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Flocking Phase Separation in Inertial Active Matter
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A large population of motile agents can display remarkable collective behaviors. Here, we study
collective motion of inertia-dominated macroscopic agents using a model system of millimeter-sized
magnetic rollers with tunable motile behaviors. In this system, we observe first-order flocking phase
separation, where a uniform flock propagates through an isotropic gaseous phase. The flocking phase and
the coexisting gaseous phase exhibit distinct particle exchange dynamics and maintain different effective
temperatures, which are unattainable in equilibrium systems. Combining experiments, agent-based
simulations, and phenomenological theories, we demonstrate that inelastic collisions between inertial
and externally driven magnetic rollers produce positive feedback between high density and polar motion,
driving flocking phase separation. Our Letter reveals a novel mode of collective motion in inertial active
matter, with potential implications for controlling biological flocks and designing robotic swarms.
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Introduction—Active matter comprises agents that pro-
pel themselves with energy input at individual scales [1-3].
Populations of motile agents self-organize into complex
structures and move collectively [4], with broad implica-
tions for animal flocks [5] and robot swarms [6-9].
However, despite their considerable biological and tech-
nological importance, the principles of collective motion
remain poorly understood largely because of complicated
motile behaviors and interagent interactions. A productive
approach to studying collective motion is to build artificial
model systems with simplified interaction and controllable
motility. Prominent examples include Quincke rollers [10]
and self-propelled Janus particles [11], which represent
microscopic active matter exhibiting overdamped dynam-
ics. In contrast, the inertia of macroscopic agents signifi-
cantly impacts the motion by introducing finite acceleration
time, governing collisions, and dragging ambient fluids.
Recent studies show inertial motile agents exhibit a number
of remarkable phenomena in intermediate-Reynolds-
number fluids [12—-16]. Examples of macroscopic motile
agents in fluid-free environments, such as self-propelled
granular particles on a vibrating bed [17] and microbots
[18,19], experience approximately overdamped motion due
to strong energy dissipation induced by frictional sub-
strates. The collective motion of inertial dry agents has been
rarely explored experimentally, although simulations
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suggest that inertia introduces novel features in collective
behaviors [20,21].

Here, we develop a model system consisting of magnetic
rollers for inertial dry active matter with tunable motility,
driven by a magnetic field. We observe that an isotropic
roller assembly becomes unstable above a certain concen-
tration threshold, and phase-separates into two uniform
coexisting phases with sharp interfaces via nucleation: a
dilute disordered phase and a dense, fast-moving flock. In
general, this flocking phase separation results from positive
feedback between high density and large polar velocity,
which is induced by inelastic collisions between inertial
rollers driven by the magnetic field. This novel type of
phase separation is reminiscent of but fundamentally
different from the well-known motility-induced phase
separation, where slow particles accumulated in dense
regions [22-24].

Single magnetic roller—To incorporate inertial effects
in macroscopic motile agents, we develop a controllable
active granular system. Our system is composed of numer-
ous ferromagnetic spheres (diameter d = 0.5 mm, mag-
netic dipole moment m, = 4 x 10~7 Am?) placed on a
horizontal substrate and subjected to a vertical alternating
current magnetic field B(7) (magnitude B = 4 mT, period
7 =1/f, square wave). See Supplemental Material (SM)
for more details [25]. The magnetic dipole, which tends to
align with B, is unstable to infinitesimal fluctuations and
rotates when it becomes antiparallel with B [Fig. 1(a)].
Consequently, the sphere rolls in a random horizontal
direction because of friction with the substrate. After
realigning with B, the sphere persists rolling due to inertia
until the aligning torque halts its rotation, after which it

© 2025 American Physical Society
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FIG. 1. (a) Schematic illustrating the self-propulsion mecha-
nism of a magnetic roller driven by a vertical square-wave
magnetic field. Black arrows indicate the magnetic dipole
orientations of the rollers, while blue arrows depict their rota-
tional alignment with the instantaneous external field. (b) Prob-
ability distribution of velocity (v) at 14 Hz (left) and 34 Hz
(right). (c) Instantaneous speed of an isolated particle. The black
line represents median speed, with the gray shading indicating the
central 20%, 40%, 60%, and 90% percentiles. The dashed line
denotes the reference speed zdf.

