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We introduce CrystalFormer, a transformer-based autoregressive model specifically designed for
space group-controlled generation of crystalline materials. By explicitly incorporating space group
symmetry, CrystalFormer greatly reduces the effective complexity of crystal space, which is essen-
tial for data-and compute-efficient generative modeling of crystalline materials. Leveraging the promi-
nent discrete and sequential nature of the Wyckoff positions, CrystalFormer learns to generate
crystals by directly predicting the species and coordinates of symmetry-inequivalent atoms in the unit
cell. We demonstrate the advantages of CrystalFormer in standard tasks such as symmetric struc-
ture initialization and element substitution over widely used conventional approaches. Furthermore,
we showcase its plug-and-play application to property-guided materials design, highlighting its flex-
ibility. Our analysis reveals that CrystalFormer ingests sensible solid-state chemistry knowledge
and heuristics by compressing the material dataset, thus enabling systematic exploration of crystalline
materials space. The simplicity, generality, and adaptability of CrystalFormer position it as a
promising architecture to be the foundational model of the entire crystalline materials space, herald-
ing a new era in materials discovery and design.
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1. Introduction

Machine learning methods are playing an increasingly impor-
tant role in material discovery, complementing conventional com-
putational approaches [1,2]. Generative machine learning, in
particular, has been a promising step for matter inverse design
[3,4] which goes beyond machine learning accelerated structure
search [5] and property screening [G]. Generative models learn
the underlying distribution of training data and generate new sam-
ples from the learned distribution. In addition, the generation pro-
cess can also be controlled by conditions such as desired material
properties or experiment observations. Amazing programming
abilities of generative models have been demonstrated in large lan-
guage model [7], text-to-image generation [8,9], and protein
design [10].

It is anticipated that generative model-based approaches will
introduce groundbreaking changes to the traditional workflows
of material discovery. A generative pre-trained foundation model
for crystalline materials is a key step towards such a lofty goal.
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However, despite intensive efforts [11-22], the current generative
models for crystalline materials fall short to match the success of
other domains. Simply scaling the compute and model size of the
current crystal generative model may not be feasible because the
amount of high-quality data for crystalline materials is much less
compared to language and image domains. Therefore, leveraging
the inherent inductive biases specific to crystalline structures for
more data-efficient generative modeling is essential, as has been
pursued in some of recent works [23-26].

The space group symmetry due to the joint outcome of the rota-
tional and translational symmetry in space is arguably the most
important inductive bias in the modeling of crystalline materials.
There are in total 230 space groups [27] for three-dimensional
crystal structures. Nature exhibits a preference for symmetric crys-
tal structures, a tendency that may be attributed to the symmetry
inherent in the interatomic interactions, which, in turn, are gov-
erned by the fundamental forces acting between elementary parti-
cles. As a result, the appearance of crystalline materials in the first
and the least symmetric space group P1 is rare [28], with many
instances potentially even being misclassified [29]. Failing to
match the space group distribution of nature in machine
learning-generated materials is regarded as a matter of serious
concern [30].
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Space group symmetry imposes significant constraints on a
crystal. First of all, the space group identifies the crystal system
to which a crystal belongs, thereby limiting the permissible values
for the lattice parameters that define the length and angles of the
crystal’s unit cell. Moreover, the symmetry operations associated
with a given space group ensure that symmetry equivalent atoms
are consistently mapped among themselves in the crystal. This
requirement enforces strict conditions regarding the types of
chemical elements present, their specific locations within the crys-
tal, and the number of each chemical species in the unit cell. A key
concept to express these constraints is the Wyckoff positions,
which delineate unique areas within a unit cell that are defined
by the symmetry operations of the crystal’s space group. These
positions are represented as fractional coordinates, enabling pre-
cise definition relative to the unit cell’s axes. For example, Fig. 1a
shows the Wyckoff positions for the space group R3c (No. 167).
The Wyckoff positions are labeled by letters in the alphabet, start-
ing from special points in the bottom to general positions in the
top. The multiplicity counts the number of equivalent positions
connected by the space group symmetry operations. All of them
should be occupied by the same type of atoms to uphold the space
group symmetry. For example, the top row of the table in Fig. 1a
contains the general position (x,y,z) that can be mapped to 36
positions under the symmetry operations of the R3c space group.

Nature tends to place atoms in those special Wyckoff positions
at the bottom of the table. For example, we highlight the occupied
Wyckoff positions of calcite (CaCOs) crystal in Fig. 1, associated
with the R3c space group. One sees that the Wyckoff letter ‘6a’
and ‘6b’ deterministically define the locations of the carbon and
calcium atoms within the unit cell. In addition, it follows that
a=>b, and oo = f=90°,y = 120° as the R3c space group belongs
to the trigonal crystal system. Ultimately, despite having 30 atoms
in the unit cell, there are only three continuous degrees of freedom
for the CaCOs; structure: the x-coordinate of oxygen atom 0.257

and the lattice constants a = b = 4.99A and ¢ = 17.07A. All other
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information about the crystal structure can be specified via dis-
crete data such as the Wyckoff letters and chemical species.

The prominent discrete and sequential features illustrated in
Fig. 1 are ubiquitous in crystalline materials. The Wyckoff positions
not only specify possible locations of atoms in the unit cell, but
their associated multiplicities also put strong constraints on the
number of atoms. Therefore, space group symmetry significantly
reduces the degrees of freedom of crystalline materials. Failing to
exploit this information in generative modeling not only renders
learning inefficient, it also severely impairs the generalization abil-
ity of the model. For example, the performance of the generative
model quickly deteriorates as the number of atoms increases due
to it is challenging to generate highly symmetric crystal structures
[16]. On the other hand, statistical analysis shows that the Wyckoff
sequences of known inorganic compounds [31] are far from being
exhausted, implying there are statistical correlations to be
exploited to compress the materials database.

