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S1. DETAILS FOR SIMULATIONS OF
SINGLE-PHOTON OPTOMECHANICAL COUPLING RATE g0/2π

To determine the single-photon optomechanical coupling rate of the optical modes and phonon modes for the
microresonators, it is essential to obtain the field distributions of both the optical and phonon modes [1]. The field
distribution of the optical mode in the microcavity must satisfy the Helmholtz equation [2]:

▽×▽×Ej = ω2
0,jµ0ϵEj (S1)

where ω0,j is the resonance frequency of each optical mode, µ0 is the vacuum permeability, and ϵ is the isotropic
unperturbed spatial permittivity.

The phonon mode is described by the modal equation [2]:

▽ ·(c : S) = −ρΩ2
mu (S2)

where u is the mechanical displacement, c is the stiffness tensor, S = ▽su is the spatial distribution of the strain
tensor, ρ denotes the density, and Ωm/2π is the resonance frequency of mechanical modes.
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FIG. S1. Field distributions of the simulated mechanical and optical modes. (a) and (b) display the results without
and with the silicon pedestals. Panels (i-iv) represent the field distributions of the mechanical modes, while (v) illustrates the
field distribution of the TE fundamental optical modes.

We employ the finite element method (FEM) simulations to solve Eq. S1 and Eq. S2 to obtain the field distribu-
tions of the optical and mechanical modes. Given the symmetry of the SiO2 microresonators, we utilize cylindrical
coordinates (the two-dimensional-axisymmetric model) to construct the geometry of the microresonator. The “Elec-
tromagnetic Waves, Frequency Domain” and “Solid Mechanics” modules are utilized to simulate the optical and me-
chanical modes, respectively. The azimuthal mode numbers of the pump and Stokes modes are set to mp = 101 and
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ms = −101, while the azimuthal mode number of the mechanical modes must be ma = mp−ms = 101−(−101) = 202,
as dictated by the phase matching condition. We consider only the optical transverse electric (TE) fundamental mode
in subsequent calculations, as the mode splitting is supposed to be designed for this mode.

Figure. S1 presents the field distributions of mechanical modes (i-iv) and optical TE fundamental modes (v). The
distinction between Figs. S1(a) and S1(b) is whether the silicon pedestals are included in the model. The existence
of the silicon pedestal results in reduced confinement of the field distribution for mechanical modes, while the field
distribution of the optical modes remains unchanged. Furthermore, the silicon pedestal induces a slight change in the
eigenfrequencies of mechanical modes.

In the Brillouin optomechanical interactions in microcavities, the perturbation of the mechanical mode on the
optical mode occurs through two effects: the photoelastic effect and the moving boundary effect [1–3]. The total
optomechanical coupling rate can be expressed as the sum of these two components, specifically g0/2π = gpe0 /2π +
gmb
0 /2π. The radiation pressure exerted on the surface S of the cavity, with a volume of V , and the unit normal

vector n pointing from the inside to the outside of the cavity, together with the spatial distribution of the optical
modes for the pump and Stokes (or anti-Stokes) denoted by Ep,s, can be used to express these two contributions:

gpe0 = −ωpumpxzpf

2

∫
V

E∗
p · δϵpe ·EsdV (S3)

gmb
0 = −ωpumpxzpf

2

∮
S

[u · n][δϵmb[E
∗
p,// ·Es,//]− δϵ−1

mb[D
∗
p,⊥ ·Ds,⊥]]dA (S4)

where ωpump is the angular frequency of the pump light, xzpf =
√

ℏ
2meffΩm

is the zero point fluctuations for a mechanical
mode with the angular frequency of Ωm and effective mass of meff . n denotes the unit normal vector directed from
the cavity’s interior to its exterior, S and V represent the cavity surface and volume. Ep,// and Es,// are the
parallel electric fields of the pump and the Stokes (or anti-Stokes) modes, and Dp,⊥, Ds,⊥ are the perpendicular
electric displacement vectors of the pump and the Stokes (or anti-Stokes) modes, respectively. δϵpe and δϵmb are the
permittivity perturbations caused by the photoelastic and moving boundary effects, respectively,

δϵpe = −ϵ0n
4p : S (S5)

δϵmb = ϵ0(n
2 − n2

2) (S6)
δϵ−1

mb = ϵ−1
0 (n−2 − n−2

2 ) (S7)

where ϵ0 is the vacuum permittivity, p is the photoelastic tensor of the SiO2, and n2 is the refractive index outside
the cavity. The calculated g0/2π for each mechanical mode is shown in Fig. 2(a) of the main text. The mechanical
mode at 10.167 GHz has the highest g0/2π=11.364 kHz, which corresponds to a WGM mechanical mode. Figure S2
illustrates that the largest g0/2π approximately scales with V

−1/2
eff [4], which is expressed as:

Veff =

∫
|Ep|2dV

∫
|ES |2dV∫

|Ep|2|ES |2dV
(S8)

where Ep and ES denote the electric field intensity of the pump and Stokes fields, respectively. In the case where the
pump and Stokes light are in the same spatial modes, the effective mode volume (Veff ) is approximately twice the
value of the energy-related definition of mode volume [5] (Vm =

∫
|E|2dV

|Emax|2 ), where Emax denotes the maximum electric
field intensity of the optical mode.



