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Nonadiabatic effects profoundly influence lattice dynamics, resulting in phonon renormalizations not
only at the center of Brillouin zone (BZ), but also across the entire dispersion at finite momenta. These
nonadiabatic phenomena exhibit clear dimensional dependencies and remain largely unexplored exper-
imentally in low-dimensional systems. Here, we utilize high-resolution electron energy loss spectroscopy
to investigate nonadiabatic phonon dispersion renormalization in monolayer graphene (MLG) and Bernal
bilayer graphene (BLG). We present comprehensive phonon spectra measurements for both MLG and
BLG across the full BZ. The high-resolution data reveal an intriguing “W” -shaped dispersion for the
longitudinal optical phonon in MLG and a “V” -shaped dispersion in BLG near the BZ center, in contrast to
the conventional “U” -shaped parabolic dispersions. Combining theoretical analysis, these anomalous
phonon renormalizations are demonstrated to originate from nonadiabatic electron-phonon couplings. The
comparative study of MLG and BLG gives a generic understanding of the impact of nonadiabatic effects on
phonon dispersions in doped two-dimensional systems.
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The Born-Oppenheimer approximation [1], one of the
cornerstones of condensed matter physics, assumes that the
motion of electrons and ions can be separated by the huge
differences in their masses and velocities. This adiabatic
approximation facilitates the treatment of solid systems by
allowing the electronic wave function to be solved inde-
pendently of the ionic motions. However, this approxima-
tion breaks down when the energy scales of electronic
motions (EF, the Fermi energy) and ionic vibrations (ℏω,
the phonon energy) become comparable, giving rise
to nonadiabatic effects. Nonadiabatic effects are widely
believed to influence a range of physical phenomena,

including superconductivity [2–5], transport behaviors [6],
and optical properties [7,8].
Among the various consequences of nonadiabatic

effects, one of the most notable manifestations is phonon
renormalization. Typically, phonon renormalization result-
ing from electron-phonon couplings (EPCs) is known as
the well-established Kohn anomaly [9,10]. Although pho-
non renormalization is affected by both the amplitude of
the electron-phonon scattering probability and the electron
response to ionic vibrations [i.e., the Lindhard response
function, χðq;ωÞ, where q denotes the momentum transfer
and ω represents the phonon frequency], the nonadiabatic
effects are believed to mainly modulate the latter [11]. In
the adiabatic limit (ℏω ≪ EF), electrons can respond
instantaneously to ionic motions [Fig. 1(a)], effectively
decoupling from the ions. This results in the electron
response being well captured by the static Lindhard
response function χðq;ω ¼ 0Þ. For an ideal electron gas,
although the real part of the static Lindhard function
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exhibits significant differences across one-, two-, and three-
dimensional (1D, 2D, and 3D) systems [Fig. 1(b)], all of
them tend to cause phonon softening.
Conversely, under nonadiabatic conditions (ℏω ∼ EF),

comparable motion velocities of electrons and ions disrupt
this instantaneous response [Fig. 1(c)], preventing the
prompt screening of ion potentials. Such effects are gen-
erally described by the dynamic Lindhard function. In this
nonadiabatic regime, the real part of the dynamic Lindhard
function exhibits a peak at a small momentum near zero in
the 3D case [Fig. 1(d)]. Intriguingly, as the system
dimensionality decreases to 2D and 1D, the peak evolves
into a pronounced singularity [inset in Fig. 1(d)]. Such a
strong electron response suggests a substantial influence on
lattice dynamics, leading to dynamic interactions that
modify the force constants between ions. Consequently,
nonadiabatic effects induce complex phonon renormaliza-
tion, particularly causing phonon hardening at small
momenta—a phenomenon that goes beyond the expect-
ations of the adiabatic approximation.
Previous nonadiabatic effects on phonons have primarily

