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ABSTRACT: The accurate detection and discrimination of on-
surface organic isomers and very similar molecules are crucial for
monitoring chemical reaction processes and analyzing various
reaction mechanisms and molecular properties. Despite its
importance, nano- and surface science communities still lack an
efficient, robust, precise, and automated detection approach for on-
surface isomers and highly similar molecules. Here, we present
ReSTOLO, a convolution neural network (CNN)-based frame-
work for precise detection and identification of multiple types of
sparsely distributed molecules on surfaces, particularly designed for
scanning tunneling microscopy (STM) images containing numer-
ous molecules with analogous features. To address challenges
arising from molecular shape and size similarities, we implemented
a two-stage framework comprising two CNN models: YOLO v5.m was used for molecular localization, and ResNet-101 for
classification. The framework optimally harnesses the advantages of both models by applying a box normalization connection. We
demonstrated the framework’s effectiveness by applying it to analyze a surface reaction process involving six molecules with nearly
identical STM signatures. The training process employed an STM image database of single molecules augmented with physical and
experimental tools constructed using standardized image boxes. This two-stage approach achieved approximately ∼20%
improvements in performance metrics, including precision, recall, and accuracy, compared to conventional frameworks. The
framework exhibits robust capabilities in automatically and efficiently pinpointing and discriminating between molecular species with
similar configurations in complex surface reactions. This automated molecular discriminator represents a significant advance in
facilitating STM tip-manipulated chemical reactions on surfaces.

■ INTRODUCTION
On-surface organic reactions and low-dimensional character-
izations have attracted significant attention in recent years,
driven by their unique properties, including diverse functional
groups, low-dimensionality, confinement effects, carbon chain
plasticity, and electronic delocalization effects in aromatic
molecules.1 Scanning probe microscopy (SPM) has enabled
the observation and manipulation of chemical processes on
metal surfaces under high vacuum and well-defined interfaces,
complementing traditional solution and three-dimensional
systems. These on-surface methodologies show huge potential
in synthesizing novel low-dimensional nanostructures unattain-
able via conventional methods,2,3 revealing reaction mecha-
nisms,2−8 discovering novel physical properties,5−7,9−15 and
developing advanced technical applications.11,16−18 Across
these fields, precise classification of specific entities, such as
chiral molecules, isomers, or very-similar molecules, has
become increasingly crucial.
Imaging techniques have emerged as the cornerstone of on-

surface nanoscientific discoveries and industrial applica-
tions.9,19 SPM techniques, particularly scanning tunnel
microscopy (STM) and atomic force microscopy

(AFM),10−12 have proven powerful and indispensable for
molecular observation and manipulation.2,3,5−8,13−18,20−26

Their atomic-level resolution capabilities have positioned
them at the central role of nanoscience research, enabling
both direct observation27 and precise manipulation2,12,25,28 of
molecular entities. The analysis of SPM images often requires
accurate determination of the positions, structures, and
categories of molecules, many of which might share similar
characteristics, posing a fundamental challenge to the
community. While traditional visual analysis by naked eye is
time and labor-intensive, some processes, including molecular
detection and enumeration, could be partially streamlined with
proper choices of algorithms and data mining methods,29,30

thanks to the recent advances in computer vision technology.
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In the past decade, machine learning (ML), particularly deep
learning-based computer vision, methods have blossomed with
significant application to material sciences.31−37 Among them,
the convolution neural network (CNN) has emerged as a
transformative deep learning method, demonstrating signifi-
cant capabilities in many important real-life tasks, including
image classification, localization, segmentation, and recon-
struction.38−45 Within the surface and nanoscience domain,
CNNs are widely applied to surface atom and defect
detection,32,38 phase formation analysis,39 experimental image
denoising,40 ferroelectric domain detection,41 and atomic
characterization.33 Notably, the flexibility of the shape and
size of the bounding boxes have been the key factor to the
robustness and versatility of these models.42 While direct
interpretation of on-surface molecular structures with deep
learning approaches has been reported in the past few years,43

previous studies mainly focused on limited molecular systems:
single-molecule types with different chiralities,44 or with
defined orientations,45 and two or more distinct molecular
structures.46 These systems exhibit readily distinguishable
features, which can be identified through dimensionality
reduction methods like t-SNE or PCA feature maps.44,47,48

To enhance the performance of models, researchers have
either incorporated spatial information (like specific patterns

from assembled or periodic structures)44,45,47,48 or integrated
domain knowledge such as molecular structural information
into Bayesian belief networks and Markov-based denoising
methods.49,50 However, precise localization and classification
of similar molecules randomly distributed on surfaces remain
significant challenges, especially when STM images of distinct
molecules appear to be “very similar”, such as when the
differences between molecules involve only the quantity or
position of hydrogen atoms.
Traditional object detectors struggle in scenarios where

multiple classes share highly similar shapes/textures, precisely
the situation encountered with structural isomers on surfaces.
Single-stage object detection models like YOLO, which
simultaneously locate and identify targets using adaptive
bounding boxes in one pass, particularly excel when working
with data sets containing objects with diverse or distinct visual
features. However, this approach becomes problematic when
different molecule types produce detection boxes of similar size
and shape; YOLO might retain multiple high-confidence boxes
for visually similar species, leading to misclassification errors.
On the other hand, two-stage detectors like Faster R-CNNs
contain two stages: region proposal (RP) and classification and
regression (C&R) connected by the region of interest pooling
(ROI-P), which locate and identify targets separately. Faster R-