3

0

4

8

12

16

|g
0
/2
p
| 
(k

H
z
)

Radius (mm)
20 40 60 80 1000

100 200 300 400 500 6000

Mode volume (mm3)

|g
0
|µV

eff
-1/2

FIG. S2. Simulated largest |g0/2π| as a function of the radius and mode volume of the microresonator, with the
fitting result shown in the red curve.

S2. DEVICE DESIGN AND CHARACTERIZATION

In this section, we employ the two-dimensional (2D) “Electromagnetic Waves, Frequency Domain” in COMSOL
Multiphysics to determine the eigenfrequencies of optical modes of the microresonator with sinusoidally modulated
boundaries through FEM simulation. In this 2D approximation, the modes of the infinite cylinders are calculated
while constraining the out-of-plane wave number, using the method introduced in Ref. [2]. Specifically, we simulate
the eigenfrequencies of SiO2 microresonators with radii of r0 = 15 µm and 20 µm, and modulation periods of 2m=148
and 202, respectively, and a thickness of 1 µm. The resulting frequency splitting (∆f) of TE fundamental modes, as a
function of the modulation amplitude (α), is plotted in Fig. S3(a). As expected, ∆f exhibits a monotonical increase
with a growing α and reaches approximately 10 GHz at α ≈ 12 nm for both cavity sizes. As illustrated in Fig. S3(b),
we observe a monotonous increase in ∆f with α, which approaches 10 GHz at α ∼12 nm for the SiO2 microresonators
with r0 =15 µm.
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FIG. S3. Simulated and measured frequency splittings of SiO2 microresonators. (a) Simulated frequency splitting
(∆f) as a function of the modulation amplitude (α). The gray shaded region indicates the modulation amplitude range of
12-14 nm, which corresponds to a ∆f approximately 10 GHz. (b)
Measured frequency splitting (∆f) as a function of the modulation amplitude (α) for SiO2 microresonators with a radius of

r0 = 15 µm.

In the following experiments, the SiO2 microresonators with r0 =20 µm are utilized due to their higher optical Q
factors. Moreover, during the xenon difluoride etching process, the silicon undercut is maintained at only approxi-
mately 5 µm to suppress optomechanical oscillations, which are detrimental to the study of Brillouin optomechanics.
Taking into account the fabrication errors, a series of modulations around 12-14 nm for SiO2 microresonators with
a radius of 20 µm are experimentally fabricated. Figure S4(a) presents the measured frequency splitting (∆f) of
the SiO2 microresonators. The measured frequency splittings ∆f , ranging from 10-12 GHz, are consistent with the
simulated results as α varies from 12.6 nm to 13.8 nm. Owing to the experimentally observed parasitic coupling
loss in the system [6], we initially measure the quality factors of the optical modes with relatively weak coupling
strength, maintaining the transmission depth on resonance at around 0.9. We then select the optimal cavity for
Brillouin optomechanics studies, which has a ∆f of 10.404 GHz and Q0 of 4.3× 106 and 4.2× 106 for the higher- and
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FIG. S4. Characterization of frequency Splitting and Q Factors of SiO2 microresonators. (a) ∆f and (b) intrinsic
quality factor (Q0) of the two split modes as a function of the α for SiO2 microresonators with a radius of r0 = 20 µm, a thickness
of t = 1 µm, and modulation period of 2m = 202, respectively. The red box represents the optimal cavity that we used to
perform the following two experiments. (c) Intrinsic decay rate (κ0/2π) for the optimal cavity at different transmission depths
on resonance. The orange and purple dots represent the results for the lower- and higher-frequency split modes, respectively.
The blue and red boxes correspond to the coupling conditions for the phonon lasing and strong coupling measurements.

lower-frequency split modes, respectively, as denoted by the red box in Fig. S4(b). Figure S4(c) presents the intrinsic
decay rates (κ0/2π) of the two split modes as a function of the normalized transmission. The plot reveals a significant
increase in κ0/2π with decreasing transmission depth, indicating the presence of parasitic coupling loss in the system.
This loss can be attributed to the additional optical field decay into the surroundings caused by the tapered fiber [6].
Consequently, both the intrinsic and total linewidths vary depending on the coupling conditions. In the phonon laser
experiment, a transmission depth of 0.17 results in a κ0/2π of 73 MHz and a total decay rate (κ/2π) of 103 MHz.
For the strong coupling experiment, the transmission depth is set to approximately zero, yielding a κ0/2π of 95 MHz
and a κ/2π of 190 MHz. Moreover, the slight difference in κ0/2π between the two split modes can be attributed to
their different optical field distributions.