rolls back and oscillates. The rolling oscillation continues
until the next flip of B. The sphere may move forward or
backward in the subsequent half-period, depending on the
direction of the magnetic dipole at the moment of flipping.
Thus, by adjusting the frequency f, we can tune the motile
behaviors of the magnetic rollers. At low frequencies
(f < 25 Hz), rollers move in a run-and-oscillate mode
with large velocity variation [Fig. 1(b), SM Movie 1] [25].
At high frequencies(f > 25 Hz), the oscillation stage
vanishes, and rollers run smoothly at a characteristic speed
[Fig. 1(b), SM Movie 2]. Velocity increases with f except
near 25 Hz, where motile behavior transitions [Fig. 1(c)].
A similar propulsion mechanism was employed to drive
magnetic colloidal rollers immersed in liquid [13]. In
contrast, our system uses larger granular rollers and
operates in the absence of ambient liquid, where fluid-
mediated interactions are negligible. Notably, inertia-
assisted self-propulsion drives a roller to move in the
direction of its initial velocity. Consequently, collisions
between rollers can alter the directions of both velocity and
self-propulsion force. Moreover, after B is turned off, the
running rollers continue to travel considerable distances
(typically tens of d) due to inertia before stopping. These
inertial rollers contrast sharply with asymmetric granular
particles on a vibrating bed [17] and electric-powered
Hexbugs [18,19], which stop immediately when energy
input ceases.

Emergence of flocking phase separation—To investigate
the emergence of collective motion, we confine rollers
within a racetrack [Fig. 2(a)]. Collective motion emerges at
high rollers’ area fraction, ¢. At low ¢ and f, rollers move
randomly, forming an isotropic gaseous phase. When ¢
exceeds the threshold value at fixed f, the gaseous phase
becomes unstable. A fraction of magnetic rollers self-
organize into a dense flock, moving coherently either

clockwise or counterclockwise through a dilute gaseous
phase of randomly moving particles [Fig. 2(a), SM Movies
3,4]. We characterize the two phases by measuring the local
area fraction, ¢(x), and mean tangential velocity field,
v(x) = (v;) -n, [25], over half period of B(z), where
x€[0,1] is the curvilinear coordinate. Both ¢(x) and
v(x) are uniform separately within the flocking and
gaseous phases, with an abrupt change at the interfaces
[Fig. 2(b)]. Notably, the densities of the coexisting flocking
and gaseous phases, ¢, and g, are independent of ¢.
Increasing ¢ only elongates the flock length, L, following
the lever rule [Fig. 2(c)]. We refer to this phase-separated
phenomenon as “flocking phase separation” (FPS).

FPS, characterized by uniform flocking and gaseous
phases with sharp interfaces [25], is observed across a wide
range of parameters, as plotted in a phase diagram with
respect to ¢ and f [Fig. 2(d)]. Both ¢po and ¢, decay
rapidly with f at low f (< 25 Hz) and slowly at high f
(>25 Hz), suggesting the influence of single-roller motility
on collective motion. ¢y, (f) closely matches the onset
density of FPS over all f. FPS is distinct from asymmetric
solitary bands—characterized by a high-density front and
a gradually decaying tail—observed in polar liquids
composed by microscopic Quincke rollers [10], as well
as from the delocalized density waves comprising multi-
ple short bands found in dense motile filaments [30].
Although the three typical flocking patterns are predicted
within the framework of the Toner-Tu theory [31], phase
separation with uniform flocks has, to our knowledge,
only been observed in simulations of the minimal active
Ising model [32,33] and remains unreported experimen-
tally. Moreover, the FPS is distinct from the well-known
motility-induced phase separation (MIPS) of active
Brownian particles [22], characterized by a dense sta-
tionary phase coexisting with a dilute, disordered phase
lacking collective motion.

