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Link between cascade phenomenon and
correlated Chern insulators in magic-angle
twisted bilayer graphene

Qianying Hu 1,2,4, Shu Liang3,4, Xinheng Li2, Hao Shi 3, Xi Dai 3 &
Yang Xu 1,2

Chern insulators are topologically non-trivial states ofmatter characterized by
incompressible bulk and chiral edge states. Incorporating topological Chern
bands with strong electronic correlations provides a versatile playground for
studying emergent quantum phenomena. In this study, we resolve the corre-
lated Chern insulators (CCIs) satisfying | ν | +|C | = 4 in magic-angle twisted
bilayer graphene (MATBG) through Rydberg exciton sensing and unveil their
direct link with the zero-field cascade features in the electronic compressi-
bility. The compressibility minima in the cascade are found to deviate sub-
stantially from nearby integer fillings (by Δν) and coincide with the onsets of
CCIs in doping densities, yielding a quasi-universal relation Bc =Φ0Δν/C (onset
magneticfieldBc,magneticflux quantumΦ0 andChern numberC).We suggest
these onsets lie on the intersection where the integer filling of localized
“f-orbitals” and Chern bands are simultaneously reached. Our findings update
the field-dependent phase diagram of MATBG and directly support the topo-
logical heavy fermion model.

Two-dimensional electronic systems hosting nontrivial Chern bands
can give rise to the quantum anomalous Hall effect (QAHE) with
spontaneous breaking of the time-reversal symmetry at zeromagnetic
fields1–10. However, in many systems such as the magnetic topological
insulator MnBi2Te4

11,12, MATBG13–22, and multilayer crystalline
graphene23–25, the Chern insulators (C≠0) often need to be stabilized by
a finite magnetic field. Understanding the driving force of this finite
field is crucial for establishing unified theoretical frameworks. MATBG
withmultiple robust CCIs provides a good platform, where the CCIs in
MATBG have been found to emanate from integer fillings ν of the
moiré superlattice and follow the regular sequence of (C, ν) = (±3, ±1),
(±2, ±2), and (±1, ±3)13–22.

The nature of the ordered ground state at low temperatures is
often closely related to its less ordered normal state at high tem-
peratures, as exemplified by the link between superconductivity and

strange metallicity in cuprates26,27. In MATBG, the interplay between
spin, valley, and sublattice degrees of freedom, coupled with the
helical Dirac electrons and narrow moiré bandwidth, creates a diverse
ensemble of competing many-body ground states28–31. The normal
states for the low-temperature correlated insulators and super-
conductivity are suggested to be “cascade of phase transitions”,
manifested as asymmetric sawtooth features commonly observed in
the doping (n) dependences of the thermodynamic compressibility
(∂n/∂μ) or local spectroscopic measurements20,28,29,32–36. However, no
consensus has been reached for these states. They transit to the CCIs
under finite magnetic fields, while what governs the energy hierarchy
and the critical magnetic fields (Bc) for these CCIs is poorly
understood.

Herewe report studies of twisted bilayer graphene (TBG) samples
with θ = 1.09°~1.25° close to the magic angle through Rydberg exciton
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sensing37–39. The variation of thermodynamic compressibility of TBG
with the filling factor ν and magnetic field B can be well captured. By
carefully analyzing the results, we establish a straightforward link
between the cascade phenomenon and the |ν|+|C| = 4 CCI series, i.e.,
the onset of the CCIs always aligns with the doping density where the
electronic compressibility is minimized at zero magnetic fields. In
other words, the ratio between Δν and Bc equals a constant C/Φ0. This
observation extends across all six CCIs in MATBG and is discernible
over a broader range of twist angles. The understanding of such
experimental observations can be unified by the topological heavy
fermion (THF) model. In AA-stacked sites, the integer filling of loca-
lized orbitals, known as “f-electrons”, leads to the suppressed quasi-
particle weight and enhanced local moments. Meanwhile, the
remaining electrons, differentiated by Δν and referred to as “c elec-
trons”, occupy AB-stacked sites from topological conduction bands
and are responsible for the appearance of CCIs under magnetic fields.
Our findings elucidate the intrinsic driving mechanism of the finite Bc,
provide experimental evidence supporting the THF model36,40–42, and
offer a new perspective without considering any symmetry breaking
on the physical origin of the cascade phenomenon.