Moreover, it is noteworthy that through improving the inductively coupled plasma (ICP) etching process, the yield
of microresonators with intrinsic Q factors over 1× 106 has increased to 100%, as shown in Fig. S5.

FIG. S5. Intrinsic quality factors (Q0) of the two split modes as a function of α for SiO2 microresonators with
a radius of r0 = 20 µm, a thickness of t = 1 µm, and modulation period of 2m = 202, respectively.
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S3. THEORETICAL MODEL FOR PHONON LASER GENERATION

In this section, we present a theoretical analysis of the phonon lasing in the SiO2 microresonator system when the
higher-frequency split mode is pumped. This scenario allows for the phonon lasing where the optical decay rate is
larger than the phonon damping rate, i.e., κ > γm.

Given that the modulation amplitude of the SiO2 microresonator is much smaller than the optical wavelength,
the dipole approximation can be applied to model the backscattering using Raleigh scattering theory. The total
Hamiltonian of the system can be expressed as follows:

Htot = H0 +Hback +HBril +Hvac +Hdri (S9)

where H0 represents the free Hamiltonian, Hback denotes the backscattering induced interaction Hamiltonian, HBril

is the Brillouin scattering induced interaction Hamiltonian, Hvac is the additional dissipation resulting from coupling
with the vacuum reservoir, and Hdri is the driving term. The angular frequencies of the optical and mechanical modes
are represented by ω0 and Ωm, respectively. Due to the strong backscattering, the pump light will be backscattered into
the counter-propagating direction, even though the SiO2 microresonator is only pumped in one direction. Moreover,
the Stokes light and acoustic waves are generated in both directions. The photon and phonon annihilation (creation)
operators in both the CW and CCW directions for the optical mode a and mechanical mode b are defined as acw(a†cw),
accw(a

†
ccw), bcw(b†cw), and bccw(b

†
ccw), respectively. The g0 is the same for the Brillouin process in both directions, and

we can then expand the Hamiltonian of the system as (ℏ = 1):

H0 = ω0(a
†
cwacw + a†ccwaccw) + Ωm(b

†
cwbcw + b†cwbcw) (S10)

Hback = β(a†cwacw + a†cwaccw + a†ccwaccw + a†ccwacw) (S11)
HBril = g0(a

†
cwaccwbcw + acwa

†
ccwb

†
cw + a†ccwacwbccw + accwa

†
cwb

†
ccw) (S12)

Hvac =
∑

ωjd
†
j dj (S13)

Hdri = i(εda
†
cwe

−iωpumpt + ε∗dacwe
iωpumpt) (S14)

where β denotes the backscattering rate, which equals ∆f/2. d†j (dj) represents the annihilation (creation) operator
for photons with the angular frequency of ωj in the vacuum reservoir. The total energy decay rate for the optical
mode a is defined as κ = κ0 + κ1, where κ0 and κ1 denote the intrinsic and external energy decay rates, respectively.
The drive strength εd =

√
κ1Pin/ωpump quantifies the number of photons coupled into the SiO2 microresonator per

unit time, where Pin denotes the power of the pump light with the frequency of ωpump/2π. The damping rate for the
mechanical mode b is denoted as γm.

Starting from the Hamiltonian of the system and utilizing the Bosonic commutation relations, we can simplify the
Heisenberg equations of motion for the optical and mechanical modes in the rotating frame:

ȧcw = (i(∆− β)− κ+ ΓR

2
)acw − (iβ +

ΓR

2
)accw − ig0accw(bcw + b†ccw) + εd (S15)

ȧccw = (i(∆− β)− κ+ ΓR

2
))accw − (iβ +

ΓR

2
)acw − ig0acw(bccw + b†cw) (S16)

ḃcw = (−iΩm − γm
2
)bcw − ig0acwa

†
ccw (S17)

ḃccw = (−iΩm − γm
2
)bccw − ig0accwa

†
cw (S18)

where ∆ = ωpump − ω+ is the laser detuning from the cavity resonance, and ΓR denotes the additional energy decay
rate caused by the coupling into the vacuum reservoir [7].

