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A large population of motile agents can display remarkable collective behaviors. Here, we study
collective motion of inertia-dominated macroscopic agents using a model system of millimeter-sized
magnetic rollers with tunable motile behaviors. In this system, we observe first-order flocking phase
separation, where a uniform flock propagates through an isotropic gaseous phase. The flocking phase and
the coexisting gaseous phase exhibit distinct particle exchange dynamics and maintain different effective
temperatures, which are unattainable in equilibrium systems. Combining experiments, agent-based
simulations, and phenomenological theories, we demonstrate that inelastic collisions between inertial
and externally driven magnetic rollers produce positive feedback between high density and polar motion,
driving flocking phase separation. Our Letter reveals a novel mode of collective motion in inertial active
matter, with potential implications for controlling biological flocks and designing robotic swarms.
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Introduction—Active matter comprises agents that pro-
pel themselves with energy input at individual scales [1–3].
Populations of motile agents self-organize into complex
structures and move collectively [4], with broad implica-
tions for animal flocks [5] and robot swarms [6–9].
However, despite their considerable biological and tech-
nological importance, the principles of collective motion
remain poorly understood largely because of complicated
motile behaviors and interagent interactions. A productive
approach to studying collective motion is to build artificial
model systems with simplified interaction and controllable
motility. Prominent examples include Quincke rollers [10]
and self-propelled Janus particles [11], which represent
microscopic active matter exhibiting overdamped dynam-
ics. In contrast, the inertia of macroscopic agents signifi-
cantly impacts the motion by introducing finite acceleration
time, governing collisions, and dragging ambient fluids.
Recent studies show inertial motile agents exhibit a number
of remarkable phenomena in intermediate-Reynolds-
number fluids [12–16]. Examples of macroscopic motile
agents in fluid-free environments, such as self-propelled
granular particles on a vibrating bed [17] and microbots
[18,19], experience approximately overdamped motion due
to strong energy dissipation induced by frictional sub-
strates. The collective motion of inertial dry agents has been
rarely explored experimentally, although simulations

suggest that inertia introduces novel features in collective
behaviors [20,21].
Here, we develop a model system consisting of magnetic

rollers for inertial dry active matter with tunable motility,
driven by a magnetic field. We observe that an isotropic
roller assembly becomes unstable above a certain concen-
tration threshold, and phase-separates into two uniform
coexisting phases with sharp interfaces via nucleation: a
dilute disordered phase and a dense, fast-moving flock. In
general, this flocking phase separation results from positive
feedback between high density and large polar velocity,
which is induced by inelastic collisions between inertial
rollers driven by the magnetic field. This novel type of
phase separation is reminiscent of but fundamentally
different from the well-known motility-induced phase
separation, where slow particles accumulated in dense
regions [22–24].
Single magnetic roller—To incorporate inertial effects

in macroscopic motile agents, we develop a controllable
active granular system. Our system is composed of numer-
ous ferromagnetic spheres (diameter d ¼ 0.5 mm, mag-
netic dipole moment m0 ¼ 4 × 10−7 Am2) placed on a
horizontal substrate and subjected to a vertical alternating
current magnetic field BðtÞ (magnitude B ¼ 4 mT, period
τ ¼ 1=f, square wave). See Supplemental Material (SM)
for more details [25]. The magnetic dipole, which tends to
align with B, is unstable to infinitesimal fluctuations and
rotates when it becomes antiparallel with B [Fig. 1(a)].
Consequently, the sphere rolls in a random horizontal
direction because of friction with the substrate. After
realigning with B, the sphere persists rolling due to inertia
until the aligning torque halts its rotation, after which it
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rolls back and oscillates. The rolling oscillation continues
until the next flip of B. The sphere may move forward or
backward in the subsequent half-period, depending on the
direction of the magnetic dipole at the moment of flipping.
Thus, by adjusting the frequency f, we can tune the motile
behaviors of the magnetic rollers. At low frequencies
(f < 25 Hz), rollers move in a run-and-oscillate mode
with large velocity variation [Fig. 1(b), SM Movie 1] [25].
At high frequencies(f > 25 Hz), the oscillation stage
vanishes, and rollers run smoothly at a characteristic speed
[Fig. 1(b), SM Movie 2]. Velocity increases with f except
near 25 Hz, where motile behavior transitions [Fig. 1(c)].
A similar propulsion mechanism was employed to drive
magnetic colloidal rollers immersed in liquid [13]. In
contrast, our system uses larger granular rollers and
operates in the absence of ambient liquid, where fluid-
mediated interactions are negligible. Notably, inertia-
assisted self-propulsion drives a roller to move in the
direction of its initial velocity. Consequently, collisions
between rollers can alter the directions of both velocity and
self-propulsion force. Moreover, after B is turned off, the
running rollers continue to travel considerable distances
(typically tens of d) due to inertia before stopping. These
inertial rollers contrast sharply with asymmetric granular
particles on a vibrating bed [17] and electric-powered
Hexbugs [18,19], which stop immediately when energy
input ceases.
Emergence of flocking phase separation—To investigate