Figure 1. Experimental characterization and identification of on-surface dehydrogenative C−C coupling reactions. (a) Reaction scheme showing
intermediate and final products on Cu(111). (b) Content clustering analysis of single-molecule images through t-SNE. (c) STM image of
molecular reaction at 297 K; scanning parameters: 100 mV, 10 pA, with CO tips. The right panel displays the zoomed-in image of the rectangular
region. The STM images used in this article are adapted with permission. Reproduced from ref 51 Copyright [2024] American Chemical Society.
(d) Deployment workflow of molecular detection based on the STM image obtained from experiments. The deployment workflow includes three
task groups (TGs): data preparation, model training, and detection (locating and classification).
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CNNs first propose regions of interest before classifying
features, following the ROI-P, which normalizes box
dimensions to facilitate the classification. However, the second
stage (C&R) after ROI-P faces limitations dealing with highly
similar molecular structures, especially without obvious
exploitable spatial relationships. The pooling process ROI-P
can compromise, average out, or drop subtle shape details that
are essential for distinguishing isomers.
Hereby, we present a CNN-based two-stage deep-learning

STM detection framework named ReSTOLO, designed
specifically for localizing and classifying sparsely distributed
isomers and very similar molecules in multispecies STM
overview images. The framework integrates two CNN models
with a box normalization connection: YOLO version 5.m for
initial localization (stage A) and ResNet-101 for subsequent
classification (stage B). In stage A, YOLO v5.m employs
adaptive bounding boxes in various sizes and shapes to
robustly locate molecules, followed by standardization to fixed-
size boxes for consistent image capture. Then, in stage B,
ResNet-101 is utilized for precise molecular classification of
these standardized images. The workflow of ReSTOLO is

formulated into three task groups (TG): preparation, training,
and detection. In the preparation task group, a single-molecule
type STM image data set is constructed by incorporating
physically and experimentally based augmentation methods,
including SRResNet resolution enhancement, etc. Next, we
optimized both YOLO v5.m and ResNet-101 independently in
the training task group. Finally, ReSTOLO is applied to
discriminating molecules with similar STM signatures. To
showcase the effectiveness of our model, we applied
ReSTOLO upon a complex surface reaction process on the
Cu(111) surface, which involved six molecular species, four
among them with very similar STM signatures; the framework
achieved precise molecular localization and classification,
demonstrating approximately 20−25% improvement in pre-
cision and recall compared to traditional structures, for
example, Faster R-CNN and YOLO v5.m.

■ RESULTS AND DISCUSSION
Surface Reaction Process with Several Similar

Molecules. Our investigation focuses on a surface reaction
process involving six distinct organic aromatic molecules,

Figure 2. Performance comparison among our proposed ReSTOLO detection framework and traditional one- and two-stage frameworks: YOLO
and Faster R-CNN. (a) Our proposed ReSTOLO detection framework. The operation mechanisms and performance of (b) YOLO and (c) Faster
R-CNN. The single-molecule images in Stage A of (a) and (c) represent the located-out single molecule surrounded by detection boxes
(bounding/anchor box). Single-molecule images in Stage B of (a) and (c) are size- and shape-unified through box normalization and recapture (a)
and RoI pooling (c), respectively; the latter method may lose details. YOLO locates and classifies molecules simultaneously. For very similar
molecules, two proposal boxes of similar molecule types with shapes alike could both have high scores and hence be kept, which possibly leads to
misclassification. On the right side of the panel, three critical detection indexes are considered to evaluate the performance, including precision,
recall, and accuracy.

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://doi.org/10.1021/jacs.5c03730
J. Am. Chem. Soc. 2025, 147, 35232−35243

35234

https://pubs.acs.org/doi/10.1021/jacs.5c03730?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.5c03730?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.5c03730?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.5c03730?fig=fig2&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.5c03730?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


representing the intermediate and final states (designated as 2,
3, 4, 4′, 5, and 6) of 1-bromo-8-phenylnaphthalene (1)
reaction on a Cu(111) surface, as shown in Figure 1a. The
reaction begins with breaking the C−Br bond in state 1,
generating an intermediate state 2 with an unpaired electron.
Subsequently, two 2 molecules combine to form a copper-
mediated dimer. Then, the reaction progresses by breaking the
C−Cu bonds, yielding products 4, 4′, 5, and 6. Among these
products, 4, 4′, and 5 are isomers, distinguished only by the
location of the hydrogen atom, while 6 contains two extra H
atoms compared to 4, 4′, and 5. Notably, molecule 2 exhibits
structural features similar to 4, 4′, 5, and 6 except for the
missing C−C bond. This dehydrogenative on-surface C−C
coupling reaction serves as an ideal case study for developing
automated discrimination of similar intermediate and final
structures, crucial for elucidating the underlying physical and
chemical mechanisms.51