focused on the long-wavelength limit. Theoretical analyses
and optical spectroscopic investigations have confirmed the
existence of nonadiabatic Kohn anomalies at the center of
the Brillouin zone (BZ) in a variety of materials, including
monolayer graphene (MLG) [12–14], bilayer graphene
(BLG) [15–17], carbon nanotubes [18,19], intercalated
graphite [20,21], and transition metals [22], among others.
To date, experimental investigations into the impact of

nonadiabatic effects on phonon dispersions beyond the BZ
center have been conducted only in the 3D material,
diamond [23]. However, no obvious phonon nonanalytic
behavior in the phonon dispersions was observed in
diamond, as the high dimensionality (3D) weakens the
nonadiabatic electron response.
Nonadiabatic renormalizations of phonon dispersions are

expected to be more pronounced in low-dimensional sys-
tems, as shown in Fig. 1(d), but experimental studies remain
scarce due to the challenges in accurately capturing phonon
dispersion in these systems. One-dimensional systems are
anticipated to exhibit the strongest nonadiabatic effects;
however, challenges in sample preparation impede exper-
imental studies. Two-dimensional systems, with their inher-
ent stability, present ideal candidates for such investigations.
Nevertheless, even for the most well-studied 2D materials,
such as MLG and Bernal (AB-stacked) BLG, the specific
effects of nonadiabatic interactions on phonon dispersion
are still not well understood. In the case ofMLG, theoretical
predictions regarding the impact of nonadiabatic effects
on phonon dispersions remain inconsistent [24–26]. For
BLG, studies on its nonadiabatic phonon dispersions are
notably lacking. This gap is particularly significant given
the superconductivity in Bernal BLG has been recently
observed experimentally [27–29] and is believed to be
linked to EPC [30]. Therefore, there is an urgent need to
investigate nonadiabatic effects in MLG and BLG through
high-resolution measurements of their phonon dispersions.
Here, we employ state-of-the-art high-resolution electron

energy loss spectroscopy with 2D imaging detection of
energy and momentum [2D high-resolution electron energy
loss spectroscopy (2D-HREELS), Fig. 2(a)] [31] to map the
full phonon spectra of MLG and BLG. Our measurements
unveiled distinct, anomalous, and nonanalytic dispersion
behaviors in the longitudinal optical (LO) phonons for both
MLG and BLG. Theoretical analysis further attributes these
anomalies to nonadiabatic phonon dispersion renormaliza-
tion, highlighting notable differences and interrelations
between the LO modes of MLG and BLG. This analysis
of nonadiabatic phonon dynamics enhances our under-
standing of the physics in MLG and BLG and is crucial for
future research on EPCs in low-dimensional materials.
Sample information and experimental setup—The qua-

sifreestandingMLG employed in this studywas synthesized
on a Cu(111) substrate using chemical vapor deposition.
Bernal BLG was fabricated through the exfoliation of a
graphene layer from a Cu(111) substrate and subsequent
transfer onto the same graphene/Cu(111) sample, ensuring
sample continuity. 2D-HREELS experiments were per-
formed at room temperature, using an electron beam energy
of 110 eV and an incident angle of 60°. The energy and
momentum resolutions are 3.5 meVand 0.035 Å−1, respec-
tively [Fig. S2 in Supplemental Material (SM) [32] ].
Additionally, in situ angle-resolved photoemission spec-
troscopy measurements were conducted using the helium

FIG. 1. Schematic of nonadiabatic effects. (a),(c) Depiction of
electron and ion behaviors in adiabatic and nonadiabatic scenar-
ios, respectively. The small circles represent ions, and the large
orange background represents electron clouds. In the nonadia-
batic condition, the failure of electrons to adjust instantaneously
to the vibrational state of ions leads to dynamic electron screen-
ing. (b),(d) Static and dynamic Lindhard response functions for
1D (green curves), 2D (red curves), and 3D (orange curves)
electron gas systems, respectively. The inset in (d) shows the
details of dynamic Lindhard response functions at small mo-
mentum. kF is the Fermi wave vector. The Lindhard functions are
renormalized by χ0 ¼ Re½χðq ¼ 0;ω ¼ 0Þ�.
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lamp integrated into the experimental setup [Fig. 2(a)] to
assess the doping levels of the samples. Experimental details
can be found in SM [32].
Phonon spectra of monolayer and bilayer graphene—