Results
Sawtooth feature at B=0 and deviation from integer fillings
The device schematic is shown in Fig. 1a. A monolayer WSe2 sensor is
directly contacted to near-magic-angle TBG and encapsulated by hBN/
graphite dielectrics where a gate voltage Vg is applied to tune the
carrier density n in TBG. The optical detection has a spatial resolution
of about 1 μm. In Fig. 1b, the doping-dependent reflectance contrast
spectra of a 1.09° TBG/WSe2 device are measured at a temperature
T = 1.7 K. The TBGbarely has optical responses in this energy range and
the main resonances arise from the WSe2 excitons. The 1 s excitonic

state (~1.70 eV) of the monolayer WSe2 exhibits small variations while
the 2 s resonance (~1.78 eV) features a sawtooth pattern (|n|
<3 × 1012cm-2), whose energy shift and intensity reflect the dynamic
evolution of the electronic compressibility of TBG (refer to refs. 37–39
for details). For clarity, we present the color map of this region with its
energy subtracted by a slowly varying smooth background as ΔE in
Fig. 1c. The doping density is converted to the filling factor ν, the
number of electrons (ν > 0) or holes (ν < 0) per moiré unit cell. The
comprehensive data analyzing procedure is outlined in the Methods,
and additional details can be found in Supplementary Fig. S1.

The thermodynamic ground state of the electronic phases in
MATBG ismainly characterized by its compressibility ∂n/∂μ, which can
be accessed by several experimental approaches including quantum
capacitance22, scanning electron transistor16,20,32, and direct chemical
potential (μ) measurements34. Indeed, the ΔE of the 2 s state distinctly
mirrors the asymmetric sawtooth behavior in the direct measurement
of inverse compressibility (∂μ/∂n) of MATBG, thereby affirming the
validity of our method. When MATBG enters the compressibility
minimum, the dielectric screening effect on the 2 s exciton weakens,
resulting in a peak in energy and enhanced spectral intensity for the 2 s
exciton39,43. The zero-field sawtooth feature in the compressibility was
initially interpreted as a cascade of phase transitions where the flavor
(spin or valley) symmetry is spontaneously broken near the integer
fillings19,32. However, direct evidence for symmetry breaking in the
zero-field cascade phenomenon is lacking, and this concept is at odds
with the observations that these states persist up to tens of Kelvin — a
temperature comparable to the moiré bandwidth of approximately
10meV44,45.

Notably, in addition to the well-defined peaks at the ν =0 charge-
neutral point and the full-fillingmoiré superlattice gaps at ν = ±4, all six
supplementary peaks around ν = ±1, ±2, ±3 deviate toward higher

Fig. 1 | Optical detection of the zero-field compressibility evolution in
1.09° TBG. a Schematic illustration of the device structure and optical measure-
ment. The TBG-WSe2 is dual-gated by graphite-hBN dielectrics where the gate
voltage Vg is applied. Optical detection of the compressibility evolution is facili-
tated through the Rydberg sensing scheme utilizing WSe2 2 s excitons. b Doping
dependenceof the reflectance contrast spectra of the device. The sawtooth feature
in the 2 s state originates from the nearly periodic changes in the electronic com-
pressibility of TBG. cMagnified viewof the sawtooth feature in the coordinate ofΔE
(energy relative to a smooth baseline) and ν (moiré filling factor). The peaks at