The dynamic evolution of the optomechanical system is numerically analyzed utilizing the fourth-order Runge-Kutta
method. To simplify the analysis without losing the underlying physics, we consider a special case where the pump
light is on resonance with the optical mode, and the frequency splitting is equal to the mechanical frequency, resulting
in ∆ = 0 and ∆f = 2β/2π = Ωm/2π. The intrinsic decay rate of the optical mode is fixed at κ0/2π=80 MHz, and
the external decay rate is varied with κ1/2π of 40 MH, 80 MHz, and 120 MHz for under-coupling (U.C.), critical-
coupling (C.C), and over-coupling (O.C.) conditions, respectively. The damping rate for the mechanical mode is set
at γm/2π = 60 MHz. In this regime where the optical decay rate is larger than the phonon damping rate (κ > γm),
the Brillouin lasing produces phonon linewidth narrowing [8], in contrast to Brillouin photon lasers in Refs. [9–11].

Figure S6 presents the transient evolution towards the steady state with a pump power of 100 mW under the
critical-coupled condition. Figures S6(a) and S6(b) represent the intracavity photon numbers in the CW and CCW
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FIG. S6. Transient evolution towards the steady state in the CW and CCW directions. (a,b) Intracavity photon
number evolution in the CW and CCW directions. Inset: Power spectrum density (PSD) of the intracavity photon number at
the steady state, with the peak frequency corresponding to the mechanical frequency. (c,d) Transient evolution of mechanical
displacement of the Brillouin phonon normalized to the xzpf in the CW and CCW directions, oscillating at mechanical frequency.
Inset: close-up of the normalized mechanical displacement.

directions, which initially increase and then damp to a steady-state oscillation. The oscillation frequency corresponds
to the mechanical frequency (Ωm/2π), as illustrated in the power spectral densities of the intracavity photon numbers,
in the insets of Figs. S6(a) and S6(b). Even though the pump light is only coupled to the cavity in the CW
direction, the intracavity photon number in the CCW direction is comparable to that in the CW direction, due to
the strong backscattering. Moreover, the Brillouin phonons are generated in both directions through a combination
of the electrostriction and photoelastic effects. Figures S4(c) and S4(d) represent the mechanical displacement of
the Brillouin phonon normalized to the xzpf in the CW and CCW directions, respectively. At the steady state,
the mechanical displacement also oscillates at the mechanical frequency Ωm/2π, as revealed by the close-up of the
displacement.

We also present an analysis of the steady-state phonon number (N) for various pump powers. Figure S7(a) shows
the N in both the CW and CCW directions at a critical-coupling condition as a function of pump power. Below the
threshold power, N fluctuates around thermal phonon number nth = kBT/ℏΩm ≈ 610, where kB is the Boltzmann
constant and T is the temperature. Above the threshold power, N increases dramatically. The approximately equal
number of pump photons in the CW and CCW directions leads to nearly the same number of phonons in the two
directions. In the regime where the optical decay rate is larger than the phonon damping rate (κ > γm), the phonon
linewidth (∆ν) can be expressed as [8]:

∆ν = ∆νth +
∆νp

(1 + κ/γm)2
(S19)

∆νth =
γmnth

4πN
(S20)

where ∆νth represents the linewidth originating from the thermal noise (Schawlow-Townes linewidth), while the second
term on the right side of Eq. S19 is attributed to the linewidth of the pump laser (∆νp), which is narrowed by a factor
of (1 + κ/γm)

2. The linewidth from the pump laser can reach a very low level by using a narrow linewidth pump
laser. For instance, by using a fiber laser with a typical linewidth of approximately 10 Hz, the linewidth attributed
from the pump laser can be decreased to below 1 Hz for a critical-coupling condition. Therefore, we only consider
the linewidth that originates from the thermal noise in the following simulation. As the pump power increases, N
increases, leading to a decrease in the Schawlow-Townes linewidth. Figure S7(b) plots the Schawlow-Townes linewidth
in both the CW and CCW directions as a function of pump power at a critical-coupling condition. Below the threshold
power, ∆νth fluctuates around 60 MHz, which corresponds to the intrinsic linewidth of the mechanical mode at an
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FIG. S7. Phonon number and Schawlow-Townes linewidth in the CW and CCW directions. (a,b) Phonon number
and Schawlow-Townes linewidth in the CW and CCW directions at the critical-coupling condition as a function of the pump
power. (c,d) Phonon number and Schawlow-Townes linewidth in the CW directions, as a function of the pump power, with
κ0/2π=80 MHz, and κ1/2π=40 MHz, 80 MHz, 120 MHz, respectively. The red, blue, and green dots represent the results for
the under-coupled, critical-coupled, and over-coupled conditions. The insets show the zoom-ins with the optical power in the
range of 1-10 mW.