In this paper, we introduce CrystalFormer, an autoregressive
transformer for generative modeling of crystalline materials.
CrystalFormer models the joint probability distribution of
Wyckoff positions, chemical species, and lattice parameters of
crystals with a given space group. By treating the Wyckoff posi-
tions as the first class citizen in the model, CrystalFormer seam-
lessly and rigorously integrates the space group symmetry into
crystal probabilistic modeling. In the ‘P1 world’, one treats crystals
as if they were in the first and the least symmetric P1 space group.
For the estimate, we consider 100 possible chemical elements and
20 atoms in the unit cell with a coordinate grid size of 100 in each
direction. The size of the crystalline material space is

— (10 x 100%)*° ~ 10'®. In the case of utilizing the symmetry
of a typical space group, we consider 5 symmetry inequivalent
atoms occupying 10 possible Wyckoff positions. The size of the
crystalline material space becomes N = (100 x 10 x 100)> ~ 10%.
The additional factor of 100 accounts for the remaining degree of
freedom for the fractional coordinates and lattice parameters. For

——— ©
— Tl w; o ag Z; Yi %

\\:}, — 1l a C 0 0
M — 2/ b Ca 0 0 0
—" 3] e O 027 0 I

167-a-C-0-0-1/4- -e-0-0.257-0-1/4

— ¢
—
- [ Q- Q
- 0800 Qoo%o
7T o ¢ | L Dl OCa
1 :9- *’“"OW o C
i |=:> \)800 |=:> O o e O
° o ¢ o""?o
1|9 187 Titem
Q- a
%o 0 ©%% o

Fig. 1. (a) The Wyckoff positions of the R3c space group (No. 167). We highlight the occupied Wyckoff positions of calcite CaCO3 crystal which belongs to this space group.
Carbon, calcium, and oxygen atoms occupy the ‘6a’, ‘6b’, and ‘18e’ positions, respectively. (b) The CrystalFormer is a decoder-only autoregressive transformer that models
the space group controlled crystal structures by predicting probabilities of the Wyckoff letter w;, chemical element a;, and fractional coordinates (x;,y;, z;) of each symmetry
inequivalent atom, and finally, the lattice parametrized by ¢ sequentially. (c) The crystal data of CaCO5 are summarized in a table. In the table, the x-coordinate of oxygen atom
x3 = 0.257 is the only continuous variable that needs to be predicted. All other fractional coordinates are fixed by discrete data like the space group number and Wyckoff
letters. The string below the table shows the sequential representation of the CaCOs crystal with space group, Wyckoff letter, and atom species as the input to the
CrystalFormer model. (d) Autoregressive generation of the crystal. One first places carbon atoms at the ‘6a’ position, then places calcium atoms at ‘6b’ position, and finally
places oxygen atoms at ‘18e’ position. In each step of the sampling procedure, there is a choice of the Wyckoff positions, atom species, and the fractional coordinates if they

are still unspecified.
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alternate estimates of the materials space in the context of crystal
structure prediction, see Refs. [32,33]. As analyzed above, explicit
modeling of the Wyckoff positions greatly reduces the space of
crystalline materials. The space group-informed transformer
exploits this fundamental inductive bias to greatly simplify the
learning and generation of crystals.

2. Method

We will first introduce the CrystalFormer model, then reveal
the chemical intuition encoded in the trained model by inspecting
generated crystal samples. These inspections also build up under-
standings of the strength of the model.

2.1. crystalFormer

We will introduce the design, training, and sampling of the
CrystalFormer model.

2.1.1. Model

To exploit the space group symmetry of the crystal, we focus on
the Wyckoff positions of symmetry-inequivalent atoms. Wyckoff
letters follow the alphabetical order, where ‘a’ stands for the posi-
tions with the highest order of site symmetry for the given space
group. Later letters in the alphabet indicate more general positions
with reduced site symmetries. Note that the information of the
space group number and Wyckoff letter fully determine the multi-
plicities of the Wyckoff positions. In cases where the atom posi-
tions are not fully fixed by the Wyckoff letter, we will also
consider the remaining fractional coordinates, e.g., the x-
coordinate of the oxygen atoms in the CaCO3; example shown in
Fig. 1. To generate crystals, one samples the Wyckoff letter, chem-
ical element, and fractional coordinates of each atom sequentially.
The sampling procedure starts from special higher symmetry sites
with smaller multiplicities and then goes on to general lower sym-
metry sites with larger multiplicities.

With these considerations, we define a crystal data as
C={W,A X,L}. Here W = [w;,w,,...,w,] are Wyckoff letters
and A = [a4,0d,, . .., a,] are chemical species. Here, n stands for the
number of symmetrically inequivalent atoms in the conventional
unit cell. For example, as shown in Fig. 1b one has n = 3 for CaCOs.
Explicitly including the Wyckoff letter in the generative modeling
is the key of the present work. Next, X = [(x;,¥;,2)] € R™* are the
fractional coordinates of symmetrically inequivalent atoms. Lastly,
L=[a,b,c,a,p,7] denotes the lattice parameters of the conven-
tional unit cell of the crystal.

The central quantity to focus on is the conditional probability of
a crystal C given the space group number g € [1,230]: p(C|g). Since
the space group is a fundamental characterization for crystalline
materials, g is a key control variable that greatly simplifies the dis-
tribution over the entire crystal materials space. In practical appli-
cations of crystal structure prediction and material design, the
space group can either be considered separately as a control vari-
able or predicted based on material composition [34-37].

