (with
1/N = 0,]t,, — t,| < 107>). From this, we can extrapolate
that the value of the superfluid-Mott phase transition point
is 1, =0.17155+ 107 (a. = U/t, ~5.83). In addition,
numerical calculations of the ground state correlation
functions provide further support for this result (see
Supplemental Material [49]). It is noteworthy that this
value is distinct from that in the Bose-Hubbard model with
filling p = 1 where the superfluid-insulator phase transition
point is U, =3.28 £0.04 obtained by the quantum
Monte Carlo simulation [59]. For the case with filling
p = 2, similar analysis on the distribution of Bethe roots of
the ground state and the ground state energy can be carried
out [49]. Our result unveils that the value of superfluid-
Mott phase transition point is ., = 0.10100 4= 107>,

Non-Hermitian skin effects.—Now, we investigate the
effect of boundary parameter ¢ on the eigenstates of the
system (1) by considering € # 1, which breaks the trans-
lation invariance and leads to scale-free NHSE. To com-
prehend the boundary-induced NHSE in the lattice with
unidirectional hopping, it is instructive to see the non-
interacting limit of U = 0 [60], in which all eigenstates
accumulated asymmetrically near the boundaries and
exhibit NHSE [see Fig. 2(a)]. From the BAEs (11), for
the Bethe roots pattern or the energy spectrum, the
parameter value {z,¢} is equivalent to {t/ /e, 1}. For a
finite nonzero €, when N — oo, \N/E — 1 and all the
eigenvalues are equal to those of the periodic boundary
case. It means that € does not change the critical point 7. in
the thermodynamic limit.

Next, we demonstrate that the NHSE exists in the
interacting system based on the exact solution. Using
the coordinate Bethe ansatz method, the eigenstates of
the system can be written out explicitly:

N
¥), = > X ...xy)bl,...bL,[0),  (15)

where the subscript m takes the values from 1 to the
dimensional of Hilbert space (N +M — 1)!/[(N — 1)!M!],
w(xy,...,xy) is the wave function

= 4,(q) H(lj_”;)x""a(qu <.-.<x,) (16)

J=1

with p = {py,....pu} and g ={qy,...,qy} being the
permutations of {1,....M}, O(x, <---<x, ) is the
generalized step function, which is one in the noted regime
and zero in the others, and |0) is the vacuum state.
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The amplitude A, satisfies

ﬂpj+l_ﬂl7j+U
U’

Pi1---PjPj+1---Pm ﬂl’,‘+l _'BP,

Al’l-~l’j+1l’j--~l’M _
A

(17)

Each set of Bethe roots {f;} of BAEs (11) completely
determines one eigenstate.

The expected values of particle number operator at the
jthsite i; = (¥|n;|¥),, for all the eigenstates are shown
in Figs. 2(b)-2(d), at different values of U while ¢ is fixed
to 1. It is shown that the distributions for most eigenstates
are localized asymmetrically around the boundary, exhib-
iting the characters of NHSE. This can be understood
directly by analyzing the properties of wave functions.
Multiplying the M BAEs (11), we have
M
11 /}7 =MV, (18)
j=1

which gives that
(e + 1y + 1)) = ey (xyox)] (19)

where x; < N. For the periodic system with € =1, the
wave function has translational symmetry so that the
particle number distribution is uniform. With e # 1,
the translational symmetry is broken. Because of the factor
eM/N | the wave function will decay if € < 1 or increase if
€ > 1 along the sites. Localization lengths of the skin states
at U =0 are proportional to the system size and are
actually the so-called scale-free localized states [23]. The
property (18) is independent on the value of 1/U. As shown
in Figs. 2(b) and 2(c), the NHSE still survives when
interaction is considered. When U is large enough, the
Mott phase emerges and the skin effect of the ground state
is suppressed as shown in Fig. 2(d). Particularly, the density
distribution of a Mott state is uniformly distributed in the
thermodynamical limit, and, thus, the NHSE is completely
suppressed. This can be manifested from our numerical
results (see Supplemental Material [49]) and also the
analytical expression of the ground state wave function
in the limit of U — oo given by |¥); = b]b}...b}|0). In
[49], we numerically calculate the average deviation of the
uniform distribution defined as 6 = (1/N) Z?’Zl ;= pl.
Finite-size analysis of our numerical results indicates that o
approaches zero in the limit of N — oo for ¢t/U < 0.17,
whereas it approaches a nonzero value for #/U > 0.18.
These numerical results suggest that the skin effect of a
Mott state is completely suppressed in the thermodynam-
ical limit.

Summary and outlook.—In the framework of the quan-
tum inverse scattering method, we proved the integrability
of the Bose-Hubbard model with unidirectional hopping
and derived the Bethe ansatz equations for the system.

Based on the exact solution, we investigated the energy
spectrum and distribution of Bethe roots of the ground
state, which allows us to identify the existence of a
superfluid-Mott insulating transition for integer fillings.
Furthermore, we studied the effect of boundary parameter ¢
on the system and demonstrated the presence of NHSE
when e departs from 1. We also elucidated the effect of
interaction on NHSE and showed that the NHSE is
completely suppressed for the Mott insulator state in the
thermodynamical limit. Our work introduces a new class of
integrable models without Hermitian correspondence and
sheds light on the interplay between interaction and NHSE.
Additionally, our study provides a benchmark for testing
numerical techniques developed for non-Hermitian many-
body systems.

Theoretically, it has been unveiled that the combination
of loss and multichannel interference with tunable phases
can generate nonreciprocal hopping and even unidirec-
tional transmission [61]. Dissipative chain model with
nonreciprocal hopping has been implemented in cold
atomic optical lattices [62], where nonreciprocal hopping
is effectively generated by introducing an auxiliary lattice
with on-site loss [61-63]. Therefore, the Bose-Hubbard
model with unidirectional hopping is principally realizable
in current cold atomic experiments.
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Foundation of China (Grants No. 12074410,
No. 12174436, No. 11934015, and No. T2121001), and
Strategic Priority Research Program of the Chinese
Academy of Sciences (Grant No. XDB33000000) are
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