the emergence of collective motion, we confine rollers
within a racetrack [Fig. 2(a)]. Collective motion emerges at
high rollers’ area fraction, ϕ. At low ϕ and f, rollers move
randomly, forming an isotropic gaseous phase. When ϕ
exceeds the threshold value at fixed f, the gaseous phase
becomes unstable. A fraction of magnetic rollers self-
organize into a dense flock, moving coherently either

clockwise or counterclockwise through a dilute gaseous
phase of randomly moving particles [Fig. 2(a), SM Movies
3,4]. We characterize the two phases by measuring the local
area fraction, ϕðxÞ, and mean tangential velocity field,
vðxÞ ¼ hvii · nx [25], over half period of BðtÞ, where
x∈ ½0; 1� is the curvilinear coordinate. Both ϕðxÞ and
vðxÞ are uniform separately within the flocking and
gaseous phases, with an abrupt change at the interfaces
[Fig. 2(b)]. Notably, the densities of the coexisting flocking
and gaseous phases, ϕflock and ϕgas, are independent of ϕ.
Increasing ϕ only elongates the flock length, Lf, following
the lever rule [Fig. 2(c)]. We refer to this phase-separated
phenomenon as “flocking phase separation” (FPS).
FPS, characterized by uniform flocking and gaseous

phases with sharp interfaces [25], is observed across a wide
range of parameters, as plotted in a phase diagram with
respect to ϕ and f [Fig. 2(d)]. Both ϕflock and ϕgas decay
rapidly with f at low f (< 25 Hz) and slowly at high f
(>25 Hz), suggesting the influence of single-roller motility
on collective motion. ϕgasðfÞ closely matches the onset
density of FPS over all f. FPS is distinct from asymmetric
solitary bands—characterized by a high-density front and
a gradually decaying tail—observed in polar liquids
composed by microscopic Quincke rollers [10], as well
as from the delocalized density waves comprising multi-
ple short bands found in dense motile filaments [30].
Although the three typical flocking patterns are predicted
within the framework of the Toner-Tu theory [31], phase
separation with uniform flocks has, to our knowledge,
only been observed in simulations of the minimal active
Ising model [32,33] and remains unreported experimen-
tally. Moreover, the FPS is distinct from the well-known
motility-induced phase separation (MIPS) of active
Brownian particles [22], characterized by a dense sta-
tionary phase coexisting with a dilute, disordered phase
lacking collective motion.
Dynamics of coexisting phases—As a new type of

nonequilibrium phase separation, FPS exhibits a unique
particle exchange process at the interfaces between coex-
isting phases. When a flock moves through the gaseous
phase, particles at the forefront of the flock collide with
those in the gas, which subsequently join the flock.
Meanwhile, particles at the tail of the flock return to the
gaseous phase, thereby maintaining a constant flock length.
Consequently, the flock’s propagation speed vflock is greater
than that of individual particles within the flock, vparticle
[Fig. 2(e)]. Note that both vflock and vparticle depend
on driving frequency but are independent of ϕ. They
follow the Rankine-Hugoniot jump condition vflock ¼
vparticle½ðϕflockðfÞ=ðϕflockðfÞ − ϕgasðfÞÞ� [34], arising from
particle number conservation. This relation indicates that
the flock’s forefront propagates as a shock wave, with the
diffusion process being negligible. This is different from
the situation in equilibrium systems, where diffusion plays
a dominant role. We then examine number fluctuation
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FIG. 1. (a) Schematic illustrating the self-propulsion mecha-
nism of a magnetic roller driven by a vertical square-wave
magnetic field. Black arrows indicate the magnetic dipole
orientations of the rollers, while blue arrows depict their rota-
tional alignment with the instantaneous external field. (b) Prob-
ability distribution of velocity (v) at 14 Hz (left) and 34 Hz
(right). (c) Instantaneous speed of an isolated particle. The black
line represents median speed, with the gray shading indicating the
central 20%, 40%, 60%, and 90% percentiles. The dashed line
denotes the reference speed πdf.
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within flocks in FPS, hΔni ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hn2i − hni2