The calculated adiabatic phonon dispersions of MLG
and BLG along the M-Γ-K path are depicted in Figs. 2(c)
and 2(d), respectively (“Methods” in SM [32]). The trans-
verse, longitudinal, and out-of-plane acoustic and optical
(TA, LA, ZA, TO, LO, and ZO) modes of MLG are labeled
on the calculated phonon branches. Compared with MLG,
BLG exhibits a doubling of phonon branches due to the
emergence of interlayer antisymmetric vibrational modes
between graphene layers. Despite the weak interlayer
coupling, which typically results in minimal energy sep-
aration between symmetric and antisymmetric modes, the
antisymmetric out-of-plane acoustic mode (ZA’) is an
exception, showing a significant energy gap that is char-
acteristic of its bilayer structure.
Using 2D-HREELS, we mapped the phonon spectra of

MLG and BLG along the M-Γ-K path [Figs. 2(e) and 2(f),
respectively]. Remarkably, the measured phonon disper-
sions show excellent agreement with the calculated results
[Figs. 2(c) and 2(d)]. For MLG, the ZA mode does not
vanish at the BZ center but instead opens a gap of ∼6 meV
due to the substrate effect [Fig. S3(a) in the SM [32] ]. For
BLG, the dispersion of ZA’ mode, also exhibiting a clear
gap at the BZ center, is accurately captured in our
measurement [Figs. 2(g)–2(i)]. The ZA’ phonon is called
the breathing mode, and the energy gap size characterizes
the strength of interlayer coupling. Our measured results
show that the ZA’ branch exhibits a flat dispersion with an
11 meV energy gap at small momentum [see Fig. S3(b) in

the SM [32] for fitting results], which is in good agreement
with previous theoretical reports on Bernal BLG [33].
It is important to note that the spectral intensities of

phonons in the 2D-HREELS are determined by the electron
scattering selection rules [53]. In the Γ-M direction, the
vibrational eigenvectors of TO phonons are odd parity with
respect to the scattering plane, resulting in zero scattering
intensity and thus no visibility in the HREELS spectra
[53–55]. This allows the dispersion of LO phonons to be
distinctly identified and analyzed. In BLG, the LO phonons
comprise both interlayer symmetric (S) and antisymmetric
(AS) vibrations [Fig. 2(b)], with the latter being dipole
active and dominating the scattering intensity [17,56].
Generally, the intensity of dipole scattering is much greater
than that of impact scattering [53], which is consistent with
the ratio of LO phonons intensities in MLG and BLG
(Fig. S4 in SM [32]). Therefore, the LO phonons observed
in BLG are assigned to the AS mode. As discussed in the
following sections, correctly identifying phonon modes is
crucial for investigating nonadiabatic EPCs.
Nonadiabatic renormalization of phonon dispersion—

While the experimental and calculated global phonon
spectra of MLG and BLG are generally in good agreement,
high-resolution measurements reveal that the dispersions
of LO phonons display anomalous behaviors near the BZ
center, deviating from the results predicted by the adiabatic
approximation. Figures 3(a) and 3(b) illustrate the second
derivative results of the 2D-HREELS spectra along the
M0-Γ-M path [inset in Fig. 2(a)], providing a clearer
visualization of phonon dispersion compared to original
spectra. In MLG, the LO phonon exhibits a higher energy
near the Γ point with an upward convex curvature, forming