We express the space group conditioned probability distribu-
tion of crystals as an autoregressive product of conditional
probabilities

p(Clg) = p(w1|g)x
p(ai|g, wi)x
p(x1|g, w1, a1)x
p(v1lg, w1, a1, x1)x
p(z11g, W1, a1,X1,y;) X -
p(Lig, w1,a1,%1,¥1.21,. ..

X

Wa, n, Xn, Yy, Zn)-
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At first sight, it may appear unnatural to employ an autoregressive
model for crystals since there seems to be no obvious order for
atoms in the unit cell. However, the sequential nature of Wyckoff
positions suggests a natural way to arrange symmetrically inequiv-
alent atoms in an alphabetical order of the Wyckoff letters. Follow-
ing this key observation, we represent crystal data as sequences of
space groups, Wyckoff letters, chemical species, and fractional coor-
dinates of each symmetrically inequivalent atom. Together with the
information lattice parameters, such sequence fully characterizes
the compositional and structural information of crystalline mate-
rial. Since statistical analysis reveals that anions are in less symmet-
ric positions than cations for inorganic crystals [28], one would
expect that anion atoms will typically appear after cation atoms
in such a sequence. For example, CaCO5; is represented as a
string ‘167-a-C-0-0-1/4-b-Ca-0-0-0-e-0-0.257-0-1/4’. Autoregres-
sive sampling of such a string means the model generates the crys-
tal by placing the atoms sequentially into the unit cell, starting from
the special position with high site symmetry to the general position
with the lowest site symmetry, see Fig. 1d.

We model the conditional probability of the Wyckoff letters W
and chemical species A as categorical distributions. On the other
hand, we model the conditional probability of the factional coordi-
nates X as a mixture of von Mises distribution for continuous peri-
odic variables. For Wyckoff positions with multiplicities greater
than one, we only consider the first of fractional coordinates that
appear in the international tables for crystallography [38]. Lastly,
we model the conditioned distribution of lattice parameters as a
Gaussian mixture model.

We build CrystalFormer, an autoregressive transformer [39]
to model the space group conditioned-probability distribution of
crystalline materials Eq. (1). The space group number g is the first
input to CrystalFormer. The remaining inputs are the Wyckoff
letter, chemical species, and fractional coordinates of each atom.
One can go through the table of Fig. 1b in a raster order to collect
these atomistic features. We feed vector embeddings of the space
group number, Wyckoff letter, and the chemical species input to
the CrystalFormer. In particular, we also concatenate the vector
embedding of g to all other inputs since it is the key control vari-
able for the crystal generation. Moreover, we have also provided
the multiplicity of each Wyckoff position as an additional feature.
The multiplicity can be easily inferred from the space group and
the Wyckoff letters. We feed the fractional coordinates as Fourier
features into the transformer so that the model preserves the peri-
odicity of the unit cell [13,40]. We pad the atom sequence up to a
maximum length and treat the output as parameters of the condi-
tional probability distribution Eq. (1), see Fig. 1b. At the location of
the first padding atom, we predict the lattice parameters.

We implement a number of constraints in the model to further
reduce its phase space. First, the Wyckoff letters should be valid for
the given space group. For example, for the space group R3c (No.
167) the Wyckoff letters go from ‘a’ up to ‘f. Second, we require
that the Wyckoff letters w; follow alphabetical order in the
sequence. We follow the convention that capital letters appear
after lower case letters. This handles the edge case of the Pmmm
space group (No. 47) whose Wyckoff letters used up 26 lowercase
letters and reached ‘A’ for the generic position. In addition, we use
the letter ‘X’ to indicate the Wyckoff position of padding atoms that
appear at the end of the sequence, see e.g., w, of Fig. 1b. Lastly, the
Wyckoff positions with no free fractional coordinates (such as ‘a’,
‘b’, and ‘d’ positions in the R3¢ space group) can only be occupied
once. Those constraints are implemented by setting the logit biases
of Wyckoff letters to mask out invalid sequences [41].!

! OpenAl, Using logit bias to alter token probability with the openai api. OpenAl
Help Center
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The design of CrystalFormer focuses mostly on the space
group symmetries which we believe to be the most important
inductive bias for crystalline materials. This design decision signif-
icantly impacts the treatment of other symmetries. First, it is often
possible to place the origin of the unit cell at the inversion center of
the specified space group. The chosen origin naturally fixes the
continuous translation invariance of fractional coordinates. Sec-
ond, by only considering symmetry-inequivalent atoms and label-
ing them with Wyckoff letters, one fixes most of the permutation
invariance over atom of the same type in the representation. For
those Wyckoff positions with continuous degrees of freedom, there
may be multiple symmetry-inequivalent atoms with the same
Wyckoff letters. We arrange these atoms according to the lexico-
graphic order of fractional coordinates [42] in the sequence. Note
that in a crystal environment, the same type of atoms occupying
different Wyckoff positions could be regarded as distinguished
particles as they generally have different site symmetry. Lastly,
the periodicity of the fractional coordinates is respected in Crys-
talFormer since they are treated as periodic variables following
the von Mises distribution.

2.1.2. Training

The CrystalFormer is trained by minimizing the negative log-
likelihood
£ =~ E [Inp(clg)). )
where the structures C and the corrosponding space group g of crys-
tals are sampled from the training dataset. Writing out p(C|g)ac-
cording to Eq. (1), the objective function contains the negative
log-likelihood of discrete variables such as Wyckoff letters W and
chemical species A, as well as continuous variables such as frac-
tional coordinates X and the lattice parameters L. For the continu-
ous variables X,L in the objective function, we consider only
active ones that are not fixed by the space groups and Wyckoff let-
ters. In this way, those special fractional coordinates (e.g., 0,1) and
lattice parameters (e.g., 90°,120°) which were already fixed by the
chosen space group and Wyckoff letter will not not contribute to
the loss function.