Dynamics of coexisting phases—As a new type of
nonequilibrium phase separation, FPS exhibits a unique
particle exchange process at the interfaces between coex-
isting phases. When a flock moves through the gaseous
phase, particles at the forefront of the flock collide with
those in the gas, which subsequently join the flock.
Meanwhile, particles at the tail of the flock return to the
gaseous phase, thereby maintaining a constant flock length.
Consequently, the flock’s propagation speed vy, 1S greater
than that of individual particles within the flock, vypicie
[Fig. 2(e)]. Note that both vge and vy depend
on driving frequency but are independent of ¢. They
follow the Rankine-Hugoniot jump condition vg, =
Upanicle[(qﬁﬂock (f)/(¢ﬂock (f) - ¢gas (f))] [34]’ arising from
particle number conservation. This relation indicates that
the flock’s forefront propagates as a shock wave, with the
diffusion process being negligible. This is different from
the situation in equilibrium systems, where diffusion plays
a dominant role. We then examine number fluctuation
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FIG. 2. (a) Snapshot of a flock propagating through an isotropic gaseous phase at f = 34 Hz and ¢ = 0.5. Top: Near-field view
highlighting two distinct phases within a straight section of the racetrack, with red arrows indicating local velocity. Scale bar: 5 mm.
Bottom: Probability distribution of velocity (v) within the flock (left) and in the gaseous phase (right). (b) Spatial profiles of local particle
velocity and area fraction measured along the curvilinear coordinate (x) at varying system area fractions ¢ = 0.2, 0.3 and 0.4, and fixed
frequency f = 30 Hz. (c) Reduced flock length (L;/L) as a function of ¢ at f = 30 Hz, where L, is the total racetrack length.
(d) Phase diagram with respect to ¢ and f. Hollow circles denote isotropic states, while solid triangles indicate flocking phase
separation. The dashed and solid lines represent ¢, (f) and ¢gock (f) in the phase-separated state, respectively. (e) Propagation velocity
of flocks vp,¢ (square), and particle velocity within flocks vp,pice (Circle). Since both vpaq and vp,picr. are independent of ¢, the data are
measured at various ¢ and averaged. Hollow circles represent velocities inferred from the Rankine-Hugoniot jump condition. The
dashed line denotes the reference speed zdf. (f) Number fluctuations of the flock observed in experiments (solid symbols) and
simulations (hollow symbols). (g) Energy per particle in the flocking and coexisting gaseous phases. Hollow symbols denote the internal
kinetic energy within the flocking phase. Within each coexisting phase, E remains independent of ¢ [25]; data are collected over a range
of ¢ values in the FPS regimes and subsequently averaged. (h) Hysteresis loop of flock length at ¢p = 0.41, with arrows indicating the
direction of temporal evolution.

within flocks in FPS, (An) = +/(n?) — (n)? ~ n%, where n dense flocking phase—despite containing faster-moving
is the number of particles [25]. (An) is normal with @ = 0.5 ~ particles—exhibits a temperature an order of magnitude
[Fig. 2(f)]. This contrasts with previous studies on collec-  lower than that of the coexisting gaseous phase [Fig. 2(g)]
tive motion in other systems [17,35,36], which report giant ~ du€ to strong coherent motion and suppressed random
number fluctuations with a > 0.5. motion within the flock. A similar phenomenon has been
Because of polar motion, flocking particles possess higher reported in simulations of MIPS in inertial active Brownian
Kinetic energy, E = Ly <V2> than those in the coexisting particles [20,21], where the dilute phase also shows a higher
o2 o . . . temperature than the dense phase. These simulations attrib-

gaseous phase [Fig. 2(g)]. To characterize relative particle

. thi b oh he i 1 Kinefi ute the temperature difference to particle inertia. However,
motion within each phase, we measu're the internal KInetic g experimental validation remains absent. In this Letter,
energy, E™ = IM((v; — (v))?). The internal energy corre-

: we experimentally observe a temperature difference in an
sponds to the effective temperature, 7 = E™/kp, where kj inertia-dominated, phase-separated active system. This fea-
is the Boltzmann constant. In equilibrium systems, coexist-  ture differentiates phase separations in inertial active matter
ing phases maintain equal temperatures. In contrast, the = from those in equilibrium or overdamped active systems.
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The presence of the lever rule governing the flock length
in FPS suggests a first-order phase separation. To confirm
this, we measure hysteresis by cycling f in a sample near
the transition point [Fig. 2(h)]. As f is increased at
1 Hz/ min, a flock with length L, = 6.8 mm emerges at
20 Hz, and L continues to increase with f. When f is
decreased at the same rate, the flock gradually shrinks with
f and disappears at 16 Hz. The finite hysteresis loop
evidences the first-order nature of FPS.