FIG. 2. Phonon spectra of MLG and BLG. (a) A schematic of the experimental setup. Inset: schematic of the BZ. (b) Lattice vibrations
of the S LO and AS LO modes in BLG. (c),(d) Calculated phonon dispersions of MLG and BLG along the M-Γ-K paths, respectively.
(e),(f) 2D-HREELS mappings of the phonon spectra for MLG and BLG along the M-Γ-K paths, respectively. (g) 2D-HREELS
mappings of the ZA’ and ZA modes in the energy loss and energy gain regions. The energy loss region corresponds to the area in the red
box in (f). (h),(i) The second derivative results and stacked energy distribution curves corresponding to (g), respectively. The orange
curves in (i) are guides to the eye.
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a “W” -shaped dispersion as momentum (absolute value)
increases [Fig. 3(a)]. Conversely, for BLG, the energy of
AS LO phonon is minimized at the Γ point, with energy
rising as momentum increases to form a “V” -shaped
dispersion [Fig. 3(b)]. These observed dispersions align
closely with our fitted data [Figs. 3(e)–3(h) for MLG and
BLG, respectively]. The “W” and “V” -shaped dispersions
around the BZ center exhibit clear nonanalytic behaviors,
distinct from the adiabatic “U” -shaped parabolic disper-
sions [inset in Figs. 2(c) and 2(d)], demonstrating anoma-
lous renormalization of the LO phonons beyond the
adiabatic approximation.
To comprehensively understand and assess the overall

nonadiabatic dispersion behaviors, we calculated the non-
adiabatic spectral functions of the EPC for the LO modes of
MLG and BLG. The nonadiabatic spectral function is given
by [11]

Aðq;ωÞ ¼ 1

π
Im

�
2ω0ðqÞ

ω2 − ω2
0ðqÞ − 2ω0ðqÞΠNAðq;ωÞ

�
; ð1Þ

whereω0ðqÞ is the adiabatic phonon frequency atmomentum
q [as presented in Figs. 2(c) and 2(d)], calculated using
the density-functional perturbation theory (“Methods”).
ΠNAðq;ωÞ is the nonadiabatic phonon self-energy, defined as

ℏΠNAðq;ωÞ ¼ 2
X
mn

Z
dk
ΩBZ

jgmnðk; qÞj2

×

�
fn;k − fm;kþq

εm;kþq − εn;k − ℏðωþ iδÞ

−
fn;k − fm;kþq

εm;kþq − εn;k

�
; ð2Þ

where εnðmÞ;k and fnðmÞ;k are the electronic band energy and
Fermi-Dirac distribution of band indexn (m) andmomentum
k, respectively. δ is a positive real infinitesimal and ΩBZ

is the volume of BZ. gmnðk; qÞ ¼ ½ℏ=2MCω0ðqÞ�1=2
hψm;kþqj∂qvKSjψn;ki is the electron-phononmatrix elements.
Here, MC is the mass of carbon atom, ψn;k is the electron
wave function of band n at momentum k, and vKS is the
lattice-periodic Kohn-Sham potential. The Fermi levels used
in calculations are measured in situ by angle-resolved
photoemission spectroscopy (Fig. S5 in SM [32]). The
second term in brackets on the right side of Eq. (2) represents
the adiabatic contribution, which is already accounted for in
the density-functional perturbation theory calculations
(“Methods” in SM [32]). The first term contains the overall
(both nonadiabatic and adiabatic) response by including the
nonzero phonon frequency ω in the denominator. Therefore,
the difference between the two terms represents only the

FIG. 3. Nonadiabatic phonon dispersions of MLG and BLG. (a) The second derivative spectra of the LO mode of MLG along M0-Γ-M
path. (c) Calculated nonadiabatic phonon spectral functions for the LO mode of MLG. (e) LO phonon dispersion data of MLG. The data
are the fitting results of the energy distribution curves extracted from the original 2D-HREELS spectrum. The gray (black) curve
represents the results from (non)adiabatic calculations. (g) Typical fitting results (solid lines) for energy distribution curves (open circles)
at momenta of 0.01 Å−1 (red), 0.10 Å−1 (blue), and 0.33 Å−1 (green) of MLG [corresponding to the gray arrows in (e)]. The purple
dashed line is the guide line for the peak position. (b),(d),(f),(h) Results for the AS LO phonon of BLG corresponding to (a),(c),(e),(g),
respectively. The calculated curves in (e) and (f) are shifted by 2.8 and 1.7 meV, respectively.
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contribution of the nonadiabatic phonon self-energy. The
renormalization of the phonon frequency and lifetime are
determined by the real and imaginary parts of the self-energy
and are given by the intensity peak and broadening of the
spectral functions, respectively.
The introduction of finite ω in Eq. (2) leads to a nonzero