p
∼ nα, where n

is the number of particles [25]. hΔni is normal with α ¼ 0.5
[Fig. 2(f)]. This contrasts with previous studies on collec-
tive motion in other systems [17,35,36], which report giant
number fluctuations with α > 0.5.
Because of polar motion, flocking particles possess higher

kinetic energy, E ¼ 1
2
Mhv2i i, than those in the coexisting

gaseous phase [Fig. 2(g)]. To characterize relative particle
motion within each phase, we measure the internal kinetic
energy, Eint ¼ 1

2
Mhðvi − hviÞ2i. The internal energy corre-

sponds to the effective temperature, T ¼ Eint=kB, where kB
is the Boltzmann constant. In equilibrium systems, coexist-
ing phases maintain equal temperatures. In contrast, the

dense flocking phase—despite containing faster-moving
particles—exhibits a temperature an order of magnitude
lower than that of the coexisting gaseous phase [Fig. 2(g)]
due to strong coherent motion and suppressed random
motion within the flock. A similar phenomenon has been
reported in simulations of MIPS in inertial active Brownian
particles [20,21], where the dilute phase also shows a higher
temperature than the dense phase. These simulations attrib-
ute the temperature difference to particle inertia. However,
direct experimental validation remains absent. In this Letter,
we experimentally observe a temperature difference in an
inertia-dominated, phase-separated active system. This fea-
ture differentiates phase separations in inertial active matter
from those in equilibrium or overdamped active systems.
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FIG. 2. (a) Snapshot of a flock propagating through an isotropic gaseous phase at f ¼ 34 Hz and ϕ ¼ 0.5. Top: Near-field view
highlighting two distinct phases within a straight section of the racetrack, with red arrows indicating local velocity. Scale bar: 5 mm.
Bottom: Probability distribution of velocity (v) within the flock (left) and in the gaseous phase (right). (b) Spatial profiles of local particle
velocity and area fraction measured along the curvilinear coordinate (x) at varying system area fractions ϕ ¼ 0.2, 0.3 and 0.4, and fixed
frequency f ¼ 30 Hz. (c) Reduced flock length (Lf=L0) as a function of ϕ at f ¼ 30 Hz, where L0 is the total racetrack length.
(d) Phase diagram with respect to ϕ and f. Hollow circles denote isotropic states, while solid triangles indicate flocking phase
separation. The dashed and solid lines represent ϕgasðfÞ and ϕflockðfÞ in the phase-separated state, respectively. (e) Propagation velocity
of flocks vflock (square), and particle velocity within flocks vparticle (circle). Since both vflock and vparticle are independent of ϕ, the data are
measured at various ϕ and averaged. Hollow circles represent velocities inferred from the Rankine-Hugoniot jump condition. The
dashed line denotes the reference speed πdf. (f) Number fluctuations of the flock observed in experiments (solid symbols) and
simulations (hollow symbols). (g) Energy per particle in the flocking and coexisting gaseous phases. Hollow symbols denote the internal
kinetic energy within the flocking phase. Within each coexisting phase, E remains independent of ϕ [25]; data are collected over a range
of ϕ values in the FPS regimes and subsequently averaged. (h) Hysteresis loop of flock length at ϕ ¼ 0.41, with arrows indicating the
direction of temporal evolution.
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The presence of the lever rule governing the flock length
in FPS suggests a first-order phase separation. To confirm
this, we measure hysteresis by cycling f in a sample near
the transition point [Fig. 2(h)]. As f is increased at
1 Hz=min, a flock with length Lf ¼ 6.8 mm emerges at
20 Hz, and Lf continues to increase with f. When f is
decreased at the same rate, the flock gradually shrinks with
f and disappears at 16 Hz. The finite hysteresis loop
evidences the first-order nature of FPS.
Nucleation—To better understand the emergence of FPS,