The experimental procedure involved evaporating the
precursor molecules on a Cu(111) substrate, followed by
annealing at 297 K. STM measurements were performed, and
all STM images acquired are shown in Figure 1c. Since
debromination happens spontaneously upon precursor adsorp-
tion on the substrate, precursor 1 was excluded from
subsequent research. The STM images reveal numerous bright
spots with similar features (Figure 1c, left panel). Through
noncontact AFM (nc-AFM) analysis, we identified several
characteristic bright spots, with their corresponding STM
images presented in Figure 1c, left panel. The similarity in
STM signatures among intermediate and final states makes
visual analysis by the naked eye impractical, even with
extensive experimental expertise. The traditional, widely used
dimension reduction and clustering algorithm t-SNE, fre-
quently used in pattern discovery and data mining,52 are
implemented to analyze the features of our single-molecule
images in Figure 1b. Molecules cannot be divided into
distinctly distinguishable independent groups on the 2D
feature plan, particularly for 4, 4′, and 6. The dispersive
distribution indicates the high similarity of molecules 4, 4′, and
6, corresponding to the STM images in Figure 1c, in which
molecules 4, 4′, and 6 exhibit three protrusions, with one
brighter than the others. This limitation motivated our
development of a deep learning framework specifically
designed to differentiate these molecular species solely on
the basis of their STM signatures. We proposed a deep-
learning framework, ReSTOLO, containing a two-stage
structure that locates and classifies molecules separately and
sequentially (see Figure 2a). The deployment workflow of the
ReSTOLO detection framework is shown in Figure 1d.
ReSTOLO Detection Framework and Deployment

Workflow. Traditional object detection paradigms such as
YOLO architectures or Faster R-CNN are optimized for real-
world scenarios characterized by (i) variable observer
distances, (ii) intraclass heterogeneity across dimensions, and
(iii) multimodal discriminative features. These frameworks
employ adaptive bounding boxes to accommodate such
variability, which is essential for applications such as
autonomous navigation systems. However, detection of
surface-bound sparsely distributed molecules presents a
distinct set of constraints: (i) planar geometries with uniform
z-axis positioning, (ii) shape/structure homogeneity within
molecular species, and (iii) shape/size-dependent classification
parameters. Hence, these fundamental differences from
macroscopic detection scenarios could cause conventional

flexible-boundary approaches to be detrimental to accuracy.
Within this molecular context, geometric transformation of a
detected molecule A whether scaling or compression might
induce misidentification with its isomeric counterpart B, since
affine and scaling invariance do not apply as in macroscopic
object detection. Meanwhile, conventional crystallographic
analysis methods are also not applicable due to the stochastic,
nonperiodic distribution of surface molecules. These unique
constraints point to the necessity of a specialized detection
framework optimized for molecular imaging applications.
As shown in Figure 2b, a one-stage framework like YOLO

locates and classifies targets simultaneously. YOLO generates
many boxes of different shapes with type label and their
probability (bounding/anchor box) in the same time and
afterward rules out unlikely boxes using the non-maximum
suppression (NMS) algorithm. For highly similar targets, the
shape variability of bounding boxes could seriously interfere
the classification. More concretely, two or more bounding
boxes of different molecular types with similar shapes could
both be kept due to the intrinsic similarity between different
molecular types. However, for two-stage frameworks like Faster
R-CNN in Figure 2c, a Region of Interest (RoI) pooling is
used to unify the shape and size of bounding boxes. However,
the details and shape nuances could be erased and dropped by
the RoI pooling process. These shortages are evident,
especially in cases of high similarity (Figure 2b,c). Hence,
applying both frameworks to our molecular system would lead
to a significant decrease in precision and accuracy index for
certain molecule types (Figure 2b,c right).
Our framework ReSTOLO, inspired by the proposal-

classification strategy of the deep vision model Faster R-
CNN and R-FCN,53 integrates YOLO v5.m and ResNet-101 in
a two-stage detection pipeline, as presented in Figure 2a. This
design leverages YOLO v5.m’s structural lightness and variable
bounding box capabilities for initial molecular localization
while mitigating classification ambiguity through ResNet-101’s
fixed-size image analysis (224 × 224 pixels2). The YOLO v5.m
and ResNet-101 are integrated through an intermediate box
normalization algorithm that recalibrates detected regions to
standardized dimensions (150 × 150 pixels2) and centers
molecules using a weighted pixel square sum average method.
This design successfully avoided the loss of image shape
information and texture details and reduced the similarity
problem, resulting in good detection effectiveness. The
deployment workflow of the ReSTOLO detection framework
includes data preparation (TG 1), training (TG 2), and
locating and classification (TG 3), as shown in Figure 1d. It is
worth noting that the improvements from our model design
are clearly observable when comparing different frameworks
trained in parallel on identical original data sets (see Figure 2).
TG 1. Data Preparation. In data preparation, each single-

molecule image of various types was captured using 300 × 300
pixel2 boxes at 200% magnification (that is, magnifying the
original STM image with a ratio of 200% to display the fine
detail) from experimentally collected STM images. Incorpo-
ration of images at various resolutions aims to enhance model
robustness by encouraging learning of resolution-independent
molecular features. This data acquisition and cleaning process
is rather key to our deployment.
A data set comprising approximately ∼40 molecules per