nonadiabatic phonon self-energy ΠNAðq;ωÞ, which in turn
renormalizes the adiabatic phonon frequency via Eq. (1). As
shown in Figs. 3(c) and 3(d), the nonadiabatic spectral
functions from our calculations (convolved with the exper-
imental broadening, for the original results see Fig. S7 in
SM [32]) exhibit high consistency with the experimental
spectra [Figs. 3(a) and 3(b)], successfully reproducing
the distinctive “W” -shaped and “V” -shaped dispersions
observed in MLG and BLG, respectively. Figures 3(e)
and 3(f) display the comparisons between the fitted exper-
imental data and the calculated nonadiabatic (black) and
adiabatic (gray) phonon dispersion curves for theLOphonon
in MLG and the AS LO phonon in BLG, respectively. The
nonadiabatic calculation results show excellent agreement
with the experimental data, whereas the adiabatic calculation
results (with “U”-shaped dispersions) significantly deviate
from the experimental dispersion.
Doping-dependent nonadiabatic phonon renormali-

zation—The doping behavior of the materials provides
crucial insights into the relationship between EPCs and
nonadiabatic phonon dynamics. Figures 4(a) and 4(b)
present the calculated momentum-resolved EPC strength
λq for LO phonons in MLG and AS LO phonons in BLG at
different Fermi levels (“Methods”). For the LO phonon in
MLG, increasing doping levels significantly broaden the
momentum range of the electron-phonon interaction. In
contrast, the doping effect on the AS LO phonon in BLG is
relatively modest. Figures 4(c) and 4(d) show the calculated
total (momentum-integrated) EPC strength λ and the non-
adiabatic phonon renormalization energy ΔE [57] for LO
and AS LO phonons as a function of the Fermi level. For
LO phonons, there is a marked concurrent increase in both
the λ and the ΔE as doping levels rise. On the other hand,
for AS LO phonons, doping does not induce significant
changes in either the λ or ΔE. These results demonstrate
that the EPC strength and the degree of nonadiabatic
phonon renormalization are directly related, suggesting
that the nonadiabatic effect should not be ignored in any
EPC-related phenomena.
Physical origin of the nonadiabatic phonon renormali-

zation—The distinct roles of nonadiabatic effects on
phonon renormalization in MLG and BLG are discussed
in detail in the End Matter. Briefly, our analysis reveals that
the nonadiabatic phonon renormalization primarily arises
from singularity in the dynamic Lindhard function, while
the electron-phonon matrix elements modulate the extent of
the renormalization. The hardening of LO phonons in MLG
is caused by intraband transitions, while the softening of
AS LO phonons in BLG is primarily driven by interband

transitions. The differences in nonadiabatic renormaliza-
tions between LO phonons in MLG and AS LO phonons in
BLG are attributed to the symmetry-related EPC mecha-
nisms (further elaborated in the End Matter).
More directly, the nonadiabatic and adiabatic pictures

can be more simply analyzed through the denominator of
the dynamic Lindhard function

χDmnðq;ωÞ ¼
Z

dk
ΩBZ

fn;k − fm;kþq

εm;kþq − εn;k − ℏðωþ iδÞ : ð3Þ

In the nonadiabatic case, phonons possess a finite energy
of ℏω. For intraband transitions, the energy difference
between the initial and final electronic states is Δε ¼
εkþq − εk ≈ vFq, where vF is the Fermi velocity.
Therefore, when q < ℏω=vF, we have Δε < ℏω, and the
electron-hole dissipation channel for the phonons is
blocked. In contrast, in the adiabatic case, since the phonon
energy is assumed to be zero, the electron-hole dissipation
channel remains open. As a result, the LO phonons in MLG
harden at small momentum in the nonadiabatic case. For
interband transitions of BLG, the energy difference Δε
between the π1 and π2 bands is ∼400 meV, which is greater
than the phonon energy ℏω, meaning the electron-hole
dissipation channel remains open even at small momentum.
In the nonadiabatic case, the finite phonon energy ℏω
reduces the difference with Δε, thus causing an increase in
dissipation. As a result, the AS LO phonons in BLG soften
at small momentum.
Notably, while the nonadiabatic renormalization of the