In the present work, we train the CrystalFormer using the
MP-20 dataset [11]. MP-20 is a popular dataset that represents a
majority of experimentally known crystalline materials at ambi-
ent conditions with no more than 20 atoms in the primitive unit
cell. The training dataset contains 27136 crystal structures. The
subdivision of the training samples according to the space group
has greatly reduced the number of samples in each space group
category. On top of that, the distribution of training samples is
quite uneven among the space groups, which reflects the imbal-
anced distribution of crystals over space groups in nature [28].
In fact, there is no training data in 61 out of 230 space groups
as shown in Fig. S2 (online). Nevertheless, we still employ the
MP-20 as the training set so that the performance of the model
can be more easily gauged with the others in the literature, see
Section B in the Supplementary material. Note that the Crys-
talFormer can generate reasonable samples even for those
space groups without any training data. This because the model
can exploit knowledge learned from other space groups to place
suitable atoms in the Wyckoff positions due to weight sharing.
Moreover, since the sampling process makes use the of Wyckoff
position table. The three dimensional coordinates of atoms are
not completely random even for unseen space groups. Fig. 2
shows a breakup of the learning curves for the Wyckoff position,
chemical species, fractional coordinates, and lattice parameters.
We select the model checkpoint with the lowest total validation
loss to generate crystal samples.
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Fig. 2. Break up of the training and validation losses for (a) Wyckoff letters, (b)
chemical species, (c) fractional coordinates, and (d) lattice parameters over training
epochs.

2.1.3. Sampling

To sample crystals from the CrystalFormer, one needs to
specify a space group number and a list of possible chemical ele-
ments. The CrystalFormer samples the atoms one by one, start-
ing from more symmetric specific positions with lower
multiplicities till less symmetric general positions with larger mul-
tiplicities. We use the information of the space group and Wyckoff
letter to control the sampling of fractional coordinates. By applying
the symmetry projection to the sampled fractional coordinate, one
rectifies it and ensures the generated fractional coordinates are
compatible with the Wyckoff positions. One can also mask out
the logits of chemical species so that only a number of selected ele-
ments will be sampled. The number of symmetrically inequivalent
atoms may fluctuate in the sampling procedure. Once one has sam-
pled a padding atom, the model predicts the lattice parameters
under the space group constraint. Moreover, we introduce a tem-

perature parameter T in the sample distribution p(c|g)"/". With
T <1 we will draw samples from a sharper distribution, while
T > 1 gives more diversity in the generated samples. In the present
paper, we will generate crystals using temperature T =1 unless
mentioned explicitly.

Besides autoregressive sampling, one can also perform Markov
chain Monte Carlo (MCMC) sampling based on the likelihood Eq.
(1) of the CrystalFormer. MCMC sampling can walk through
the crystalline materials space starting from an existing crystal
structure. At each step of the random walk, one proposes a config-
uratoin update in terms of element substitution, atom position
shift, or lattice deformation to change the crystal from C to C/, then
accepts or rejects the proposal according to the model probability

p(C|g)
1Wg)] MCMC

sampling is particularly useful for incorporating additional con-
straints or guidance in the sampling procedure. Moreover, during
the burn-in phase of such MCMC sampling, the generated samples
will be similar to the starting material, which may be a desired fea-
ture in certain cases.

following the Metropolis acceptance rule min{

2.2. crystalFormer learns chemical intuition by compressing
materials database

Nature favors symmetrical crystal structures. Crystallographic
space groups quantify this inductive bias of nature, thereby signif-
icantly simplifying the spaces of crystal materials. In light of the
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space group symmetries, crystals also have an unexpected yet nat-
ural sequential and discrete representation, which derives from
two tables in nature: the periodic table of elements determined
by quantum mechanics and the table of Wyckoff positions of the
230 space groups determined by group theory. To construct a cer-
tain crystal, we only need to select atoms from the periodic table
and place them sequentially into the Wyckoff positions in the unit
cell. In this crystal language, the ‘word order’ is determined by the
alphabetical order of Wyckoff letters, the ‘grammar’ corresponds to
the solid-state chemistry rules, and the ‘synonyms’ represent inter-
changeable elements (Section 2.2.1), the ‘sentence length’ corre-
spond to atom number in the unit cell (Section 2.2.2), and the
‘idioms’ correspond to common chemical coordination
(Section 2.2.3).

CrystalFormer employs an autoregressive transformer to
learn the crystal language, thereby exploring yet-to-be-
discovered crystalline materials. It compresses and internalizes
the crystal materials database, expressing solid-state chemical
knowledge through neural network parameters; reflecting the
associative ability of material space through neural network acti-
vations; and describing chemical intuition through the model
probability (Section 2.2.4). Similar to generative models used for
generating text, images, and videos, CrystalFormer can directly
generate ‘realistic’ crystal materials. However, rather than worry-
ing about the fake contents of Al-generated media, these Al-
generated crystal materials could potentially be synthesized and
be useful to human civilization.

Next, we will inspect the learned features and sample statistics
of the model to build up an understanding of the CrystalFormer.
We carry out inspectations for a few selected space groups. The
findings are neverthelss general. These findings provide under-
standings and confidence of the model, therefore direct us to the
suitable applications of CrystalFormer.