molecular species, extracted from both high- and low-
resolution STM images exhibiting varying background
intensities, is obtained after the STM experiments and data
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cleaning process. Then, the data set is augmented by
incorporating material physical properties and experimental
perspective, including instrumental and methodological
limitations, for a more domain-specific enhancement. Previous
studies have demonstrated the effectiveness of data augmenta-
tion strategies when applying deep machine learning to surface
systems with limited training data.44,47 In addition, multiple
studies across various machine learning applications have also
validated this approach for small data sets.54,55 The detailed
process is shown in Figure 3a−c. Considering the physical and
experimental background of our augmentation strategies, their
theoretical sights are distinct. The details of augmentation
methods were introduced as follows.
The physically based augmentations include 60 ° rotation

and mirror reflection. The Cu(111) surface exhibits three
equivalent crystal orientations, imposing corresponding mo-
lecular alignment constraints (Figure 3b). We also performed a
principal component analysis (PCA) to help further discern
the surface crystal orientations (see Supporting Information 2).
Based on these physical constraints, we implemented rotational
augmentation along these three primary directions and their
angular bisectors, rather than arbitrary angular rotations, to
optimize computational cost while maintaining physical
relevance (top panel, Figure 3c). Also, given that 4, 4′, 5,
and 6 are the intermediate compounds without complex
stereochemical transformation, we treated chiral variants as
equivalent. This equivalence was implemented through
horizontal and vertical mirror transformations of molecular
screenshots, effectively doubling the available training data for
chiral species, while maintaining physical accuracy. The

rationale behind these physically based augmentations can
also be interpreted in a more mathematical perspective; the
classification of molecules can be conceptualized as a
geometrical transform-sensitive function from molecular
image (independent variable) to molecular type (dependent
variable) that maintains invariance under the aforementioned
specific symmetry operations. These symmetry operations
should not influence the identification of the molecular type.
The experimentally based augmentations concern the

variations and limitations of the experimental conditions.
Our STM data set included both low- and high-resolution
images (bottom panel, Figure 3c), reflecting practical
experimental constraints including measurement limitations
and computational resource optimization. Low-resolution
images, while efficient to acquire, inherently contain less
identifiable features, potentially compromising neural network
effectiveness.46 Inspired by the generative residual networks
previously reported for simulation-to-realistic nanostructure
image conversion, we adopted the SRResNet architecture to
compensate for this limitation.56 After compiling the initial
training data set, several high-resolution images in the data set
were selected to train the SRResNet reparation model,
leveraging the interpixel relationship of molecule screenshots.
The training and verification loss of SRResNet showed no sign
of overfitting (see Supporting Information 3.2, Figure S17).
Notably, such an implementation required careful consid-
eration of true pixel resolution, as both original STM images
and magnified screenshots often contain redundant color
information across adjacent pixels. To determine optimal
sampling parameters and true image resolution, we employed

Figure 3. Data preprocessing and feature extraction for molecular STM images. (a) STM experiments and data acquisition. Single-molecule images
were extracted by screenshotting with a fixed size and magnification. (b) STM images of the single molecule (screenshots) with three equivalent
orientations on the Cu(111) surface (blue or black), with an additional three angular bisector orientations used for data augmentation. (c) Two
main kinds of augmentation methods: physically based methods and experimentally based methods. The physically based methods mainly consider
the inherent physical and chemical properties of our surface system. Single-molecule images were rotated according to the three equivalent
directions of the Cu(111) surface and their angular bisectors. Mirror reflections were applied to consider the existence of chirality. Experimentally
based methods indicate the difference in experimental details. Low-resolution images were repaired by the super resolution (SR) algorithm to
compensate for the lack of high-resolution images. SRResNet is trained using high-resolution single-molecule images from the acquired data, with
training and verification data sets randomly divided with a 0.1 verification ratio. Random white noise and other random pixel change methods were
applied to account for potential changes in the imaging condition and environment (see Supporting Information 5.1).
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fast Fourier transformation (FFT)57 to quantitatively assess the
spatial frequency content (detailed SRResNet training
protocols are provided in Supporting Information 3).
Furthermore, random white noise was introduced to simulate
thermal-dynamic fluctuations and system perturbations of the
experimental instruments.
We have also considered other widely applied augmentation

methods, which may not have a very straightforward
background but could be helpful to the enhancement of
model performance. The jittering of brightness, contrast, and
hue of molecular images was applied. This might partially
reflect different STM imaging conditions in real experiments,
although some of such jittered values could be “non-physical”
(see Supporting Information 5.1). These augmentation
methods are also included in the experimentally based
augmentations.
TG 2. Training. The training task group involved

optimizing YOLO version 5 for molecular localization and
ResNet-101 for subsequent classification. While potentially less
precise than more complex architectures, YOLO v5.m’s
lightweight design proved ideal for initial molecular detection.
On the other hand, ResNet-101, chosen for its sophisticated
classification capabilities enabled by residual connections,
effectively mitigated network degradation during training.
The data set used in training the locating model contains