we examine how a flock nucleates from a supersaturated
isotropic gas. Taking advantage of the tunable motility of
rollers, we first set the system in an isotropic state and then
increase f above the transition points. The system does not
undergo phase separation immediately but exhibits an
incubation period [Figs. 3(a)–3(e), SM Movie 5]. During
the incubation period, rollers collide with their neighbors to
form dense groups [Figs. 3(a) and 3(e)]. Most groups
quickly disperse due to random motion of rollers, while a
few temporarily move as flocks when rollers move in one
direction. As a flock moves forward, rollers within the flock
continuously collide with those in the gaseous phase. The
flock will grow if it has sufficient momentum to convert
these gaseous particles into part of the unidirectional flock.
Otherwise, flocking rollers are scattered by randomly
moving ones in the gaseous phase, causing the flock to
shrink. A nucleus of the flocking phase forms from
neighboring rollers with high local density and polar order.
We track the evolution of nuclei and identify the critical
nucleus, which has an equal probability of growing and
shrinking [25] [Fig. 3(b)]. Its area fraction and particle
velocity are much lower than ϕflock and vparticle in the steady

state, respectively. The postcritical nucleus then becomes
denser and longer by collecting particles from the gas
[Fig. 3(c)], eventually growing into a steady flock after one
or two laps around the racetrack [Fig. 3(d)]. During the
nucleation and growth of the flocks, we find that the flock
velocity increases with the flock density [Fig. 3(f)]. A
faster-moving flock clearly facilitates the collection of
particles from the gaseous phase, which in turn enhances
its density. This creates a positive feedback loop that drives
FPS, distinct from the positive feedback between higher
density and lower motility in MIPS [22]. The emergence of
FPS remains robust when the system size significantly
exceeds the critical nucleus length [25].
Simulation and models—To elucidate the mechanism

underlying the robust FPS in magnetic roller populations,
we develop an agent-based simulation model that replicates
the motion of magnetic rollers in a straight channel with
periodic boundary conditions (Appendix A). Instead of
neglecting physical details in minimal active models, our
simulation explicitly identifies the self-propulsion mecha-
nism of magnetic rollers and their interactions, including
magnetic dipole interactions and direct collisions. The
simulations accurately capture the key phenomena
observed in both individual rollers and roller ensembles.
In a population of magnetic rollers, agents interact with

their neighbors via magnetic interactions and inelastic
collisions, which may contribute to the velocity alignment
and particle condensation. To understand the roles of two
interactions in governing FPS, we examine collective
behaviors by “turning off” either magnetic dipole-dipole
interaction or collision-induced energy dissipation in the
simulation. Without magnetic dipole-dipole interactions,
a stable flock still forms, retaining a structure similar to a
regular flock. The absence of magnetic interactions does
not impact the density profile or velocity profile, as shown
by ϕðxÞ and vðxÞ (Fig. 4), respectively. In contrast, without
energy dissipation from collisions, FPS fails, resulting in a
fluctuating ϕðxÞ and vðxÞ around zero across the channel.
Thus, inelastic collisions between rollers alone induce the
alignment of rollers and then the formation of a flock.
Specially, the inelastic collisions between rollers reduce
their relative velocities and lead to their velocities con-
verging [25] (SM Movie 6). Then the inertia-assisted self-
propulsion reaccelerates the colliding particles and makes
them roll along similar direction.
Finally, we use the celebrated Toner-Tu theory to