Nucleation—To better understand the emergence of FPS,
we examine how a flock nucleates from a supersaturated
isotropic gas. Taking advantage of the tunable motility of
rollers, we first set the system in an isotropic state and then
increase f above the transition points. The system does not
undergo phase separation immediately but exhibits an
incubation period [Figs. 3(a)-3(e), SM Movie 5]. During
the incubation period, rollers collide with their neighbors to
form dense groups [Figs. 3(a) and 3(e)]. Most groups
quickly disperse due to random motion of rollers, while a
few temporarily move as flocks when rollers move in one
direction. As a flock moves forward, rollers within the flock
continuously collide with those in the gaseous phase. The
flock will grow if it has sufficient momentum to convert
these gaseous particles into part of the unidirectional flock.
Otherwise, flocking rollers are scattered by randomly
moving ones in the gaseous phase, causing the flock to
shrink. A nucleus of the flocking phase forms from
neighboring rollers with high local density and polar order.
We track the evolution of nuclei and identify the critical
nucleus, which has an equal probability of growing and
shrinking [25] [Fig. 3(b)]. Its area fraction and particle
velocity are much lower than ¢ and vp,picre in the steady
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FIG. 3. (a)—(d) Snapshots of velocity (top) and density (bottom)
profiles during nucleation and growth of a flock at f = 15 Hz,
¢ = 0.44. The red arrows indicate propagation direction of the
flock. A critical nucleus appears around 19.9 s (b). (e) Spatio-
temporal evolution of area fraction along the curvilinear coor-
dinate (x) during nucleation and growth of a flock at f = 15 Hz
and ¢ = 0.44. The color bar indicates the local area fraction.
(f) Velocity-density relationship during nucleation and growth of
flocks at 15 and 30 Hz in FPS.

state, respectively. The postcritical nucleus then becomes
denser and longer by collecting particles from the gas
[Fig. 3(c)], eventually growing into a steady flock after one
or two laps around the racetrack [Fig. 3(d)]. During the
nucleation and growth of the flocks, we find that the flock
velocity increases with the flock density [Fig. 3(f)]. A
faster-moving flock clearly facilitates the collection of
particles from the gaseous phase, which in turn enhances
its density. This creates a positive feedback loop that drives
FPS, distinct from the positive feedback between higher
density and lower motility in MIPS [22]. The emergence of
FPS remains robust when the system size significantly
exceeds the critical nucleus length [25].

Simulation and models—To elucidate the mechanism
underlying the robust FPS in magnetic roller populations,
we develop an agent-based simulation model that replicates
the motion of magnetic rollers in a straight channel with
periodic boundary conditions (Appendix A). Instead of
neglecting physical details in minimal active models, our
simulation explicitly identifies the self-propulsion mecha-
nism of magnetic rollers and their interactions, including
magnetic dipole interactions and direct collisions. The
simulations accurately capture the key phenomena
observed in both individual rollers and roller ensembles.

In a population of magnetic rollers, agents interact with
their neighbors via magnetic interactions and inelastic
collisions, which may contribute to the velocity alignment
and particle condensation. To understand the roles of two
interactions in governing FPS, we examine collective
behaviors by “turning off” either magnetic dipole-dipole
interaction or collision-induced energy dissipation in the
simulation. Without magnetic dipole-dipole interactions,
a stable flock still forms, retaining a structure similar to a
regular flock. The absence of magnetic interactions does
not impact the density profile or velocity profile, as shown
by ¢(x) and v(x) (Fig. 4), respectively. In contrast, without
energy dissipation from collisions, FPS fails, resulting in a
fluctuating ¢(x) and »(x) around zero across the channel.
Thus, inelastic collisions between rollers alone induce the
alignment of rollers and then the formation of a flock.
Specially, the inelastic collisions between rollers reduce
their relative velocities and lead to their velocities con-
verging [25] (SM Movie 6). Then the inertia-assisted self-
propulsion reaccelerates the colliding particles and makes
them roll along similar direction.