STM images with multiple molecules to simulate realistic STM
imaging conditions. We developed a Python-based subwork-
flow to generate composite images by combining 15 × 15
pixel2 screenshots at different densities (Figure 4a-2, Process
A) and simultaneously generating corresponding label files,
which contain precise molecular locations. Also, we supple-
mented the synthetic data set with manually annotated raw
STM images using LABELIMG software (Figure 4a-2, Process
B), to enhance performance and account for substrate features
such as surface structures. Since geometric precision was less

critical for the localization stage, only square-format boxes
were used to optimize the detection accuracy.
The classification training pipeline directly utilized the

augmented single-molecule data set from TG 1, requiring no
additional preprocessing (Figure 4a-1). The training is realized
by minimizing the loss function, as in other supervised learning
tasks. During the training (TG 2), there is no training priority
requirement for these two models since their training does not
depend on each other. That is, they can be trained
simultaneously (Figure 4b). Comprehensive training protocols,
loss functions, hyperparameter configurations, and conver-
gence metrics are detailed in Supporting Information 6.2 and
7.2. Our 10-fold cross validation of both models further
confirms the absence of overfitting in our framework (see
Supporting Information 6.3 and 7.4). No specific hyper-
parameters or training protocols were particularly critical for
converging the YOLO and ResNet models. Complete training
protocols and optimized hyperparameter configurations are
detailed in Supporting Information 4, 5.1, 6.1−6.2, 7.1−7.2,
and 9.1.
TG 3. Detection. The final task group focused on the

framework validation using previously unseen STM images.
The complete testing subworkflow architecture is illustrated in
Figure 5a(1−5). Following initial localization, molecular
centers were adjusted using a weighted average method (box
normalization), where pixel weights were determined by the
square sum of the RGB channel values. Bounding boxes were
subsequently standardized to 150 × 150 pixels2 (corresponding
to the 300 × 300 pixels2 training data set at 200%
magnification) to maintain geometric consistency crucial for
accurate classification. This standardization step proved
essential, as the classification stage is highly sensitive to
molecular shape and size, where even the modest geometric
distortions could lead to significant misclassification. The

Figure 4. Training pipeline for the ReSTOLO framework (TG 2). The training pipeline can be divided into two branches according to the model
type: YOLO v5.m and ResNet-101. (a)-1 ResNet-101 model is trained directly using the data set from TG 1, using augmented single-molecule
images with type labels. (a)-2 YOLO v5.m requires additional data set preprocessing. As a target detection model, YOLO v5.m needs to be trained
with multimolecule images. Here, we implied two different methods: A (piling up augmented single-molecule screenshot images) and B (marking
molecules with a plug-in program LABELIMG in the original raw multimolecule STM images). (b) Training of two models. Models are trained by
minimizing the loss functions. Training and verification data sets were divided randomly with a ratio of 9:1 for both models. Note that SRResNet
also needs to be trained, which was included in TG 1.
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principles and implementation details of the box normalization
are described in Supporting Information 10.1.
To minimize experimental artifacts, we implemented Otsu

background subtraction58 to reduce substrate- and condition-
dependent effects. Given that STM scanning regions are

adjustable during experiments, we implemented edge-detection
criteria to exclude partially captured molecules. Specifically,
molecular detection with centers close to image boundaries
was automatically excluded. Furthermore, we applied physical
constraints by rejecting detection boxes with areas outside the

Figure 5. Workflow and performance of the ReSTOLO framework for molecular detection (TG 3). (a) Testing TG implements a sequential two-
stage approach: Stage A for molecule localization and Stage B for feature classification. Between stages, bounding box geometries are standardized
using a pixel-weighted optimization algorithm called box normalization. (b) AI detection (up) vs naked-eye manual annotation (down) using a
high-resolution image (YOLO Confidence = 0.25, IoU = 0.11). Molecular type classification scheme: Type 2: red (square/round), Type 3: blue
(square/round, not present), Type 4: yellow (square/round), Type 4′: green (square/round), Type 5: purple (square/round), and Type 6: gray
square/red square. (c) Localization error analysis in Stage A via IoU and confidence metric. Subplots illustrate examples of false positives (ghost
boxes, left) and false negatives (missing boxes, right). This hyperparameter sweep also helps to determine the best YOLO threshold
hyperparameter selections. (d) Classification performance metrics in Stage B upon low-resolution (23 × 23 pixels2, colored columns) and high-
resolution (45 × 45 pixels2, purple triangular) STM images.
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range of two-thirds to three-halves of the standard 150 × 150
pixels2 area, as such deviations would be physically implausible.
Notably, while our framework was optimized for a consistent
magnification ratio, it maintains adaptability to varying
magnification levels through simple scalar adjustment of the
standardized box dimensions, implemented via multiplication
by the relative magnification ratio; see Supporting Information
10.1. We also conducted sensitivity analysis on ResNet-101’s
performance relative to the shape and size variation of the
normalized box; details are presented in Supporting
Information 10.2 and 10.3, Figure S23.
For each detected molecule, the ResNet-101 model

automatically calculates the probability distribution across all
possible molecular types (e.g., P(4|5), the probability of
molecule 5 being classified as type 4, expressed in Bayesian
notation). These probability values are generated by the six
output channels in the model’s final fully connected layer
(FCC), indicating the uncertainty of the model’s discrim-
ination between different molecule types. More details are
provided in Supporting Information 7.4.
Detection Details and Hyperparameters. Our ReSTO-