ambient temperature. Above the threshold power, the Schawlow-Townes linewidth decreases dramatically due to the
significantly increased phonon number. The coupling conditions also affect the intracavity phonon numbers and thus
the Schawlow-Townes linewidth. Figures S7(c) and S7(d) plot the phonon numbers and Schawlow-Townes linewidths
for different coupling conditions. Due to the equal phonon numbers in the CW and CCW directions, we only plot the
results for the CW direction. Our results indicate that the threshold power increases with the increase of the total
optical decay rate, but the phonon number increases more rapidly when the pump power exceeds the threshold power
under the over-coupled condition, thereby enabling a narrower Schawlow-Townes linewidth.
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S4. EXPERIMENTAL DETAILS FOR PHONON LASER GENERATION AND MEASUREMENT

This section provides experimental details of the phonon lasing and measurement. We first measure the short-term
linewidth of the pump laser using the self-heterodyne technique described in Ref. [12, 13], as elaborated on in the
Methods section in the main text. As illustrated in Fig. S8(a), the laser under test is divided into two channels
using a 50:50 beam splitter. One of the channels is shifted by 55 MHz in frequency using an acousto-optic modulator
(AOM), while the other passes through a 5-km-long fiber delay to form a modified Mach-Zehnder interferometer
(MZI). The two channels are then recombined, and the resulting beat note signal is detected by a photodetector (PD)
and monitored by an oscilloscope with a sampling rate of 625 MHz. By performing a Hilbert transform (HT), phase
fluctuations of the laser can be extracted, as illustrated in Fig. S8(b). The single-sideband (SSB) frequency noise
is obtained by applying a fast-Fourier-transform (FFT), as shown in Fig. S8(c). According to the noise theory, the
contribution of white noise is independent of frequency offset, and the linewidth of the Lorentzian spectral lineshape
can be obtained by multiplying the white-noise SSB frequency noise by 2π [14]. The white noise level of the pump laser
we used in the experiment is measured to be 44.114 Hz2Hz−1, corresponding to a short-term linewidth of 277.18 Hz.
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FIG. S8. Short-term linewidth measurement of the pump laser. (a) Schematic of the self-heterodyne measurement
setup. AOM: acousto-optic modulator; PC: polarization controller; PD: photodetector; OSC: oscilloscope; HT: Hilbert trans-
form; FFT: fast-Fourier-transform; PSD: power spectra density. (b) Phase evolution of the pump laser in the time domain; (c)
SSB frequency noise of the pump laser, revealing a short-term linewidth of the pump laser is 277.18 Hz.

The experimental setup for phonon lasing and measurement is presented in Fig. S9(a). A tunable continuous-wave
(c.w.) laser is amplified using an erbium-doped fiber amplifier (EDFA) and then coupled into the SiO2 microresonator
via a tapered fiber. The transmitted light from the SiO2 microresonator, including both the pump and Stokes light,
is split into three channels. The first channel is detected by a photodetector and the transmission spectrum of the
SiO2 microresonator is measured by an oscilloscope. The second channel is detected by another photodetector and
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FIG. S9. Phonon lasing measurement. (a) Experimental setup for the phonon lasing measurement. EDFA: erbium-doped
fiber amplifier; PC: polarization controller; PD: photodetector; OSA: optical spectrum analyzer; OSC: oscilloscope; ESA:
electrical spectrum analyzer; AOM: acousto-optic modulator; FBG: fiber Bragg grating. (b) Optical spectra for the pump
(green curve) and Stokes (red curve) light with power ratios of 22.06 dB and 30.13 dB, respectively. (c) Phase evolutions of the
pump laser, Stokes laser, and phonon laser, respectively. (d) SSB frequency noise for the pump laser, Stokes laser, and phonon
laser, showing linewidths of 291.27 Hz, 346.82 Hz, and 70.59 Hz, respectively.

measured by an electronic spectrum analyzer (ESA) to obtain the phonon laser spectrum. The third channel is
directed to an OSA to obtain the SBS spectrum. Starting from the blue-detuned side of the higher-frequency split
mode, the wavelength of the pump laser is gradually scanned up. The phonon laser linewidth is measured by analyzing
the backscattered pump and Stokes light from the SiO2 microresonator, using the technique mentioned above.