Finally, we use the celebrated Toner-Tu theory to
investigate the emergence of the flocking phase separation.
In the framework of this continuum theory, the key
ingredients for inducing the FPS are the positive feedback
between high density and polar motion, quantified by the
intrinsic velocity-density relation, v(¢). We obtain this
function by simulating roller populations in a short periodic
channel, where the system keeps in metastable uniform
state rather than phase-separated state, and then by calcu-
lating the global average velocity (Appendix B). This
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FIG. 4.
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(a) Simulation snapshots of roller populations at f = 22 Hz and ¢ = 0.5 under three interaction scenarios: (i) inelastic

collisions with magnetic dipole-dipole interactions (blue box), (ii) inelastic collisions without dipole-dipole interactions (red box), and
(iii) elastic collisions with dipole-dipole interactions (yellow box). (b) Profiles of velocity and local area fraction measured along the
curvilinear coordinate, x, for the three interaction scenarios. The color code is the same as in (a).

approach establishes a link between the agent-based model
and the continuum description, with agent-level effects
captured by the velocity-density relation v(¢). The velocity
v(¢) is zero at low density and becomes positive above a
threshold area fraction [Fig. 6(a)], indicating symmetry
breaking and the onset of polar order. Further simulations
show that both inertia and collisional energy dissipation are
essential for obtaining a nontrivial v(¢) [25]. By solving
the one-dimensional Toner-Tu equation with v(¢) and
fluctuations, we find that FPS emerges from a uniform
supersaturated state via a nucleation process with key
features observed in experiments (Appendix B). The
influence of motile behaviors is reflected in v(¢), which
determines the densities of two coexisting phases.
Previous simulation studies show that flocking pattern
selection depends on number fluctuations: phase separa-
tion is stable for normal number fluctuations in the active
Ising model, whereas giant number fluctuations correlate
with microphase separation in the Vicsek model [31,37].
Normal number fluctuations observed in our experiments
and agent-based simulations confirm the pattern selection
rule [Fig. 2()].

Conclusion—Taken together, we propose a macroscopic
model system consisting of numerous motility-tunable
magnetic rollers, in which flocking emerges as a first-order
phase separation characterized by a uniform bulk and
sharp interfaces. The FPS results from inelastic collisions
between field-driven inertial rollers, which create positive
feedback between high local density and strong polar
motion. The population of magnetic rollers holds potential
as an ideal platform to reveal large-scale collective behav-
iors of inertial dry active matter at the single-particle level.
Systematic control over their motile behaviors, pair inter-
actions, and confining boundaries will enhance our under-
standing of collective motion in complex systems. This
research may pave the way for developing new strategies to
manipulate animal flocks [38], traffic dynamics [7,39], and
robotic swarms [6,8,9].
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End Matter

Appendix A—An agent-based simulation model is
introduced to mimic the motion of magnetic rollers. We
consider an ensemble of magnetized spheres, characterized
by a diameter d, mass M, and moment of inertia
I = Md?/10, rolling on a substrate in the xy plane. These
particles are confined in a two-dimensional channel of
width w and length [, with the periodic boundary
conditions along the x direction and wall boundaries in the
y direction. The entire system is subjected to a time-
varying magnetic field, B(7) = Bysgn[sin(2zft)]€., where
f denotes the frequency, ‘“sgn” represents the sign
function, and €, is unit vector along the z axis. Under this
oscillating magnetic field, the magnetized particles are
driven to rotate. The frictional force between the substrate
and particles converts this rotation into net rolling motion.

Specifically, the dynamic equation of particle i with
position r; and angular velocity w; is modeled as

Mi =0+ S s+ S f

JEN¢ jenn

(A1)

d R .
Iy =T§+ T +5f 1@+ Y _fixry+ Y Ti+L..
JENS jenN”

(A2)

Here, f) represents the volume exclusion force exerted by
the channel wall, and f? denotes the frictional force applied
by the substrate. Based on experimental observations, f? is
modeled as static friction up to a maximum value, f3,,
beyond which it transitions to sliding friction, i.e.,
Ifil < fiu- f5; (fi}) represents the force arising from
collisions (magnetic dipole-dipole interactions) between
particle i and its neighbors jE€N{ (j€N}) when their
separation distance r;; < r. =2Y12d (r;; <r, = 5d).
Note that the collision force f7; includes three contribu-
tions: the volume exclusion, friction effect, and inelastic
collision. For simplicity, this Letter models all volume
exclusion using a truncated and shifted Lennard-Jones type
potential: U(r) = 4e[(d/r)** — (d/r)"?] + e with interac-
tion strength ¢ = 0.1 if r < r., and U(r) = 0 otherwise.
The effect of friction and inelastic collision is constructed
by the relative velocities between particles, as done in
Ref. [41]. As a result, the collision force is given by