LO framework is validated by employing independent test sets
comprising 12 low-resolution images (L) and five high-
resolution images (H) with detailed data set specifications
provided in Supporting Information 4.1. Figure 5b presents a
qualitative comparison between AI-based detection and human
naked-eye annotation using a high-resolution STM image. The
framework demonstrated exceptional performance in molec-
ular localization and classification, achieving near-perfect
correspondence with human expert annotations. Additional
detection results across multiple STM images are documented
in Supporting Information 8.
The true positives, true negatives, false positives, and false

negatives were manually verified and normalized to evaluate
the precision, recall, and accuracy of our framework. Given our
two-stage architecture, traditional single-stage evaluation
metrics such as average precision/recall (AP/AR) indices are
not applicable here. Instead, we implemented stage-specific
evaluation protocols: YOLO v5.m’s localization performance
was assessed through missing/ghost-box robustness analysis
(Stage A), while ResNet-101’s classification performance was
evaluated using normalized molecular-type-specific precision,
recall, and accuracy metrics (Stage B). Due to the significant
imbalances between population of molecules, the number of
molecules was normalized for metric calculation (detailed in
Supporting Information 1.1). These evaluations, displayed in
Figure 5c,d, provide a comprehensive framework for perform-
ance assessment.
The localization stage demonstrated high sensitivity to

Intersection over Union (IoU) variations compared to
confidence thresholds. Optimal performance was achieved
with IoU = 0.11 and confidence = 0.25, resulting in near-
perfect localization of the molecules. The threshold values
were determined through a systematic parameter sweep. The
optimal intervals are shown in Figure 5c. In the classification
stage, the precision, recall, and accuracy all exceeded 90%
across the very similar molecules 4, 4′, 5, and 6, and molecule
3 achieved perfect classification in several metrics. High-
resolution STM images consistently outperformed low-
resolution counterparts by 3−5% across metrics. The lowest
performance was observed for molecule 2 in low-resolution
images (79.2%, precision), which could be attributed to the
ambiguity of molecule 2 with molecule 4 and its polymorpho-

logical relatives underrepresented in the training set. The
framework inherently extracts and learns contour information
about the different molecule types, as observed from the final
convolutional layer of the ResNet-101 feature map (see
Supporting Information 7.3, Figure S18).
We tested the performance of our framework over a

differently divided training and testing data set setting, which
gives evidence to the reliability of the model’s performance
(see revised Supporting Information 4.2, Figure S8).
Note that the tip geometry and electronic structure could

have critical influences on the appearance of STM images. To
mitigate the tip effects on molecular recognition, all of the
STM images in this work were acquired with a CO tip. The
ReSTOLO users are required to maintain a well-defined tip
condition throughout imaging to ensure consistent STM image
quality at a level perceptible to the human eye.
Detection Effectiveness. The pipeline of skillfully

concatenating two models, namely, YOLO and ResNet-101,
is intuitively straightforward, as we attempt to fully exploit the
advantages of the two models as much as possible. In other
words, to make them suit their corresponding subtasks:
locating and classification, respectively. To benchmark our
framework’s effectiveness, we compared two widely adopted
architectures: (i) stand-alone YOLO v5.m and (ii) Faster R-
CNN, with our ReSTOLO framework. To ensure fair
comparison, we maintained consistent training data prepara-
tion methodologies across all frameworks, utilizing the
protocols established for ReSTOLO in TG 2. Results
presented in Figure 2 demonstrate significant performance
differentials. YOLO v5.m exhibited substantial degradation in
precision for molecules 4, 5, and 6 and in recall for molecules
2, 4′, and 6. While YOLO v5.m showed improved performance
on high-resolution data sets compared to low-resolution ones,
its overall performance remained markedly inferior to
ReSTOLO. Similarly, Faster R-CNN demonstrated notably
lower precision for molecules 4, 5, and 6 and diminished recall
for molecules 2, 4, 4′, and 6. For Faster R-CNN evaluation,
input images were segmented into 640 × 640 pixel2 regions to
accommodate model constraints. Supplementary analyses,
including ResNet-101 box shape and size robustness studies
(Supporting Information 9.3, Figure S23), support our initial
hypothesis regarding the limitations of single-stage frameworks
in this application domain. Benchmark YOLO v5 and Faster R-
CNN were optimized to their fullest potential as much as
possible (Supporting Information 9.2 for details). ReSTOLO,
benchmark YOLO v5, and Faster R-CNN were all trained in
parallel by using identical molecular image data.
Our two-stage design is not a simple direct connection of the

locating and classification model. Instead, a box normalization
is creatively integrated between the two stages. The key
innovation of our framework is the design of a two-stage
architecture with a box normalization method. The contribu-
tion of the framework itself can be estimated by parallel
comparisons between different frameworks (see Figure 2 and
Supporting Information 5.3, Figure S11).
Contribution of Data Augmentation. In order to

achieve convergence, we applied various augmentation
strategies to our two-stage framework. A detailed quantitative
analysis of different augmentation strategies can be found in
Supporting Information 5.2, Figures S9 and S10. The results
indicate that random color permutation and random white
noise serve as critical baseline components for effective
detection, enabling successful classification of type 5 molecules