To measure the linewidth of the phonon laser, we employ a setup consisting of two tunable fiber Bragg gratings
(FBGs) to filter out the pump and Stokes light, respectively, enabling the separate measurement of their linewidths.
The power ratios between them are maintained at more than 20 dB, as shown in Fig. S9(b). The output light is
then detected by two photodetectors and recorded by an oscilloscope. The phase difference between the pump and
Stokes light is extracted as the phase evolution of the phonon laser, as presented in Fig. S9(c). The short-term
linewidths of the pump, Stokes, and phonon lasers can then be obtained using the method mentioned above. The
SSB frequency noise of the pump, Stokes, and phonon lasers are presented in the green, red, and blue curves in Fig.
S9(d), respectively. As the system is in the regime where the optical decay rate is larger than the phonon damping
rate (κ > γm), the phonon linewidth is significantly reduced to 70.59 Hz, whereas the linewidth of the Stokes laser
remains similar to that of the pump laser. According to the theoretical result obtained using Eq. S19, the lowest
achievable phonon linewidth is approximately 35 Hz, which is the linewidth contributed by the pump laser.

It is noteworthy that third-harmonic generation (THG) was observed in the optomechanical strong coupling exper-
iment when the pump power was increased to around 800 mW, resulting in the emission of green light, as shown in
Fig. S10.
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FIG. S10. Optical microscope images of the microresonator with THG occurred when the illumination light is
on (a), and off (b).

S5. THEORETICAL MODEL FOR STRONG COUPLING

In this section, we present a comprehensive theoretical analysis of the optomechanical strong coupling in the SiO2

microresonator system. When a pump laser is used to drive the lower-frequency split mode, a significant intracavity
optical field is generated, which then interacts with the mechanical mode, leading to resonant scattering of the anti-
Stokes light into the higher-frequency split mode. Therefore, the Hamiltonian of the Brillouin interaction term can
be rewritten as (ℏ = 1):

HBril = g0(a
†
cwaccwb

†
cw + a†cwaccwbccw + a†ccwacwb

†
ccw + a†ccwacwbcw) (S21)

To linearize the Hamiltonian, we apply the transformation acw,ccw → acw,ccw + αcw,ccw, where αcw,ccw and acw,ccw

represent the intracavity steady (perturbed) optical field amplitudes in the CW and CCW directions, respectively.
Under the rotation approximation, the resulting linearized Hamiltonian in the rotating frame can be expressed in
matrix form with the eigenvector of [acw, accw, bcw, bccw]T , as follows:

Hnew =


−∆+ g − iκ2 g + iΓR

2 G2 0
g + iΓR

2 −∆+ g − iκ2 0 G1

G⋆
2 0 Ωm − iγm

2 0
0 G⋆

1 0 Ωm − iγm

2

 (S22)

where ∆ = ωpump − ω− is the laser detuning from the cavity resonance, G1,2 = g0 × αcw,ccw is the cavity-enhanced
optomechanical coupling rate in the CW (CCW) direction.

We first examine them under some specific conditions. To simplify the analysis, we set ∆ = 0, Ωm = 2g, and ΓR = 0.
In addition, we first consider the scenario where the cavity-enhanced coupling rate is absent, G1 = G2 = G⋆

1 = G⋆
2 = 0.

Under these conditions, the eigenvectors and eigenvalues can be determined as:

V =

0 −1 1 0
0 1 1 0
1 0 0 0
0 0 0 1

 ;E =

2g − iγm

2
−iκ2

2g − iκ2
2g − iγm

2

 (S23)

It can be observed that the first and fourth columns of the eigenvectors represent the CW and CCW mechanical
modes, while the second and third columns correspond to the anti-symmetric and symmetric standing-wave optical
modes resulting from the strong backscattering, with eigenvalues of −iκ2 and 2g−iκ2 in the rotating frame, respectively.

When cavity-enhanced optomechanical coupling rate G1 = G2 = G⋆
1 = G⋆

2 = G is considered, the eigenvectors and
eigenvalues are given as follows:
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V =

 A B C D
F G H I
−1 −1 1 1
1 1 1 1

 ;E =


g − iγm+κ

4 +
√

(4G−4ig−γm+κ)×(4G+4ig+γm−κ)
16

g − iγm+κ
4 −

√
(4G−4ig−γm+κ)×(4G+4ig+γm−κ)

16

2g − iγm+κ
4 −

√
(4G−γm+κ)×(4G+γm−κ)

16

2g − iγm+κ
4 +

√
(4G−γm+κ)×(4G+γm−κ)

16

 (S24)

where

A =
−4g + i(κ+ γm)−

√
(4G+ γm + i4g − κ)(4G− γm − i4g + κ)

4G
+

4g − iγm
2G

B =
−4g + i(κ+ γm) +

√
(4G+ γm + i4g − κ)(4G− γm − i4g + κ)

4G
+

4g − iγm
2G

C =
8g − i(κ+ γm)−

√
(4G+ γm − κ)(4G− γm + κ)

4G
− 4g − iγm

2G

D =
8g − i(κ+ γm) +

√
(4G+ γm − κ)(4G− γm + κ)