(A3)

5=V, U—r(v—w; xr;),

ij=
with the vector along the direction from particle j to i,
r;; = r; —rj, their relative velocity, v;; = v; — v;, and the
average rotational velocity @;; = (w; +®;)/2. The term
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y(v;; — w;; X r;;) captures both the interparticle tangential
friction and dissipative normal forces during collisions,
with y the inelastic collision coefficient. Moreover, the
force induced by dipole-dipole interactions follows
1=V, (m;-B;), where Bj= (uo/4r)[3r;;(r;;-m;) -
rij|*m;)/|ri;]° is the magnetic field generated by the
magnetic dipole m; at the location of particle i.

In Eq. (A2), T{ =m; x B and T}} = m; X B; denote the
torque on particle i produced by the time-varying magnetic
filed B and the dipole-induced magnetic filed B;, respec-
tively. The terms dff xé,/2 and f i Xr;; separately
account for the torque arising from frictional force
(between particle i and substrate) and collision force
(between particle i and j). Additionally, T} = —[T},0;./
lw; x &, Tyw,/|o; xe, ,T-,’:,,a),»z/|a),-z|} describes  the
effects of rolling resistance [26] and friction, in which

T}, and T{W represent the resisting torque and frictional
torque, respectively, and ;,, ;,, and w;, are the compo-
nents of ;. Finally, to mimic the perturbation of rough
substrate in the rolling direction of particles, Gaussian-
distribution stochastic torque ¢; is introduced in the z
direction, satisfying < ¢; >=0 and < ;(1){;(7) > =
D,S(t—7).

In our simulation, we adopt the particle’s diameter d,
mass M, and magnetic dipole moment m as the units of
length, mass, and magnetic moment, respectively. The unit
of time ¢ is set to 1073 s. Based on experimental
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FIG. 5. Simulated single-roller trajectories at 10 Hz (a) and

30 Hz (b), with the color bar indicating elapsed time. (b) Phase
diagram obtained from the simulation results, showing the phase
boundary consistent with experimental observation. (d) Energy
per particle of two phases observed in simulations. (e) Propaga-
tion velocity of flocks vg,. (square), and particle velocity within
flocks vpaicie (circle) in simulations. They follow the Rankine-
Hugoniot jump condition.

parameters, we take the channel size as wx[=20x 160,
corresponding to the area fraction ¢ = Nz /12 800 with the
number of particle N. The amplitude of time-varying
magnetic field is By = 7.1 x 1073, and the permeability
of vacuum is g, = 1.8 x 1073, The collision coefficient
between particles is y = 0.1. For the interaction between
particle and substrate, we set the maximum static friction
force f3, =5 x 1073, the resisting torque 7%, = 5 x 1075,
and the frictional torque T, = 0.17%,. Additionally, noise
strength is given by /D, = 3.2 x 1073,

The single roller exhibits run-and-oscillate and smooth-
run behaviors at low and high frequencies, respectively
[Figs. 5(a) and 5(b)]. The simulated rollers display quali-
tatively the same collective behaviors as experimental
results [Figs. 5(c)-5(e)].

Appendix B—We employ a one-dimensional stochastic
Toner-Tu model with density-dependent parameters to
account for density-enhanced velocity [31,42],

at¢ + axW = D¢axx¢’ (Bl)

6,W+.§W0XW: a2(¢)W_a4W3 _axp(¢) +DWaxxW+77-
(B2)

Here, ¢(x,7) and W(x,1)=¢(x,1)-v(x,7) represent the
density and momentum fields, respectively. The parameters
¢ A, a4, Dy, Dy, are positive constants, while 7 denotes
zero-mean Gaussian white noise. For simplicity, we
assume a linear pressure relation, P(¢) = A¢p. At lower
densities, where a,(¢p) <0, the system resides in an
disordered phase. At higher densities, where a,(¢) > 0,
the system exhibits a trivial polarized solution:
¢(x.1) = o, W(x.1) = £+/[az(do)/as]. The
solution corresponds to a metastable uniform state.