2.2.1. Atom embeddings and chemical similarity

Fig. 3 visualizes the cosine similarity of the learned vector
embedding of the chemical species. Red colors in the figure indi-
cate similar chemical species identified by the model. One sees
the chemical similarity within groups of elements show up as
off-diagonal red stripes. Moreover, there are visible clusters for
Lanthanide elements (La-Lu). The plot also suggests the similarity
between the lanthanides and other rare-earth elements (Y and
Sc). The features shown in Fig. 3 are strikingly similar to the simi-
larity map constructed purposely based on substitution pattern
[43,44] which was later used for substitution-based material dis-
coveries [5,45]. In the context of language modeling, the chemical
similarities correspond to synonyms of chemical species tokens.
Having the ability to learn chemical similarities from data
[19,43,44,46-50] is an encouraging signal that the model is picking
up atomic physics for generating reasonable crystal structures with
maximum likelihood based training.

2.2.2. Atom number distributions

The number of atoms in the unit cell corresponds to the length
of non-padding atoms in the crystal string representation, which is
captured well by CrystalFormer. Fig. 4 presents the histogram of
the total number of atoms in the conventional unit cell for several
space groups. One sees a nice agreement between the atom num-
ber distribution in the test dataset and the generated samples. In
addition, it appears that space group g is the key latent variable
that decomposes the multi-modal atom number distribution of
crystals. This is understandable because the number of atoms is
determined by the sum of the multiplicities of occupied Wyckoff
positions. Therefore, the space group symmetry is a key control
variable for the atom number distribution. Incorporating Wyckoff
positions information into the CrystalFormer model architec-
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Fig. 3. The cosine similarity matrix for the chemical species based on the learned
vector embeddings. The reddish color suggests similar chemical elements in the
crystal environment.
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ture removes the necessity of querying the training data to find
out the number of atoms for a targeted space group [16] during
generation.

Recently, Ref. [51] reports an abundance of inorganic com-
pounds whose primitive unit cell contains a number of atoms that
is a multiple of four. There are different ways to reason about the
observed ‘rule of four’ depending on one’s view of how a crystal
is formed. For example, one can often break inorganic solids into
polyhedra as building blocks. Otherwise, Ref. [52] considers the
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most probable values of the number of atoms in a formula unit and
the number of formula units per primitive cell. In line with the dis-
cussion here, the ‘rule of four’ is the combination of three factors:
(1) the distribution of crystalline materials among space groups
[28]; (2) the distribution of atoms in Wyckoff positions [31] of a
given space group; and (3) the multiplicities of Wyckoff positions
and multiplicities of conventional versus primitive cells. The first
two are statistical rules determined by the inter-atomic interac-
tions while the third one is a mathematical fact of space group the-
ory. In the end, the point we want to make is that the design of
CrystalFormer and its associated crystal representation allow
it to learn the ‘rule of four’ and many other to-be-discovered ‘rules’,
which manifest themselves as marginal statistics of learned prob-
ability distribution. Most importantly, CrystalFormer will utilize
these ‘empirical rules’ when generating novel yet reasonable crys-
tal samples.

2.2.3. Wyckoff-Atom gram

Fig. 5 shows heat maps of Wyckoff positions and chemical spe-
cies for the Fm3m space group (No. 225). The heat map is analo-
gous to bigram frequency statistics in language modeling. In the
present context, it reveals interesting solid-state chemistry knowl-
edge related to where each atom tends to appear in a unit cell. First
of all, one sees that most atoms occupy special Wyckoff positions
(Wyckoff letters at the beginning of the alphabet) with higher site
symmetries. The distribution of generated data is in agreement
with test data and recent statistics [31]. Moreover, there are verti-
cal blanks at the locations of inert elements (He, Ne, Ar, ...) as they
are rare in crystalline materials. Lastly, one sees that oxygen and
halogen elements (F, Cl, Br, I) appear quite often in the Wyckoff
position ‘24e’, which means these high electronegative elements
form polyhedra enviorment for other atoms [28]. Overall, we see
the CrystalFormer has learned these key motifs for generating
crystalline materials. On the other hand, one also observes that
several Wyckoff locations of the hydrogen are missing in the gen-
erated samples compared to the test dataset. We believe that is
due to that the hydrogen element takes only about 0.4% in the
training data for the Fm3m space group. Collecting more data with
better coverage of elements will be crucial to further boost the per-
formance of the current model.

Along the same line of thoughts, coordination polyhedra [53]
and lattice structure [54] manifest themselves as higher-order n-
gram correlations of Wyckoff position and atom species in the
crystal language, which will be captured by the CrystalFormer.
There has been a long history of mining empirical chemistry rules
encoded in materials data and then using them to instruct the
search of crystal structures [44,55-59]. Our analysis shows that
CrystalFormer ingests chemical intuition, be it speakable or
unspeakable, in the training data for generating new materials.

2.2.4. Crystal likelihoods

CrystalFormer compresses chemistry knowledge stored in
the material dataset into its parameters. In addition to generating
crystal samples, CrystalFormer can also compute the likelihoods
of crystals via Eq. (1). Therefore, it is also possible to employ Crys-
talFormer in likelihood-based Monte Carlo search besides sam-
pling crystals directly.

Fig. 6 shows the agreement of the likelihoods of generated sam-
ples and samples in the test dataset. We also visualize structures of
a few generated samples which are deemed to be very likely, typ-
ical, and unlikely according to their likelihood values. We have
checked that likelihood is related to the energy of the crystal by
locally perturbing the fractional coordinates and lattice parame-
ters. However, we did not observe a correlation between the like-
lihood of these crystals and their energies on a global scale. We
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envision the landscape of likelihoods is much less rough compared
to the potential energy surface of crystalline materials. Intuitively,
it means that the Crystalformer compresses the materials space
into a more compact space without many holes that correspond to
infeasible high energy states. Therefore, likelihood-based explo-
ration of the crystal space discussed in Section 2.1.3 can be more
efficient compared to traditional sampling approaches based on
the Boltzmann distribution based on physical energy functions.