ν = ±4 align with the band insulator states, while those around ν = ±1, ±2, ±3 signify
the other six compressibilityminima that correspond to the cascade phenomenon.
The red bars denote the deviation Δν of the compressibility minima (indicated by
dashed lines) from nearby integer fillings. d Deviation of the compressibility
minima Δν extracted from our work (bar) and previous compressibility measure-
ments (symbols). Refs. A, B, and C are adapted from scanning electron transistor32,
quantum capacitance22, and direct chemical potential34 measurements,
respectively.
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density from nearby integer filling factors as indicated by the dashed
lines and red bars. This deviation is also observed in many previous
studies but has not yet been thoroughly analyzed or discussed20,22,32,34.
We quantitively extract the deviation Δν of compressibility minima
from nearby integers in Fig. 1c. The values adapted from previous
global22,34 and local32 compressibility measurements on MATBG are
also shown in Fig. 1d. This deviation Δν is discernible for all the six
states, and is always positive on the electron side and negative on the
hole side. Among different studies, the deviation in the hole doping
side is more prominent than the electron doping side, whose absolute
value can be as large as ~0.4 for the ν = −1 state. The exact value shows
slight variationbetweendifferent studies, probably due to variations in
the local strain or twist angles. Thisphenomenonextendsbeyondwhat
could be attributed to experimental artifacts and may share the same
origin with the resistance peak deviation from integers observed by
several mesoscopic charge transport studies21,34,35.

Correlated Chern insulators (CCIs) under finite magnetic fields
Following the zero-field measurements, we apply different perpendi-
cular magnetic fields, and the spectral evolution is depicted in Fig. 2a.
With increasing field strength, the single peak feature at ν =0 trans-
forms into a cluster of peaks spanning a wider range in doping density,
so are those at ν= ±4. On the other hand, the peaks around v = ±1, ±2, ±3
become more defined after reaching a specific magnetic field strength
and shift towards higher doping densities. In the top panel with B=9T,
all the peaks are sharp in density and feature blue tails in energy, indi-
cating the presence of incompressible gapped states.

As mentioned earlier, the evolution of compressibility in TBG
manifests through two primary effects on the spectrum of Rydberg
excitons: alterations in resonance energy and spectral intensity. To
comprehensively examine the field-dependent evolution of these
states, we extract these two values from the spectra (see details in
Methods and Supplementary Fig. S1) and construct the fan diagrams
presented in Fig. 2b, c. The fan diagrams extracted from ΔE and

intensity exhibit similarities, and the topologically nontrivial gapped
states originating from different integer moiré fillings are highlighted
by the colored lines inFig. 2d. They correspond to the integer quantum
Hall states (IQH, guided by blue lines) with LL filling factors νLL and
CCIs (guided by red lines) with Chern number C. Both νLL and C can be
determined from the Streda formula Φ0dn/dB according to their
slopes in the fan diagram.

Emanating from the charge neutrality point, the primary gapped
states correspond to the empty/filled zeroth LL with νLL = ±4 and the
trivial gaps at νLL = 0. All the other symmetry-broken quantum Hall
ferromagnetic states at 0 < |νLL| < 4 are discernible at B > ~2 T. Different
experiments have revealed different sequences (being four-fold, two-
fold, or single-fold degenerate) of the LLs originating from ν = 013–22,46.
It is generally believed that the energy gaps are the strongest at
νLL = ±4, ±2, and 0, consistent with our observations. Additionally, two
sets of fully degeneracy lifted LLs (with νLL = −4 to −1 and 1 to 4,
respectively) originate from the full filling gaps at ν = ±4 after B > ~4 T,
and only the fans towards higher densities are retained.

In addition, six states labeled in red evolve from v = ±1, ±2, ±3 and
become visible after reaching a certain critical magnetic field Bc, sig-
nifying theCCIs. It is typically understood that due to strong electronic
interactions, the MATBG favors sequential fillings of the topologically
nontrivial Hofstadter subbands with Chern numbers C = −1 for the
holes and C = 1 for electrons47. Each Hofstadter subband is flavor
polarized and corresponds to a single hole or electron occupying
per moiré unit cell. This model can give the right sequence
of Chern number C as a function of ν at the integer fillings, yielding
(C, ν) = (±3, ±1), (±2, ±2), and (±1, ±3). However, the certain value of the
B field necessary to stabilize theseCCIs in previous reports shows large
variations without any universal pattern13,14,18–20,22.