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://doi.org/10.1021/jacs.5c03730
J. Am. Chem. Soc. 2025, 147, 35232−35243

35239

https://pubs.acs.org/doi/suppl/10.1021/jacs.5c03730/suppl_file/ja5c03730_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.5c03730/suppl_file/ja5c03730_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.5c03730/suppl_file/ja5c03730_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.5c03730/suppl_file/ja5c03730_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.5c03730/suppl_file/ja5c03730_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.5c03730/suppl_file/ja5c03730_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.5c03730/suppl_file/ja5c03730_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.5c03730/suppl_file/ja5c03730_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.5c03730/suppl_file/ja5c03730_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.5c03730/suppl_file/ja5c03730_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.5c03730/suppl_file/ja5c03730_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.5c03730/suppl_file/ja5c03730_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.5c03730/suppl_file/ja5c03730_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.5c03730/suppl_file/ja5c03730_si_001.pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.5c03730?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


and substantial portions of other molecular species. Fur-
thermore, physical augmentation (rotation, reflection) and the
contrast/hue/lightness modulations proved essential for
achieving the highly accurate discrimination between types 4,
4′, and 6. All of the augmentation methods contributed to
model convergence and performance of the model across both
low- and high-resolution images. The convergence of the two-
stage architecture fundamentally requires the strategic
application of data augmentation.
When implementing limited augmentation strategies, we

observed significant performance disparities between low- and
high-resolution images; results for high-resolution images are
consistently better. As we progressively incorporated more
augmentation methods, the performance gap narrows sub-
stantially, though high-resolution images are maintained
slightly better. A detailed quantitative analysis of the effects
of different augmentations across low- and high- resolution
images is presented in Supporting Information 5.2 (Figures S9
and S10).
General Applicability of ReSTOLO. In order to display

the universality and generalizability of our framework
ReSTOLO and the independence of the substrate of choice
and specific molecular interactions, we additionally inves-
tigated the performance of ReSTOLO on two other systems:
acenaphthylene relatives (AN) on Au(111) and the
hexaphenyl-substituted hexabenzocoronene (HBC-Ph) on the
Au(111) surface. Our framework displayed good performance
in both systems. Four types of molecules were detected with
high accuracy and recall for ANs. Target molecules HBC-Ph
were detected with high confidence from other impurities (see
Supporting Information 12). By training with the STM data of
other systems under specific conditions, one can easily apply
ReSTOLO to discriminate molecules.
Robustness of Box Normalization. Due to the fact that

molecules typically appear brighter than the substrate in STM
imaging, the pixel-weighted square sum method of box
normalization demonstrates strong resilience against imaging
challenges, including contrast, noise, resolution limitations, and
nonphysical distortions, as long as molecules remain
distinguishable from the substrate background (see Supporting
Information 10.4).
Influence of Super-Resolution Reparation. SRResNet

plays solely the role of augmentation and participates in neither
the verification of ReSTOLO nor the testing after training.
SRResNet itself does not appear to be overfitting during its
training process (Supporting Information 3.2). Besides, the
verification loss of ReSTOLO decreases monotonically
(Supporting Information 6.2 and 7.2). Furthermore, the
whole detection performance increases after applying the SR
reparation augmentation (Supporting Information 5.2), and
the potential introduction of nonphysical characteristics by SR
does not appear to influence the detection.
Alternatives of Models and Strategies. As a two-stage

framework, the performance of our ReSTOLO framework
depends on the effectiveness of both YOLO v5.m (stage A)
and ResNet-101 (stage B), as illustrated in Figures 2 and 5.
Given YOLO has already demonstrated robust performance
(see Figure 5 and Supporting Information 6.3, Figure S15),
classification accuracy in stage B becomes the determining
factor. Theoretically, ResNet-101 could be replaced with any
high-performing model. Here, we focused our comparative
analysis on four different classification models: VGG-1659

(∼13.8 million parameters), ResNet-10160 (∼44.5 million

parameters), Vision Transformer ViT B/1661 (∼86 million
parameters, the smallest standard ViT size), and Efficient Net
B662 (∼43 million parameters, selected to approximate the
complexity of ResNet-101). As shown in Figures S33 and S34,
ViT B/16 and Efficient Net B6 achieve good performance
comparable to ResNet-101, while VGG-16 demonstrates
limited performance and insufficient performance to be used
for our classification requirements (Figure S31). These results
suggest that ResNet-101, Vision Transformer ViT B/16, and
Efficient Net B6 can be interchangeably used for our two-stage
framework; see Figures S32−S34. We conclude that replacing
ResNet-101 in the current implementation is unnecessary, as
all of the three models demonstrate similar effectiveness. Apart
from performance, the deployment requirements for ResNet-
101, ViT, and Efficient-Net are also similar, while the training
of ResNet-101 is relatively faster (see Supporting Information
12) for details. However, a newer architecture like ViT and
Efficient Net might offer advantages for other surface systems,
and users are encouraged to experiment with them. Details can
be found in Supporting Information 12.
Our implemented YOLO v5 has consistently demonstrated