4G
− 4g − iγm

2G

F =
4g − i(κ+ γm) +

√
(4G+ γm + i4g − κ)(4G− γm − i4g + κ)

4G
− 4g − iγm

2G

G =
4g − i(κ+ γm)−

√
(4G+ γm + i4g − κ)(4G− γm − i4g + κ)

4G
− 4g − iγm

2G

H =
8g − i(κ+ γm)−

√
(4G+ γm − κ)(4G− γm + κ)

4G
− 4g − iγm

2G

I =
8g − i(κ+ γm) +

√
(4G+ γm − κ)(4G− γm + κ)

4G
− 4g − iγm

2G
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FIG. S11. Eigenvalues of the linearized Hamiltonian of the optomechanical system. (a) Real part and (b) Imaginary
part of eigenvalues versus cavity-enhanced coupling rate (G/2π). The parameters used are κ/2π=180 MHz, γm/2π=60 MHz,
and 2g = Ωm = 2π×10.404 GHz.

In the SiO2 microresonator system, the optomechanical interaction gives rise to four hybridized modes, designated
as modes 1-4 in the eigenvectors of Eq. S24. The real part of the eigenvalues indicates the resonance frequency of
each mode, while the imaginary part represents the total amplitude decay rate. The dependence of the real and
imaginary parts of the eigenvalues on the G/2π is plotted in Fig. S11. When G/2π is lower than the threshold value
of Gth/2π = κ−γm

4·2π , the frequencies of modes 1, 3, 4 are degenerate, whereas a frequency splitting occurs between
modes 3 and 4 when G > Gth. Moreover, the amplitude decay rates of modes 3 and 4 converge to κ+γm

4·2π at Gth and
remain constant when G > Gth. Thus the eigenvalues change character at the threshold where the root changes from
purely imaginary to real-valued. This corresponds to the transition into the strong-coupling regime. The normal-
mode splitting formally occurs as soon as G > Gth, but it is not resolvable until

√
(4G−γm+κ)×(4G+γm−κ)

16 exceeds the
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Table S1 | Key parameters for the single mechanical mode simulation.

Pd

(mW)
2g/2π
(GHz)

g0/2π
(kHz)

κ0/2π
(MHz)

κ1/2π
(MHz)

Ωm/2π
(GHz)

γm/2π
(MHz)

500 10.404 12.52 90 90 10.167 60

TABLE S1. Key parameters used in the optomechanical strong coupling simulation for the single mechanical mode scenario.

effective decay rate of the hybrid optical-mechanical modes κ+γm

4·2π . Therefore, well-resolved mode splitting requires
a stronger condition of G >

√
(κ2 + γ2

m)/8. When the coupling rate reaches this condition, the two splitting peaks
become resolvable, and also correspond to the occurrence of Rabi oscillations in the time domain.

We experimentally determine whether strong coupling occurs by measuring the reflection spectrum of the SiO2

microresonator. To achieve this, a probe term with
Hp = iϵp(a

†
cwe

−i(ωprobe−ωpump)t − acwe
i(ωprobe−ωpump)t) is introduced into the Hamiltonian. Here, ϵp represents the

strength of the probe light, defined as
√

κ1Pp

ωprobe
, where Pp and ωprobe are the power and angular frequency of the

probe light, respectively. The probe light is detuned by δ from the pump laser. In the rotating frame, the Heisenberg
equations of motion can be expressed as:

d

dt

 acw
accw
bcw
bccw

 =− i

 mm gg G2 0
gg mm 0 G1

G⋆
2 0 nn 0
0 G⋆

1 0 nn


 acw
accw
bcw
bccw

−

 ϵpacw
0
0
0

 (S25)

where δ = ωprobe − ωpump is the frequency detuning between the probe and pump lasers. To simplify notation, we
define mm = −∆− δ + g − iκ2 , gg = g + iΓR

2 , and nn = Ωm − iγm

2 .
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FIG. S12. Simulated spectra of the optomechanical strong coupling in the single mechanical mode scenario. (a)
Theoretically predicted spectrum using parameters in Table S1. (b) Theoretically predicted spectrum with g0/2π of 125.2 kHz.