3. Results

We now move on to the practical applications of Crys-
talFormer to materials discovery and design. Compared to many
existing materials generation models, CrystalFormer offers pre-
cise control over space group symmetry and enables efficient com-
putation of model likelihood. These unique features open a wide
range of possibilities for integrating it with existing computational
software and machine-learning models in a flexible way as we
demonstrate below. For these applications, we have excluded
radioactive elements from the samples [30].

3.1. Symmetry-conditioned random structure initialization

Crystal structure prediction has long been the dream of solid-
state chemistry and computational material science researchers
[60]. Typical crystal structure prediction workflow consists of
two steps. First, one randomly initializes a batch of diverse crystal
structures as candidates. Second, one optimizes the crystal struc-
tures via local and global optimization strategies. Utilizing space
group symmetries plays a crucial role in both steps, as symmetry
enlarges the span of the energy distribution [61-63] and reduces
the search space.

It is a common practice for crystal structure prediction software
[62-67] and structure search [68-70] to exploit space group sym-
metry in the crystal structure initialization. However, such an ini-
tialization approach faces combinatorial difficulty as the number of
chemical species and atoms in the unit cell grows. The Crys-
talFormer is ready to act as a drop-in replacement of random
structure initialization for crystal structure prediction. In this
way, one bypasses the curse-of-dimensionality of exact enumera-
tion [62] with a data-driven probabilistic approach. Moreover,
the ability of CrystalFormer to generate diverse and near-
stable structures can greatly reduce the computational costs of
downstream optimizations.

We select seven space groups P1 (No. 2), C2/m (No. 12), Pnma
(No. 62), I4/mmm (No. 139), R3m (No. 166), P6;/mmc (No. 194),
and Fm3m (No. 225) as representatives of the seven crystal sys-
tems. We randomly generate 100 crystals for each space group
using CrystalFormer. On the other hand, we employ PyXtal
[63] to generate crystal samples with the same stoichiometry in
the same space groups. We then carry out structure relaxation
using density functional (DFT) calculations.

Fig. 7a-g shows the average energy difference to the energy of
final structures versus DFT relaxation steps. We neglected the
structures whose energy changes and energy change intervals
per step during relaxations exceeded 10 eV/atom to eliminate
the impact of erroneous steps. One sees that CrystalFormer sam-
ples generally reach lower energies in fewer relaxation steps. This
is especially true for space groups with higher symmetries. The
ability to initialize diverse and high-quality crystal structures
enables one to discover more stable materials faster. Fig. 7h shows
the histogram of energy above the convex hull constructed by the
Materials Project database. The dashed line denotes the criterion
Enan < 0.1 eV/atom [71] for selecting stable materials. Among these
candidates, we found 34 and 12 relaxed structures with Crys-
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talFormer and PyXtal initializations that are not contained in the
MP-20 dataset. We summarize them in Tables S3 and S4 of Sec-
tion C in the Supplementary materials.

Table 1 lists detailed statistics of structure-relaxed samples in
seven representative space groups. Overall, we find that the Crys-
talFormer generated structures are of higher quality, especially
for those space groups with higher symmetry. This observation is
supported by the fact that the DFT relaxation often retains the
space group symmetry. The root mean squared displacement
(RMSD) [16] computed for these converged structures demonstrate
CrystalFormer’s superior performance over PyXtal across all 7
space groups. The average energy above the convex hull also con-
firms the samples generated by CrystalFormer are indeed much
closer to the DFT local minimum than PyXtal initialization. Crys-
talFormer attains superior performance in the high-symmetry
space groups compared to the RMSD of 0.11 A reported in Ref.
[16] for the MatterGen model trained on the MP-20 dataset with
no control on the space-group symmetry.

3.2. Structure-conditioned element substitution
Mutation of known crystals is a prominent approach to mate-

rials discovery. For example, one can employ a machine-learned
force field to relax crystal structures [5,72-74] after element
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substitutions. In the lens of generative modeling, the machine
learning force field can be regarded as the energy-based model
or Boltzmann machines. A potential drawback of exploring mate-
rials space with an energy-based model is the slow mixing or
even ergodicity issue posed by the rough landscape of the poten-
tial energy surface. In this sense, element substitutions provide a
variety of initial seeds, compensating for the limitation of
energy-based exploration. Having an alternative measure of crys-
tal likelihood other than the potential energy surface opens a
way to employ the model likelihood as a guide for structure
search.

Many crystal structures can be traced back to a few simple,
highly symmetrical types. Numerous crystals share the same struc-
tural prototype but differ in composition, such as perovskite
(ABXs), spinel (AB,X,), fluorite (AX5), and so on. Fig. 8a shows dou-
ble perovskite crystal structures A;BB’Xs which belong to the
Fm3m (No. 225) space group. There are hundreds of known double
perovskites with significant interests in their semiconducting, fer-
roelectric, thermoelectric, and superconducting properties [75].
Finding more stable materials with this structure prototype using
brute force enumeration and high-throughput calculation is a com-
putationally demanding task [76]. We will generate new double
perovskites with CrystalFormer and demonstrate its advantage
of over standard element substitution methods.
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Table 1

For each space group we randomly generate 100 crystal structures with the same composition using CrystalFormer and PyXtal. We carry out energy relaxation using DFT
calculations and report the number of converged samples, the number of structures that maintain the original space group symmetry, the average RMSD between generated and

relaxed structures, and the averaged energy above the convex hull.