near-perfect performance in localizing isolated molecules
(Figure 5 and Supporting Information 6.3, Figure S15),
suggesting limited potential improvement from newer
detection models. Nonetheless, users are still encouraged to
use the recent model design. For challenging cases where
molecules exhibit extreme proximity, newer models like YOLO
v8 might be considered to further enhance detection
capabilities.
The prohibitive resource requirements for constructing

universal STM image databases or libraries, given the vast
chemical space of surface molecular species and experiment-
specific configurations, necessitate adopting a specified
machine learning data set for targeted molecular recognition
tasks.
For framework design and training strategies, our direct

training strategy involved a box normalization operation. In
addition to our current training strategy, we acknowledge that
an end-to-end iterative training strategy could also potentially
optimize box proposals to maximize the final classification
accuracy. However, the possible iterative training approach
involves substantial trade-offs: considerably more training time
and more computational resources. More importantly, the
interdependent model interactions in iterative training
introduce optimization complexities similar to those observed
in the generative adversarial network (GAN), potentially
trapping the system in a local minimum problem during
training.63,64 Nonetheless, the effect and complexity of this
method will be investigated in the future.

■ CONCLUSIONS
The present work has demonstrated an efficient two-stage
surface molecular detection framework, integrating YOLO
v5.m and ResNet-101 architectures with comprehensive data
augmentation strategies. The framework’s key innovation lies
in its intermediate box normalization mechanism, which
effectively addresses molecular similarity challenges by
decoupling localization and classification tasks. This architec-
tural decision enables each model to focus on its respective
strengths: robust detection for YOLO v5.m and precise
classification for ResNet-101. Our physics-informed data
augmentation pipeline incorporates surface crystal symmetry,
molecular chirality, and realistic STM experimental conditions.
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Multiple extra tests proved the robustness, reliability, and the
universality of ReSTOLO. This framework achieved successful
discrimination among ‘very-similar’ isomers (4, 4′, 5, and 6)
with high precision and accuracy. Comparative analyses against
established Faster R-CNN and YOLO v5.m validated our
framework’s superior performance. The framework’s robust-
ness across varying resolution scales and experimental
conditions, coupled with adaptive box size adjustment,
effectively overcomes the limitations inherent to single-stage
approaches.

■ EXPERIMENTAL SECTION
YOLO (You Only Look Once). YOLO is a state-of-the-art, real-

time object detection system that has gained considerable attention in
the field of computer vision.65,66 Unlike traditional object detection
methods that employ a two-step process involving region proposal
and classification, YOLO performs both tasks simultaneously by using
the anchor box and non-maximum suppression (NMS). This unified
approach allows YOLO to achieve a high-speed performance. The
latest versions of YOLO have demonstrated remarkable efficiency in
detecting objects in real-world scenarios, making them suitable for
applications like video surveillance, autonomous driving, manufactur-
ing industry, and augmented reality.45,66−69 More details can be found
in Supporting Information 5.
ResNet-101. ResNet-101, short for Residual Network with 101

layers, is a deep convolutional neural network designed to overcome
the vanishing gradient problem that plagues very deep networks.60,70

By introducing residual learning, ResNet-101 allows the training of
extremely deep networks without a significant drop in performance.
The network’s architecture includes skip connections, or shortcuts,
that enable the gradient to be directly back-propagated to earlier
layers, thus facilitating easier optimization. ResNet-101 has been
widely adopted in various image recognition tasks and has set new
standards for accuracy in the ImageNet challenge. More details can be
found in Supporting Information 6.
Super-Resolution. Super Resolution (SR) is a technique that

aims to enhance the resolution of images beyond the capabilities of
the original capturing device. SR methods can produce high-
resolution images from low-resolution sources, which are particularly
useful in scenarios where high-resolution imagery is desired but not
feasible to capture. Deep learning-based SR algorithms, such as those
using CNNs, have shown remarkable results in restoring fine details
and textures in images. Applications of SR include medical imaging,
satellite imagery, and video upscaling, where the enhanced clarity and
detail can be critical for accurate analysis and interpretation. Two
well-known SR models are SRGAN and SRResNet.71 More details
can be found in Supporting Information 3.
Otsu Algorithm. The Otsu algorithm is a popular method for

automatic image thresholding, which is the process of separating an
image into two or more regions based on a clustering algorithm
according to the intensity levels of its pixels. Developed by Nobuyuki
Otsu,58 this algorithm aims to find the optimal threshold value that
minimizes the intraclass variance of the foreground and background
pixels while maximizing the interclass variance. The Otsu algorithm is
computationally efficient and does not require prior knowledge of the
image distribution, making it a versatile tool for image segmentation
in various fields, including medical imaging, text recognition, and
object detection.
Box Normalization. In most real STM experiment cases, the

magnification ratio of the vision field is fixed in order to facilitate
manipulation, observation, and molecule comparison. Considering
this, in our ReSTOLO framework, we adjust the center location,
shape, and size of the bounding box generated in the locating stage by
the weighted pixel method and recapture the single molecule using a
new, normalized, fixed-size box. Unlike Region Proposal and RoI
pooling of Faster R-CNN,72 this method principally does not lose any
details of the image because there is no additional mathematical
averaging process like RoI pooling. The weighted pixel square sum

average method is presented in Figure 5. Complete algorithmic details
are available in Supporting Information 10.1.
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