investigate the emergence of the flocking phase separation.
In the framework of this continuum theory, the key
ingredients for inducing the FPS are the positive feedback
between high density and polar motion, quantified by the
intrinsic velocity-density relation, vðϕÞ. We obtain this
function by simulating roller populations in a short periodic
channel, where the system keeps in metastable uniform
state rather than phase-separated state, and then by calcu-
lating the global average velocity (Appendix B). This
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FIG. 3. (a)–(d) Snapshots of velocity (top) and density (bottom)
profiles during nucleation and growth of a flock at f ¼ 15 Hz,
ϕ ¼ 0.44. The red arrows indicate propagation direction of the
flock. A critical nucleus appears around 19.9 s (b). (e) Spatio-
temporal evolution of area fraction along the curvilinear coor-
dinate (x) during nucleation and growth of a flock at f ¼ 15 Hz
and ϕ ¼ 0.44. The color bar indicates the local area fraction.
(f) Velocity-density relationship during nucleation and growth of
flocks at 15 and 30 Hz in FPS.
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approach establishes a link between the agent-based model
and the continuum description, with agent-level effects
captured by the velocity-density relation vðϕÞ. The velocity
vðϕÞ is zero at low density and becomes positive above a
threshold area fraction [Fig. 6(a)], indicating symmetry
breaking and the onset of polar order. Further simulations
show that both inertia and collisional energy dissipation are
essential for obtaining a nontrivial vðϕÞ [25]. By solving
the one-dimensional Toner-Tu equation with vðϕÞ and
fluctuations, we find that FPS emerges from a uniform
supersaturated state via a nucleation process with key
features observed in experiments (Appendix B). The
influence of motile behaviors is reflected in vðϕÞ, which
determines the densities of two coexisting phases.
Previous simulation studies show that flocking pattern
selection depends on number fluctuations: phase separa-
tion is stable for normal number fluctuations in the active
Ising model, whereas giant number fluctuations correlate
with microphase separation in the Vicsek model [31,37].
Normal number fluctuations observed in our experiments
and agent-based simulations confirm the pattern selection
rule [Fig. 2(f)].
Conclusion—Taken together, we propose a macroscopic

model system consisting of numerous motility-tunable
magnetic rollers, in which flocking emerges as a first-order
phase separation characterized by a uniform bulk and
sharp interfaces. The FPS results from inelastic collisions
between field-driven inertial rollers, which create positive
feedback between high local density and strong polar
motion. The population of magnetic rollers holds potential
as an ideal platform to reveal large-scale collective behav-
iors of inertial dry active matter at the single-particle level.
Systematic control over their motile behaviors, pair inter-
actions, and confining boundaries will enhance our under-
standing of collective motion in complex systems. This
research may pave the way for developing new strategies to
manipulate animal flocks [38], traffic dynamics [7,39], and
robotic swarms [6,8,9].
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End Matter

Appendix A—An agent-based simulation model is
introduced to mimic the motion of magnetic rollers. We
consider an ensemble of magnetized spheres, characterized
by a diameter d, mass M, and moment of inertia
I ¼ Md2=10, rolling on a substrate in the xy plane. These
particles are confined in a two-dimensional channel of
width w and length l, with the periodic boundary
conditions along the x direction and wall boundaries in the
y direction. The entire system is subjected to a time-
varying magnetic field, BðtÞ ¼ B0sgn½sinð2πftÞ�êz, where
f denotes the frequency, “sgn” represents the sign
function, and êz is unit vector along the z axis. Under this
oscillating magnetic field, the magnetized particles are
driven to rotate. The frictional force between the substrate
and particles converts this rotation into net rolling motion.
Specifically, the dynamic equation of particle i with

position ri and angular velocity ωi is modeled as

M̈ri ¼ fwi þ f si þ
X
j∈Nc

i

f cij þ
X
j∈Nm

i

fmij ðA1Þ

Iω̇i¼Te
i þTr

i þ
d
2
f si × êzþ

X
j∈Nc

i

f cij×rijþ
X
j∈Nm

i

Tm
ijþζiêz:

ðA2Þ

Here, fwi represents the volume exclusion force exerted by
the channel wall, and f si denotes the frictional force applied
by the substrate. Based on experimental observations, f si is
modeled as static friction up to a maximum value, fsM,
beyond which it transitions to sliding friction, i.e.,
jf si j ≤ fsM. f cij (fmij) represents the force arising from
collisions (magnetic dipole-dipole interactions) between
particle i and its neighbors j∈Nc

i (j∈Nm
i ) when their

separation distance rij < rc ¼ 21=12d (rij < rm ¼ 5d).
Note that the collision force f cij includes three contribu-
tions: the volume exclusion, friction effect, and inelastic
collision. For simplicity, this Letter models all volume
exclusion using a truncated and shifted Lennard-Jones type
potential: UðrÞ ¼ 4ϵ½ðd=rÞ24 − ðd=rÞ12� þ ϵ with interac-
tion strength ϵ ¼ 0.1 if r < rc, and UðrÞ ¼ 0 otherwise.
The effect of friction and inelastic collision is constructed
by the relative velocities between particles, as done in
Ref. [41]. As a result, the collision force is given by