Space group Crystal system Converged structures | Retain symmetry | RMSD' (A) | Enan' (eV/atom) |
CrystalFormer PyXtal CrystalFormer PyXtal CrystalFormer PyXtal CrystalFormer PyXtal
P1 (No. 2) Triclinic 46 67 45 67 1.181 1.259 1.034 0.913
C2/m (No. 12) Monoclinic 55 72 53 67 1.051 1.227 1.233 1.660
Pnma (No. 62) Orthorhombic 77 83 76 66 0.594 1.092 0.313 1.633
I14/mmm (No. 139) Tetragonal 91 81 88 63 0.140 0.675 0.240 1.100
R3m (No. 166) Trigonal 83 74 80 71 0.294 0919 0.352 2.489
P63 /mmc (No. 194) Hexagonal 97 77 96 60 0.086 0.545 0.324 4,100
Fm3m (No. 225) Cubic 98 96 95 92 0.012 0.033 0.214 0.483

! Calculated on the converged structures.

Fig. 8a shows the string representation of double perovskites. To
generate candidates of double perovskites, we use Crys-
talFormer to carry out string in-filling tasks. Since the autore-
gressive sampling of the atoms is insufficient to take into
account non-causal information in the sequence, we employ
MCMC to sweep through the sequence and update chemical spe-
cies and fractional coordinates [77]. The acceptance rate for these
MCMC updates makes use of the marginalized probability for ele-
ments and fractional coordinates as the lattice parameter that
appears at the end of the sequence can be integrated. Only after
the MCMC sampling has been thermalized, we sample the lattice
parameters autoregressive to account for the adjustment of the
unit cell for given atoms and occupations. We use CrystalFormer
to generate 100 candidates as the initial DFT relaxation.

As a comparison, we also employ the Substitution
PredictorTransformation function [43] implemented in
pymatgen [78] to perform element substitution for the crystals
with double perovskite structures in the training dataset. The sub-
stitution probabilities come from data-mining of ICSD dataset [43].
After the substitution, we use DLSVolumePredictor [79] func-
tion of pymatgen to predict the volume of the structure. This lattice
scaling scheme relies on data-mined bond lengths to predict the
crystal volume of a given structure. To collect 100 candidates in
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the ionic substitution approach we have set the probability thresh-
old of SubstitutionPredictorTransformation to 0.01, which
is smaller than the typical values adopted in Ref. [45].

The RMSD computed for the DFT-relaxed structures is 0.084 and
0.031 A for CrystalFormer and ionic substitution [43], respec-
tively. Moreover, Fig. 8b shows the histogram of energy above
the convex hull of the Materials Project database. Overall, Crys-
talFormer and ionic substitution [43] found 9 and 3 double per-
ovskites with En,; < 0.1eV/atom which are not contained in the
MP-20 dataset, details in Section D of Supplementary materials.
The superior performance of CrystalFormer-guided MCMC is
understandable since its likelihood takes into account the context
of space group and atomic environment rather than marginal
two-body correlation [43] in ionic substitution. The ionic substitu-
tion approach also shows two limitations in practical applications.
First, some of the ions in the compound can not be substituted as
they are missing in the probability table. Second, the approach
relies on the calculability of the elements’ valence states which
are not always well defined.

As a final remark, although the discussion here focuses on gen-
erating crystals with given prototype structures, the generation of
crystals with a given crystal lattice [80] is also feasible with Crys-
talFormer. This is because the crystal lattice can be straightfor-
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wardly expressed as constraints on the space group and occupied
Wyckoff letters [54].

3.3. Plug-and-play materials design

Finally, we demonstrate CrystalFormer’s ability to aid
property-guided exploration of crystalline materials in a versatile
and flexible manner. The trained CrystalFormer captures the
space group conditioned crystal probability p(C|g), which we treat
as a prior probability for stable crystals. By combining it with a
crystal property prediction model that provides the forward likeli-
hood probability p(y|C), one can carry out property-guided materi-
als generation in a plug-and-play manner. According to Bayes’ rule,
the posterior for crystals given property y reads

p(Clg,y) < p(yIC)p(Clg)- 3)

By sampling from this posterior distribution, one can generate crys-
tal samples with property guidance. Since the posterior probability
Eq. (3) typically does not process autoregressive property with
respect to C, we carry out MCMC sampling to sample from the pos-
terior distribution [81]. The plug-and-play feature makes designing
crystalline materials in this way particularly appealing because it is
possible to apply multiple conditions by simply adding log-
likelihoods from multiple predictors. The framework applies to
the inverse problem of solving cyrystal structures based on experi-
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mently observed diffraction spectra equally well [82,83], where the
goal is to simultaneously optimizing the matching probability to
experimental observation and stability of the crystal.

Any property prediction model can be used in conjunction with
CrystalFormer for property-guided material generation. We uti-
lize two pre-trained MEGNet [48,84] models to predict the band
gap and formation energy, using the output of these two property
prediction models as the forward probability p(y|C) of Eq. (3). More
details are in Section E of the Supplementary materials.

Fig. 9a demonstrates the controlled generation of materials
with target band gap at E; =2 eV and the formation of energy
Eform = —3 eV/atom crystals [85,86]. The conditional probability
Eq. (3) contains both the model likelihood and the property regres-
sion MAE. Therefore, the generated samples will strike a balance
between the two. To draw samples from the conditional probabil-
ity distribution, we randomly generate a batch of 1000 crystal sam-
ples and sweep through the crystal sequence to update the atom
species, fractional coordinates, and lattice parameters. For simplic-
ity of the Wyckoff sequence is kept unchanged in the MCMC sam-
pling. Achieving the desired properties via Monte Carlo update of
chemical species can be regarded as a systematic data-informed
way of carrying out cation-transmutation for materials inverse
design [87]. After reaching equilibrium, the histogram of band
gap and formation energy is centered around the target values,
which is shifted significantly away from the value of uncondition-
ally generated samples. On the other hand, the likelihood shown in
Fig. 9b indicates these conditional-generated crystals are not typi-
cal samples with respect to the unconditional distribution. Never-
theless, they are still probable samples according to the crystal
prior given by the CrystalFormer. Note that controlling the dis-
tribution of formation energy can significantly impact the distribu-
tion of the energy above the convex hull due to the correlation
between these two energies. To assess the stability of the condi-
tionally generated samples, we first use M3GNet [72] to filter out
the unstable materials, followed by DFT verification on the remain-
ing subset. The conditionally generated samples with E, < 0.1
eV/atom that are not included in the MP-20 dataset are listed in
Table S7 in Section E of the Supplementary material. We observed
that some materials meet the requirements of property predictors,
but not the DFT calculations. This is due to due to the errors in the
property prediction models, which could be further improved by
employing a more robust crystal property prediction models.
Given a myriad of materials property prediction models developed
over the years and the inconvenience of re-training or fine-tuning
the foundational generative model [16], we envision the plug-and-
play generation approach demonstrated here to be a scalable way
for materials design. We have exposed an interface of Crys-
talFormer in our code repository for users to plug in arbitrary
conditioners for guided materials generation.