Here, we find the critical magnetic field Bc is determined by the
deviationΔν in the zero-field sawtooth feature. In Fig. 2d, the zero-field
spectrum is placedbeneath the fandiagram for reference. Thepeaks in
the sawtooth feature consistently align with the CCI onsets. This

Fig. 2 | Correlated Chern insulators (CCIs) emerging at finite magnetic fields.
a The spectral evolution of the sample under a perpendicular magnetic field. With
increasing field strength, more peaks become identifiable and gradually shift in
doping densities. Fan diagram constructed with the extracted energy ΔE (b) and
intensity (c) of the 2 s state. Features with large ΔE and small intensity are asso-
ciated with discernible states. d Schematics of the fan diagram (upper) and the

spectrum in Fig. 1c for reference (lower). The integer quantumHall (IQH) sequences
originate from ν =0 and ν = ±4, while the correlated Chern insulators (CCIs) ema-
nate from ν = ±1, ±2, ±3 (guidedby thedashed lines)with their correspondingChern
numbers marked in red. As indicated by the blue bars, the onsets of the CCIs
consistently occur at the doping density where the electronic compressibility is
minimized at zero magnetic fields (marked by the vertical dashed lines).
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relation can be seen in the fan diagram in Fig. 2b, c where the onsets of
theCCIs coincidewith the vertical broader features that extend to zero
magnetic field (indicated with blue bars in Fig. 2d). These features
correspond to the low-field compressibilityminima in the fan diagram,
manifested as enhanced energies and oscillator strengths in the exci-
ton resonance. It could be numerically expressed as Bc =Φ0Δν/C
obtained from the slope of the CCIs following Δν/Bc = dn/dB =C/Φ0.
The observed straightforward relationship applies well to all the
six CCIs within the flat band, which suggests that the two independent
topicsmentioned earlier in this paper (the deviation of compressibility
minima from integers in the cascade phenomenon & the critical B field
of the CCIs) are strongly intertwined.

Link between cascade phenomenon and CCIs
To understand the identified link between the compressibility mini-
mum and the emergence of CCIs, we first look back at the cascade
phenomenon and consider their origins. The deviation of the com-
pressibility minima from the nearby integer has two interesting fea-
tures. First, the deviation only happens at non-zero integer fillings
(±1, ±2, ±3). There is no deviation at all at the charge neutrality point
(zero filling). Second, the deviation is positive on the electron side and
is negative on the hole side, showing some approximate “particle-hole
symmetry”. Both two features can be well explained by the THFmodel
for MATBG, where the flat bands can be decomposed into two differ-
ent orbitals, the “f-orbitals” located at the AA stacking centers
(majority, up to 95% of the flat bands) and the conduction “c-orbitals”
distributed near the AB/BA stacking centers as illustrated in Fig. 3a.

As discussed in references41,48, the f-orbitals can be understood as
the pseudo-Landau levels and are well localized near their centers.
Therefore, the strongest Coulomb interaction U and correlation
effects happen among those electrons occupying the f-orbitals, which
capture the Mott physics in MATBG. On the other hand, the topolo-
gical natures of the flat bands in MATBG can be well described by the
non-trivial coupling terms between the f- and c- orbitals. Such a model
with both localized and itinerant orbitals strongly mimics the heavy
Fermion physics, where the strongly correlated physics, such as the
Kondo effect, happens at the integer filling νf of the localized orbitals,
rather than the integer filling ν of the entire system.