f cij ¼ −∇rijU − γðvij − ωij × rijÞ; ðA3Þ

with the vector along the direction from particle j to i,
rij ¼ ri − rj, their relative velocity, vij ¼ vi − vj, and the
average rotational velocity ωij ¼ ðωi þωjÞ=2. The term
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γðvij − ωij × rijÞ captures both the interparticle tangential
friction and dissipative normal forces during collisions,
with γ the inelastic collision coefficient. Moreover, the
force induced by dipole-dipole interactions follows
fmij ¼ ∇rijðmi · BjÞ, where Bj ¼ ðμ0=4πÞ½3rijðrij ·mjÞ −
jrijj2mj�=jrijj5 is the magnetic field generated by the
magnetic dipole mj at the location of particle i.
In Eq. (A2), Te

i ¼ mi × B and Tm
ij ¼ mi × Bj denote the

torque on particle i produced by the time-varying magnetic
filed B and the dipole-induced magnetic filed Bj, respec-
tively. The terms df si × êz=2 and f cij × rij separately
account for the torque arising from frictional force
(between particle i and substrate) and collision force
(between particle i and j). Additionally, Tr

i ¼ −½Tr
Mωix=

jωi × êzj; Tr
Mωiy=jωi × êzj; Tf

Mωiz=jωizj� describes the
effects of rolling resistance [26] and friction, in which
Tr
M and Tf

M represent the resisting torque and frictional
torque, respectively, and ωix, ωiy, and ωiz are the compo-
nents of ωi. Finally, to mimic the perturbation of rough
substrate in the rolling direction of particles, Gaussian-
distribution stochastic torque ζi is introduced in the z
direction, satisfying < ζi >¼ 0 and < ζiðtÞζiðt0Þ > ¼
Drδðt − t0Þ.
In our simulation, we adopt the particle’s diameter d,

mass M, and magnetic dipole moment m0 as the units of
length, mass, and magnetic moment, respectively. The unit
of time t is set to 10−3 s. Based on experimental

parameters, we take the channel size as w× l¼20×160,
corresponding to the area fraction ϕ ¼ Nπ=12 800 with the
number of particle N. The amplitude of time-varying
magnetic field is B0 ¼ 7.1 × 10−3, and the permeability
of vacuum is μ0 ¼ 1.8 × 10−3. The collision coefficient
between particles is γ ¼ 0.1. For the interaction between
particle and substrate, we set the maximum static friction
force fsM ¼ 5 × 10−3, the resisting torque Tr

M ¼ 5 × 10−5,
and the frictional torque Tf

M ¼ 0.1Tr
M. Additionally, noise

strength is given by
ffiffiffiffiffiffi
Dr

p ¼ 3.2 × 10−3.
The single roller exhibits run-and-oscillate and smooth-

run behaviors at low and high frequencies, respectively
[Figs. 5(a) and 5(b)]. The simulated rollers display quali-
tatively the same collective behaviors as experimental
results [Figs. 5(c)–5(e)].

Appendix B—We employ a one-dimensional stochastic
Toner-Tu model with density-dependent parameters to
account for density-enhanced velocity [31,42],

∂tϕþ ∂xW ¼ Dϕ∂xxϕ; ðB1Þ

∂tWþξW∂xW¼a2ðϕÞW−a4W3−∂xPðϕÞþDW∂xxWþη:

ðB2Þ

Here, ϕðx;tÞ and Wðx;tÞ¼ϕðx;tÞ ·vðx;tÞ represent the
density and momentum fields, respectively. The parameters
ξ; λ; a4; Dϕ; DW are positive constants, while η denotes
zero-mean Gaussian white noise. For simplicity, we
assume a linear pressure relation, PðϕÞ ¼ λϕ. At lower
densities, where a2ðϕÞ < 0, the system resides in an
disordered phase. At higher densities, where a2ðϕÞ > 0,
the system exhibits a trivial polarized solution:
ϕðx; tÞ ¼ ϕ0, Wðx; tÞ ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½a2ðϕ0Þ=a4�

p
. The trivial

solution corresponds to a metastable uniform state.
While previous studies typically assume a2 to be a