4. Discussion and conclusion
4.1. Related works

Crystal generative models have been explored using variational
autoencoder [23,88], generative adversarial networks [12,89], nor-
malizing flows [90-93], diffusion models [11-16,21,22,26], GFlow-
Net [24,25], and autoregressive models [17-20,94-96]. In these
autoregressive models, one either uses atomistic features [17,94—
96] or uses pure text descriptions [18-20]. Nevertheless, with the
introduction of specialized tokens for crystals, the boundary
between the two is blurred.

The CrystalFormer is most closely related to the autoregres-
sive generative model originally designed for molecules [94-96].
However, instead of predicting the relative distances of atoms,
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Fig. 9. (a) The histogram of band gap and formation energy predicted by MEGNet
models for crystal samples generated in the Fm3m space group (No. 225). The
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samples. Note that we scale the 3d histograms for better visualization. (b) The
likelihoods of conditioned generated samples compared to the unconditional
samples.

we predict the Wyckoff positions of symmetry-inequivalent atoms
in the unit cell. Having the luxury of the space group symmetry for
crystals provides strong hints on where to put the atoms in the unit
cell and greatly simplifies the design around spatial symmetries.
On the other hand, compared to Ref. [19] which treats text descrip-
tions of crystals using autoregressive nature language model,
CrystalFormer speaks native crystal language: it deals with a
more concise and essential atomistic representation of crystals,
which leads to a smaller model size and faster sampling speed. Fast
generation speed is not only a welcoming feature but also will be
crucial for further exploration of materials space based on combi-
nations of probabilistic generation and post-selection, Monte Carlo
sampling, backtracking, and searching techniques [97]. More
importantly, by baking in the space group symmetry in the model
rather than learning them as statistical correlation from texts
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[18,20], CrystalFormer guarantees space group constraints and
cherishes the precious data and computing time. In this sense,
the present work employs rigorous mathematical (as opposed to
vague natural) language to incorporate the symmetry principle in
the generative modeling of crystals.

As a side remark, the Wyckoff position features have been used
in machine learning models for materials property prediction
[46,98]. Incorporating space group information in the encoder-
only transformer models may also enhance their property predic-
tion performance [99-101] as suggested by Ref. [102].

4.2. Outlook

Precisely controlling the space group in the generative model of
crystalline materials not only greatly simplifies the task but also is
a highly desired feature for materials discovery and design. Crys-
talFormer integrates exact symmetry principles from math and
empirical chemical intuitions from data into one unified frame-
work. Probabilistic generative modeling of crystalline materials
using CrystalFormer opens the way to many future innovations
in materials design and discovery.

Note that the MP-20 dataset has by no means exhausted all
available crystalline material [16,19]. An obvious future direction
is to scale up the model as well as the training dataset, especially
curating a dataset with better coverage of space groups. A later ver-
sion of CrystalFormer which is trained on curated Alex-20 data-
set [103] has shown significantly improved performance [104]. In
particular, extending the dataset to include both inorganic and
organic crystals [105] may be beneficial as it improves the data
coverage of low symmetric space groups. The transformer-based
generative model is ready to be scaled up to work with much larger
and more diverse training data, in the same fashion as large lan-
guage models [106]. Given similar model architectures, the idea
of generative pretraining of a foundational model for material gen-
eration is appealing. When scaling up the model it will be interest-
ing to note the possible appearance of neural scaling law [107] as it
has also been showing up in other contexts of atomistic modeling
[108].

The model architecture and sampling strategy are both open to
further refinement to better serve the purpose of material discov-
ery. First of all, to better facilitate data efficiency learning and
structure phase transitions-related applications, it will be useful
to further exploit the Euclidean normalizer [109] and group-
subgroup relation [110] in the model architecture or training pro-
cedure. Second, it is worth exploring using CrystalFormer as the
base distribution in the flow model and employs symmetry-
persevering transportation to further adjust the atoms coordinates
and unit cells [10,26], which mimics a symmetry-constrained
relaxation process [111]. Lastly, it may be worth employing more
advanced constrained and guided sequence generation methods
[112-115] for more flexible control on the elements, structure, or
stoichiometry of generated materials.

Conditioned materials generation depending on properties
[16,21,22,96] and experimental measurements [116] are highly
desired features of materials generative model. Although it is
straightforward to extend CrystalFormer (e.g., extend the
space group embedding or employ the encoder-decoder trans-
former architecture [39]) to incorporate these conditions, we
are particularly excited about the plug-and-play routine demon-
strated in Section 3.3. Along this line, we envision an ecosystem
[117] where the foundational generative model for p(C|g) and
more specialized discriminative models for materials properties
p(y|C) are developed separately but brought together via the
Bayes rule.
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