At zero field, when the filling factors of these f-orbitals (not the
entire flat bands) νf reach integers, the strong correlation effects
among the f-electrons will greatly suppress the charge fluctuations
on the f-orbitals, and thus minimize quasi-particle weight and com-
pressibility near the Fermi level as indicated in Fig. 3b (assuming no
additional order in the ground states). Therefore, as the function of
total filling factor ν, the local minima of compressibility should
appear when the filling of the f-orbitals νf becomes integers, and the
total filling factor ν will naturally be a non-integer with the deviation
Δν being the filling νc of those conduction orbitals at AB/BA stacking
centers.

The above qualitative understanding is then confirmed by our
numerical calculations based on the THF model for TBG using the
Gutwiller variational method developed in ref. 49. As shown in Fig. 3c,
the occupancy of f-orbitals νf shows a step-like character, while the c-
orbitals are filled and depleted accordingly upon doping electrons. It
would be symmetric on the hole side based on the THF model (see
more discussions in Methods). The compressibility κ can be obtained
by differentiating the occupation number respect to the total chemical
potential directly (see Methods). The main results are shown in Sup-
plementary Fig. S5, where we can see the minimum compressibility
indeed happens around integer νf. Consequently, the experimentally
observed cascade phenomenon can be utilized to determine the fill-
ings of localized f-orbitals and itinerant c-orbitals. We note that in this
picture, no symmetry breaking is involved to reproduce the experi-
mentally observed cascade phenomenon, challenging previous claim
of flavor symmetry-breaking phase transitions20,32–36.

Under the finite magnetic field, the appearance of CCIs is closely
related to the cascade phenomenon at zero field discussed in the
previous section. A puzzling feature in the appearance of CCIs is that
for nonzero fillings, only the CCIs with positive Chern numbers on the
electron side and negative Chern numbers on the hole side have been
detected. This can also be understood by considering themain driving
force for stabilizing the symmetry-breaking states. First, the Hubbard
interaction among the f-orbitals reaches a maximum at the integer νf.
Second, the CCI can be formed onlywhen the total filling of the system
ν satisfies the Streda formula. Therefore, the CCI will be strongly
favorablewhen these twoconditions are both satisfied, as illustrated in
Fig. 3d, which is only possible for the CCI with the positive (negative)
Chern number on the electron (hole) side away from CNP.

Angle-dependent phase diagram
To further examine whether the observed link between the cascade
phenomenon and the CCIs persists when the twist angle is slightly
detuned from the magic-angle condition, we performed similar
experiments on the sample with various twist angles and obtained the
angle-dependent phase diagram.

Figure 4a–c presents the measured fan diagram and the corre-
sponding zero-field spectra for regions with twist angles of 1.10°, 1.16°,
and 1.18°, respectively. The comparison of these three fan diagrams
vividly illustrates the evolution of the CCIs with twist angle (θ), and
their onset magnetic fields Bc are summarized in Fig. 4d. The regions
shaded in blue represent the CCI domes, determined by the measured
Bc (filled triangles in blue) and the twist angle where the CCI is no

Fig. 3 | Topological heavy fermion (THF) picture for understanding the link
between cascade phenomenon and CCIs. a Schematic illustration of the THF
model with localized f-electrons (centered at AA stacking sites) serving as local
moments (black arrow) and itinerant c electrons (centered at AB/BA stacking sites)
with topological bands. b Schematics of the density of state suppression at integer
νf. When the f-orbitals are occupied by integer electrons/holes, the suppression of
the charge fluctuation on the f-orbitals and the electronic correlation becomes
strongest, leading to a minimum in the local electronic density of state (DOS) and
the enhanced local moments. c Calculated occupancy of the f- and c-orbitals upon
electron filling. The integer filling of the f-orbitals νf naturally occurs at non-integer
ν, and the deviationΔν equals the filling of the conduction orbitals νc. d Schematics
of the emergence of a correlated Chern insulators (CCI) state exemplified by the
electron-doped side. Stabilizing CCI requires both a strong Hubbard interaction
among the f-orbitals and the integerfilling ofChern bands (schematically illustrated
by the red curve). As a result, theCCIs emergewhen the integer νf (blue bar) crosses
the Streda line (dotted line), accounting for the observed link between cascade
phenomenon and CCIs.
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longer identifiable under B = 9 T (intersection between filled and
empty squares in blue).