LO phonon in MLG significantly differs from that of the

FIG. 4. Doping-dependent EPC and phonon renormalization.
(a) Momentum-resolved EPC strength λq for the LO phonon in
MLG at different Fermi levels. (c) The dependence of the total
EPC strength λ and the phonon renormalization energy ΔE of the
LO phonon on the Fermi level in MLG. (b),(d) Results for the AS
LO phonon of BLG corresponding to (a) and (c), respectively.
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AS LO phonon in BLG, our calculations and analysis
demonstrate that it exhibits similar behavior to the S LO
phonon in BLG (Fig. S8 in SM [32] and EndMatter). This is
reasonable and expected given that the LO phonons ofMLG
and the S LO phonons of BLG exhibit the same vibrational
symmetry. This similarity between the LO phonons inMLG
and S LO phonons in BLG, alongside their differences from
the AS LO phonons in BLG, aligns with previous studies
conducted at the BZ center [13,15–17]. Our results not only
reproduce the nonadiabatic phonon renormalization at the
BZ center but also demonstrate that this intriguing effect
persists at finite momentum.
Discussions—The singularity in the 2D dynamic

Lindhard function arises predominantly from dimensional
effects rather than the specific characteristics of the
electronic bands. This is particularly prominent in our
study. Although MLG and BLG feature Dirac linear and
parabolic electronic bands, respectively, the LO and S LO
phonons exhibit analogous nonadiabatic renormalization
behaviors. This suggests that the phonon hardening caused
by nonadiabatic effects is generally prominent in doped 2D
systems, as predicted in doped monolayer MoS2, [58]
graphane [59], and arsenene [59], among others. This is
consistent with the general behavior of the 2D dynamic
Lindhard function shown in Fig. 1(d).
Although the extent of phonon dispersion renormaliza-

tion induced by nonadiabatic effects seems modest, its
implications for the fundamental properties of materials,
such as superconductivity, are significant. Theoretical
studies indicate that nonadiabatic effects can substantially
enhance EPC strength, thereby increasing the supercon-
ducting transition temperature [60,61]. Given that phonons
are believed to mediate the superconductivity in Bernal
BLG [30] and magic-angle twisted BLG [62–64], the
nonadiabatic nature of the EPC should be considered to
properly evaluate their superconducting properties.
Additionally, the high-resolution mapping of phonon spec-
tra in BLG using the 2D-HREELS approach offers a
promising avenue for further exploration of phonon dis-
persions and their related physics in magic-angle twisted
BLG [65–67] and other twisted systems [68–70].
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End Matter

Band-resolved analysis of nonadiabatic phonon
renormalization—To unveil the distinct roles of the
nonadiabatic phonon renormalization of LO mode in
MLG and AS LO mode in BLG, we delve into the
band-resolved electron-phonon matrix elements gmnðk; qÞ
and the Lindhard term, which signify the probability for
the electron-phonon scattering process and the response
of electron to lattice vibrations, respectively. The band-
resolved nonadiabatic Lindhard function χNAmn ðq;ωÞ is
defined as the difference between the dynamic χDmnðq;ωÞ
and the static (adiabatic) Lindhard χmnðqÞ term