While previous studies typically assume a, to be a
simple function of ¢ [31], we aim to derive a,(¢) directly
from the dynamics of the magnetic roller system. We obtain
the velocity-density relation v(¢) by simulating a roller
assembly at densities ¢ in a short channel (I = 25) with
periodic boundary conditions, where the system remains
in a uniform state—rather than undergoing FPS—due
to finite-size effects. For each pair (¢, f), particles
are initialized with random positions and velocities.
Simulations are run for at least 1000 magnetic periods.
During relaxation, we monitor the velocity v(f) =
< v(x,t) > -n,, where n, is the tangential unit vector
along the channel centerline, and the average is taken over
all particles. Once v(t) stabilizes, we collect instantaneous
roller velocities over 100 magnetic periods and compute the
mean velocity » via time and ensemble averaging. We
repeat simulations for various densities ¢ to construct the
v(¢) curve. To test FPS at various frequencies, we simulate
three sets of v(¢) for f = 15, 22, and 29 Hz [Fig. 6(a)].

trivial
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In addition, the curve v(¢) is fitted using the following
functional form:

0 ¢$<B

AVp—B B<¢p<E
-C¢+D E<¢<DJC.

v(¢) = (B3)

Here, [A,B,C, D] are fitting parameters and E denotes
the smaller intersection point of v(¢p) = Av/¢p — B and
v(¢p) = —=Ce¢ + D. For f =15, 22, and 29 Hz, the corre-
sponding parameter sets are [39.9, 0.55, 350, 280], [53.3,
0.39, 590, 472], and [68.8, 0.30, 403, 326], respectively.
For ¢ > ¢,, a)(¢) is given by ay(p) = a,W?(p) =
a,*v?(¢), where ¢, is the density threshold above which
the coarse-grained velocity v(¢) becomes positive. The
parameter a4 = 30 is chosen to match the characteristic
duration of a roller flip under the alternating current
magnetic field. For ¢ < ¢, a>(¢) decreases linearly from
0 at ¢, to —ay at ¢p = 0.

For simplicity, the spatial coordinate x is rescaled by
dividing it by zdf, ensuring W €0, 1]. Consistent with
Ref. [23], we set £ = 1. The noise strength ¢, = 0.03 is
inferred from the variation in the simulated collective
velocity [Fig. 6(a)]. Additionally, the linear pressure
parameter is set as 4 = 1, while the diffusion parameters
are Dy = Dy = 0.1. All calculations are performed using
PYTHON with the PY-PDE library. The system size is
Ly = 20, the grid spacing Ax = 0.1, and the time step
At = 0.0005. Using these parameters, we solve the 1D
Toner-Tu model in a supersaturated homogeneous system.
FPS emerges via a nucleation process and reaches the

FIG. 6. (a) Velocity-density relationships obtained from simu-
lations in uniform and metastable states at 15, 22, and 29 Hz. The
agent-based simulation is performed in a short-channel configu-
ration, preventing phase separation and maintaining uniformity.
Red and yellow symbols indicate the densities of two phases
obtained directly from the simulation at 15 and 22 Hz. ¢, and ¢,
are defined as where v(¢) starts to increase and reaches the peak,
respectively. ¢; and ¢, are closed t0 ¢, and ok, respectively.
(b) Spatiotemporal profile of local area fraction calculated within
the Toner-Tu theory framework using the velocity-density rela-
tionship from (a) at 22 Hz. Toner-Tu theory predicts uniform
density profiles within flocks at 15 Hz (c) and 22 Hz (d). The red
arrow indicates the propagation direction of flocks.

steady state [Fig. 6(b)]. The steady flocks exhibit uniform
density [Figs. 6(c) and 6(d)] and follow the lever rule, as
observed in the experiments.

178301-8



	Flocking Phase Separation in Inertial Active Matter
	Introduction
	Single magnetic roller
	Emergence of flocking phase separation
	Dynamics of coexisting phases
	Nucleation
	Simulation and models
	Conclusion
	Acknowledgments
	Data availability
	References
	Appendix A
	Appendix B