In our experiments, the twist angle ranges for almost all the
CCIs are larger than previous reports13–22,46. This may be due to the
sensitivity of the Rydberg sensing approach and/or the proximity-
induced spin-orbit coupling effect by the adjacent WSe2. Notably, the
(C, ν) = (3, 1) state shows a minimal Bc of about 0.5 T for 1.09° TBG,
whereas it increases rapidly as θ is slightly detuned, resulting in the
most fragile CCI state against the twist angle. In contrast, some of the
CCIs could survive in a much wider range such as the (±1, ±3) and (−2,
−2) states, which are still observable up to 1.24° at B = 9T, significantly
beyond the magic angle. Moreover, one might intuitively expect that
the stabilization of the CCIs needs a larger Bc when the twist angle
deviates from themagic angle. However, the experimental data reveals
amore intricate relationship as exemplified by the (−2, −2) state, where
the Bc gets minimized when the twist angle is around 1.18°. These
behaviors could stem from the multiple competing orders within the
system, where minor variations in experimental conditions may
prompt a shift to a different energetically favorable ground state.

We then turn our attention to the link between the cascade phe-
nomenonand theCCIs. As depicted in Fig. 4a–c, for almost all the zero-
field peaks in the lower panel, its filling factor aligns with the onset of
CCIs. Another trend is that, at larger twist angles, some CCIs may not
necessarily originate from a zero-field peak, such as the (C, ν) = (±1, ±3)
state for θ = 1.18°. The peak feature is absent around ν = ±3 in the lower
panel, while the corresponding CCIs still emerge at high magnetic
fields. In Fig. 4d, we also plot the zero-fielddeviationΔνmultiplied by a
constant Φ0/C for samples with various twist angles near different
integer fillings with red triangles. Red triangles are more abundant
than the blue ones because they are extracted from faster zero-field
measurements across a wider range of twist angles. The red dashed
lines denote the largest angles where the cascade phenomenon exist,
demonstrating their relatively narrower ranges of the twist angle

compared to the CCIs. In such angle ranges, the values of Bc and
Φ0Δν/C exhibit a concurrence. It indicates the resilience of the rela-
tionship Bc =Φ0Δν/C and the proposed mechanism across a broad
spectrum of twist angles.

To summarize, we resolve the cascade phenomenon and |ν|+|
C| = 4CCI series inMATBG throughRydbergexciton sensing and reveal
their previously hidden link, which could be explained by the THF
model. The cascadephenomenonmanifested by asymmetric sawtooth
features stems from the doping-dependent redistribution of charges
between the localized f- and itinerant c- orbitals that does not require
any symmetry breaking. Notably, both compressibility minima in the
cascade phenomenon and the onsets of CCIs occur at integer fillings of
the localized f-orbitals νf, rather than integer fillings of the entire sys-
tem ν. Many puzzling experimental observations can now be well
explained within this framework. For example, the finite Bc of CCIs is
the natural result of the finite Δν contributed by topological itinerant c
electrons, hindering the observations of the QAHE in non-hBN aligned
MATBG. Meanwhile, the non-diverging resistance peaks and the
Pomeranchuk effect, which are both commonly found to occur at non-
integer fillings of the entire system, are likely to arise from the sup-
pression of the quasiparticle weight at integer νf and local moment
fluctuations of f-orbitals at higher temperatures21,34,35.