χNAmn ðq;ωÞ ¼ χDmnðq;ωÞ − χmnðqÞ; ðA1Þ

with χDmnðq;ωÞ ¼
R ðdk=ΩBZÞfðfn;k − fm;kþqÞ=½εm;kþq −

εn;k − ℏðωþ iδÞ�g and χmnðq;ωÞ ¼
R ðdk=ΩBZÞ½ðfn;k −

fm;kþqÞ=ðεm;kþq − εn;kÞ�. To facilitate comparisons, the
resulting values are normalized by the adiabatic Lindhard
term at zero momentum, Reχðq ¼ 0;ω ¼ 0Þ ¼ χ0,
contributed by the intraband transitions across the Fermi
surface.
In MLG, we detected a significant modulation of

the nonadiabatic χNAðq;ωÞ by intraband transition of π�
[Fig. 5(a)]. Compared to the adiabatic Reχπ�π�ðqÞ [gray
curve in Fig. 5(b)], ReχNAπ�π� ðq;ωÞ exhibits a positive peak

around 0.03 Å−1 [red curve in Fig. 5(b)]. This indicates that
phonon hardening in MLG stems from the intraband non-
adiabatic response. The gπ�π�ðqÞ of the LO phonon changes
smoothly with momentum [Fig. 5(c)], thus not affecting the
hardening results. In BLG, we detected two significant
nonadiabatic modulations of χNAðq;ωÞ: χNAπ�

1
π�
1
ðq;ωÞ and

χNAπ�
1
π�
2
ðq;ωÞ corresponding to π�1 intraband and π�1 to π�2

interband transitions [Figs. 6(a), 6(b), and 6(d)], respec-
tively. ReχNAπ�

1
π�
1
ðq;ωÞ exhibits similar behaviors to the MLG,

but the ReχNAπ�
1
π�
2
ðq;ωÞ exhibits the opposite behaviors to the

ReχNAπ�
1
π�
1
ðq;ωÞ. The tips of ReχNAπ�

1
π�
1
ðq;ωÞ and ReχNAπ�

1
π�
2
ðq;ωÞ

are at almost the same momentum position, suggesting
potential cancellation effects between them. Intriguingly, the
magnitudes of the gðqÞ for the S LO and AS LO modes in
BLG vary significantly [Figs. 6(c) and 6(e)]. The EPCs of S
LO and AS LO modes are predominantly governed by π�1
intraband transition and π�1 to π�2 interband transition,
respectively.
If we roughly use jgmnðqÞj2ReχNAmn ðq;ωÞ to estimate the

magnitude of the phonon self-energies, we find that the
self-energy of AS LO phonon near the point is negative,
indicating softening. This is consistent with our observed
results in BLG. For the S LO phonon, however, at small
momentum (< 0.1 Å−1), gπ�

1
π�
1
ðqÞ is significantly larger

than gπ�
1
π�
2
ðqÞ. This indicates that the phonon self-energy of

S LO mode is dominated by intraband transitions, exhib-
iting similar hardening behaviors to the LO phonon in

FIG. 5. Band-resolved nonadiabatic EPCs of MLG. (a) Sche-
matic of the energy bands and band transitions. (b) The real parts
of nonadiabatic (red curve) and adiabatic (gray curve) Lindhard
functions for intraband transitions [red arrow in (a)]. (c) Electron-
phonon matrix elements for LO mode associated with the
intraband transitions.

FIG. 6. Band-resolved nonadiabatic EPCs of BLG. (a) Sche-
matic of the energy bands and band transitions. (b),(d) The real
parts of nonadiabatic (red curve) and adiabatic (gray curve)
Lindhard functions for intraband [red arrow in (a)] and interband
[purple arrow in (a)] transitions, respectively. (c),(e) Electron-
phonon matrix elements for S LO (green curves) and AS LO
(orange curves) modes associated with the intraband and inter-
band transitions, respectively.
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MLG, which is consistent with our calculated results
(Fig. S8 in SM [32]). The nonadiabatic analysis of the
LO phonon in MLG and the S LO phonon in BLG reveals
that the intraband contribution of dynamic Lindhard

function is the primary cause of phonon hardening.
This also indicates that the above analysis is applicable
to general doped 2D materials, with phonon hardening
being a universal phenomenon in doped 2D materials.
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