The steady-state solutions of the Heisenberg equations of motion are presented in Fig. S12, using the parameters
listed in Table S1. As the SiO2 microresonator system possesses four non-degenerate eigenvalues, the steady-state
spectrum is expected to exhibit four non-degenerate peaks. However, in Fig. S12(a), only three peaks are clearly
visible. To further investigate this phenomenon, we artificially increase the value of g0/2π by a factor of 10 to
125.2 kHz, and the corresponding spectrum is shown in Fig. S12(b), where a new, weak peak appears, confirming the
existence of four non-degenerate modes in the SiO2 microresonator system. The four modes are labeled as modes 1 to
4 in order of increasing frequency. Peak 1 corresponds to the lower-frequency split mode, and a resolvable anti-crossing
occurs between modes 2 and 4 when G > κ+γm

4 . Mode 3 is too weak to be experimentally detected.
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S6. EXPERIMENTAL DETAILS FOR STRONG COUPLING

The experimental setup for measuring the optomechanical strong coupling is illustrated in Fig. S13. A c.w. laser
is used to pump the lower-frequency split mode, and its frequency ωpump is thermally locked to the cavity resonance
with a detuning of ωpump − ω−. The transmission spectrum around the pump mode of the SiO2 microresonator is
detected by a photodetector and monitored by an oscilloscope, while the reflected light from the SiO2 microresonator is
detected by another photodetector. An electro-optic modulator (EOM) is employed to modulate the pump light, with
its modulation frequency being scanned using a vector network analyzer (VNA). When the probe light is resonant with
the higher-frequency split mode a+, both the pump and probe light can couple into and out of the SiO2 microresonator,
generating a beat note signal at a frequency of ωprobe −ωpump that can be measured in the optical response spectrum
S21 by the VNA.

PD1

OSC

c.w. laser

EDFA

PC

Disk

EOM

VNA

PD2
circulator

1

2

3

FIG. S13. Experimental setup for optomechanical strong coupling. EOM: electro-optic modulator; VNA: vector
network analyzer.

[1] G. S. Wiederhecker, P. Dainese, and T. P. Mayer Alegre, Brillouin optomechanics in nanophotonic structures, APL pho-
tonics 4, 071101 (2019).

[2] Y. A. Espinel, F. G. Santos, G. O. Luiz, T. M. Alegre, and G. S. Wiederhecker, Brillouin optomechanics in coupled silicon
microcavities, Sci. Rep. 7, 43423 (2017).

[3] P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, Giant enhancement of stimulated brillouin scattering in
the subwavelength limit, Phys. Rev. X 2, 011008 (2012).

[4] R. Van Laer, R. Baets, and D. Van Thourhout, Unifying Brillouin scattering and cavity optomechanics, Phys. Rev. A 93,
053828 (2016).

[5] T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, Theoretical and experimental study of stimulated and cascaded
Raman scattering in ultrahigh-Q optical microcavities, IEEE Journal of selected topics in Quantum Electronics 10, 1219
(2004).

[6] S. Spillane, T. Kippenberg, O. Painter, and K. Vahala, Ideality in a fiber-taper-coupled microresonator system for appli-
cation to cavity quantum electrodynamics, Phys. Rev. Lett. 91, 043902 (2003).

[7] J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, On-chip single nanoparticle detection and sizing
by mode splitting in an ultrahigh-q microresonator, Nat. photon. 4, 46 (2010).

[8] J. Xiong, Z. Huang, K. Cui, X. Feng, F. Liu, W. Zhang, and Y. Huang, Phonon and photon lasing dynamics in optome-
chanical cavities, Fundam. Res. 3, 37 (2023).

[9] J. Li, H. Lee, T. Chen, and K. J. Vahala, Characterization of a high coherence, brillouin microcavity laser on silicon, Opt.
Express 20, 20170 (2012).

[10] H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, Chemically etched ultrahigh-q wedge-resonator
on a silicon chip, Nat. Photon. 6, 369 (2012).

[11] S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan,
et al., Sub-hertz fundamental linewidth photonic integrated brillouin laser, Nat. Photon. 13, 60 (2019).

[12] Z. Yuan, H. Wang, P. Liu, B. Li, B. Shen, M. Gao, L. Chang, W. Jin, A. Feshali, M. Paniccia, et al., Correlated self-
heterodyne method for ultra-low-noise laser linewidth measurements, Opt. Express 30, 25147 (2022).

[13] C. Lao, X. Jin, L. Chang, H. Wang, Z. Lv, W. Xie, H. Shu, X. Wang, J. E. Bowers, and Q.-F. Yang, Quantum decoherence
of dark pulses in optical microresonators, Nat. Commun. 14, 1802 (2023).

[14] G. Di Domenico, S. Schilt, and P. Thomann, Simple approach to the relation between laser frequency noise and laser line
shape, Appl. Opt. 49, 4801 (2010).


	Supplemental material for: Taming Brillouin optomechanics using supermode microresonators 
	S1. Details for simulations of  single-photon optomechanical coupling rate g0/2
	S2. Device design and characterization
	S3. Theoretical model for phonon laser generation
	S4. Experimental details for phonon laser generation and measurement
	S5. Theoretical model for strong coupling
	S6. Experimental details for strong coupling
	References