Methods
Device fabrication and electrostatic gating
The device fabrication process is identical to that described in our
previous work39 using the standard dry-transfer50 and tear-and-stack51

methods. The WSe2, hBN, graphene, and few-layer graphite are
mechanically exfoliated from bulk crystals and picked up layer by
layer. The stack is released onto silicon substrates with pre-patterned
gold electrodes, where the gate voltage Vg is symmetrically applied by
Keithley 2400 source meters. The carrier density in TBG is calibrated
by the spacing n0 = eB/h of the Landau level spectral features, where e

Fig. 4 | Angle-dependent phase diagram of the CCIs and their links with the
zero-field spectra. a–c, Fan diagram (upper) and spectra at B =0 (lower) of the
1.10° (a), 1.16° (b), and 1.18° (c) twisted samples. d Phase diagram of correlated
Chern insulators (CCIs, shadowed blue regions) determined from Bc and the critical

twist angle at B = 9 T. The CCI boundaries closely correspond to the zero field
cascade features (guided by the red curves), highlighting the link between cascade
phenomena and CCIs over a broader range detuned from the magic angle.
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is the elementary charge. The twist angle is calculated from the full-
filling density ns at superlattice filling factor ν = ±4 through
ns � 8θ2ffiffi

3
p

a2(the graphene lattice constant a=0:246 nm).

Reflectance spectroscopy measurements
The devices are measured in a close-cycle cryostat attoDry2100 at a
base temperature of 1.7 K under a perpendicular magnetic field up to
9 T. The light source is a halogen lamp whose output is collected by a
single-mode fiber and collimated by a ×10 objective lens. Magneto-
optical measurements are performed with a circularly polarized light
created by a linear polarizer and a quarter wave plate. A low-
temperature compatible objective (NA =0.82) focuses the beam
onto the samplewith a diameter of ~ 1μmand apower lower thana few
nW. The reflectance from the sample is collectedby the sameobjective
and detected by a spectrometer with 600 lines/mm gratings for fan-
diagram measurements and 1800 lines/mm gratings for fine gate-
dependent spectra measurements.

Background removal and extraction of energy and intensity
The optical measurement of TBG in this paper is based on the doping-
dependent optical resonance of the 2 s Rydberg exciton. The reflec-
tance contrast (ΔR/R0) spectrum is obtained by comparing the spec-
trum from the sample (R) with that from the substrate immediately
next to the sample (R0) as ΔR/R0 = (R −R0)/R0. The compressibility
evolution of TBG will affect its energy and intensity in the gate-
dependent ΔR/R0 spectrum. We aim to extract these two values
properly and construct fan diagrams.

The raw data of the 1.09° device under B =0 and B = 9T are
plotted in Supplementary Fig. S1a, d, respectively. We first subtract the
background noise for more precise energy extraction in the next step
(method described in ref. 39). By extracting the minima of d(ΔR/R0)/
dE, we obtain and plot the absolute 2 s resonance energy in blue in
these two figures. However, the absolute energy of the 2 s exciton
upon doping is also affected by other issues beyond TBG compressi-
bility, i.e., the spatial confinement of the excitonwave function by TBG
moiré potential (formation of Rydberg moiré exciton). This effect is
prominent in small-angle TBG devices as discussed in our previous
work39. It is still not negligible in MATBG, manifesting as the non-
monotonous energy shift upon doping in Fig. 1b.

To isolate the contribution from TBG compressibility evolution,
we focus on the relative energy (ΔE) to the featureless baseline
obtained by smoothing the extracted 2 s energy in this paper. As
shown in Fig. S1b, e, the spectra after background subtraction are
presented in the coordinate of ΔE. This region is between the yellow
(7meV lower than the baseline) and orange (7meV higher than the
baseline) curves in Supplementary Fig. S1a, d. The relative energyΔEof
the 2 s exciton (blue curves) is then used in the magnetic field-
dependent counterplot in Fig. 2b. We extract the spectral intensity by
integrating the ΔR/R0 in the region defined by blue and red lines in
Supplementary Fig. S1b, e (~2meV energy span). The integrated
intensity is shown inSupplementary Fig. S1c, f, which is used toplot the
fan diagram in Fig. 2c after normalization.