simple function of ϕ [31], we aim to derive a2ðϕÞ directly
from the dynamics of the magnetic roller system. We obtain
the velocity-density relation vðϕÞ by simulating a roller
assembly at densities ϕ in a short channel (l ¼ 25) with
periodic boundary conditions, where the system remains
in a uniform state—rather than undergoing FPS—due
to finite-size effects. For each pair ðϕ; fÞ, particles
are initialized with random positions and velocities.
Simulations are run for at least 1000 magnetic periods.
During relaxation, we monitor the velocity vðtÞ ¼
< vðx; tÞ > ·nx, where nx is the tangential unit vector
along the channel centerline, and the average is taken over
all particles. Once vðtÞ stabilizes, we collect instantaneous
roller velocities over 100 magnetic periods and compute the
mean velocity v via time and ensemble averaging. We
repeat simulations for various densities ϕ to construct the
vðϕÞ curve. To test FPS at various frequencies, we simulate
three sets of vðϕÞ for f ¼ 15, 22, and 29 Hz [Fig. 6(a)].
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FIG. 5. Simulated single-roller trajectories at 10 Hz (a) and
30 Hz (b), with the color bar indicating elapsed time. (b) Phase
diagram obtained from the simulation results, showing the phase
boundary consistent with experimental observation. (d) Energy
per particle of two phases observed in simulations. (e) Propaga-
tion velocity of flocks vflock (square), and particle velocity within
flocks vparticle (circle) in simulations. They follow the Rankine-
Hugoniot jump condition.
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In addition, the curve vðϕÞ is fitted using the following
functional form:

vðϕÞ ¼

8>><
>>:

0 ϕ < B

A
ffiffiffiffiffiffiffiffiffiffiffiffi
ϕ − B

p
B < ϕ < E

−CϕþD E < ϕ < D=C:

ðB3Þ

Here, ½A;B;C;D� are fitting parameters and E denotes
the smaller intersection point of vðϕÞ ¼ A

ffiffiffiffiffiffiffiffiffiffiffiffi
ϕ − B

p
and

vðϕÞ ¼ −CϕþD. For f ¼ 15, 22, and 29 Hz, the corre-
sponding parameter sets are [39.9, 0.55, 350, 280], [53.3,
0.39, 590, 472], and [68.8, 0.30, 403, 326], respectively.
For ϕ > ϕs, a2ðϕÞ is given by a2ðϕÞ ¼ a4W2ðϕÞ ¼
a4ϕ2v2ðϕÞ, where ϕs is the density threshold above which
the coarse-grained velocity vðϕÞ becomes positive. The
parameter a4 ¼ 30 is chosen to match the characteristic
duration of a roller flip under the alternating current
magnetic field. For ϕ < ϕs, a2ðϕÞ decreases linearly from
0 at ϕs to −a4 at ϕ ¼ 0.
For simplicity, the spatial coordinate x is rescaled by

dividing it by πdf, ensuring W ∈ ½0; 1�. Consistent with
Ref. [23], we set ξ ¼ 1. The noise strength ση ¼ 0.03 is
inferred from the variation in the simulated collective
velocity [Fig. 6(a)]. Additionally, the linear pressure
parameter is set as λ ¼ 1, while the diffusion parameters
are Dϕ ¼ DW ¼ 0.1. All calculations are performed using
PYTHON with the PY-PDE library. The system size is
L0 ¼ 20, the grid spacing Δx ¼ 0.1, and the time step
Δt ¼ 0.0005. Using these parameters, we solve the 1D
Toner-Tu model in a supersaturated homogeneous system.
FPS emerges via a nucleation process and reaches the

steady state [Fig. 6(b)]. The steady flocks exhibit uniform
density [Figs. 6(c) and 6(d)] and follow the lever rule, as
observed in the experiments.
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FIG. 6. (a) Velocity-density relationships obtained from simu-
lations in uniform and metastable states at 15, 22, and 29 Hz. The
agent-based simulation is performed in a short-channel configu-
ration, preventing phase separation and maintaining uniformity.
Red and yellow symbols indicate the densities of two phases
obtained directly from the simulation at 15 and 22 Hz. ϕs and ϕp
are defined as where vðϕÞ starts to increase and reaches the peak,
respectively. ϕs and ϕp are closed to ϕgas and ϕflock, respectively.
(b) Spatiotemporal profile of local area fraction calculated within
the Toner-Tu theory framework using the velocity-density rela-
tionship from (a) at 22 Hz. Toner-Tu theory predicts uniform
density profiles within flocks at 15 Hz (c) and 22 Hz (d). The red
arrow indicates the propagation direction of flocks.
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