Method for calculation of no symmetry-breaking state
Single particle TB-model. The single particle Hamiltonian of TBG in
each valley and spin can be described by 8 orbitals52 (real-space dis-
tribution illustrated in Supplementary Fig. S4). They consist of two p±
orbitals localized at AA point (f1: p+@AA, f2: p−@AA), a ring-shaped s
orbital centered at AA point (c1: s @AA), a pair of pz orbitals localized
at AB and BA points (c2: pz @AB, c3: pz @BA), and three s orbitals
localized at the three domain walls (c4: s @DW1, c5: s @DW2, c6: s
@DW3).Thefirst 2 orbitals are strongly correlated forbitals (95%offlat
bands),while the other 6 orbitals areweakly correlated corbitals (5%of
flat bands). The minimal tight-binding model we used for our calcu-
lation can be constructed faithfully within the twisted angle of

0.6°–1.3° [52]. The spread of the Wannier function of “f-orbitals” (AAp

orbitals in [52]) remains approximately unchanged for the twisted
angle of 0.85°–1.3° as well as their intra-orbital Coulomb interaction
strength [52]. As the angle reduces from0.85° to 0.6°, the gap between
flat bands and high energy dispersive bands gradually closes, resulting
a larger hybridization between “f-orbitals” and “c-orbitals” [52], which
would enhance the metallicity of the system, and the plateau in the “f-
orbital” occupancy vs. total filling may vanish.

When considering the valley and spin degeneracy, we have
32 = 8(f ) + 24(c) orbitals in total per unit cell. The effective TB Hamil-
tonian reads:

bHsη

0 kð Þ=
X1�2

tt0
Hη

f f kð Þ
h i

tt0
f yktηs f kt0ηs +

X1�6

aa0
Hη

cc kð Þ� �
aa0c

y
kaηscka0ηs

+
X1�2

t

X1�6

a

Hη
f c kð Þ

h i
ta
f yktηsckaηs +h:c:

� � ð1Þ

bH0 =
X
ksη

bHsη

0 kð Þ ð2Þ

Where s and η denote spin and valley, t and a denote “f” and “c”
orbitals, respectively.

Model Hamiltonian. The total Hamiltonian is written as:

bH = bH0 + bU + bW + bV ð3Þ

bU =
U
2

X
R

X
α≠β

bnRfα � nCNP
Rfα

� � bnRfβ � nCNP
Rfβ

� �
ð4Þ

bW =W
X
R

X
αβ

bnRfα � nCNP
Rfα

� � bnRcβ � nCNP
Rcβ

� �
ð5Þ

bV =
V
2

X
R

X
α≠β

bnRcα � nCNP
Rcα

� � bnRcβ � nCNP
Rcβ

� �
ð6Þ

Here bU, bW , bV are the onsite interaction among “f-orbitals”, effec-
tive interaction between “f-orbitals” and “c-orbitals”, and effective
interaction among “c-orbitals”, respectively. The bU is treated with
Gutzwiller approximationwhile bW , bV are treated atHartree level in our
calculation (specified below). The α,β are combined indices of spin,
valley, and orbitals. The Rmarks the moiré unit cell. Double countings
are considered within bU, bW , bV by subsracting density operator with its
occupation value at charge neutrality point (CNP). The interaction
parameters used in this work are: U =0:08eV,W =0:07eV,V =0:07eV.
Here bW , bV are effective interactions in the sense that they are
approximations of realistic nearest neighbor interaction involving “c-
orbitals” which makes W and V become many times larger than
actually calculated values36. In addition, the effective bW , bV won’t break
any symmetry here since they’re treated at Hartree level. We adopt
suchapproximationbecausewe identify bU asour primary contribution
to the correlated effect in this system and we would like to reduce the
total number of parameters.

Gutzwiller variational scheme. First we introduce the Gutzwiller
correlator49,53,54 for site R:

bPR =
X
I

λR;I R; Ij i R; Ih j ð7Þ

Where λR;I is the variational parameter, R; Ij i is many-body Fock state
consisting of local “f-orbitals” and R; Ij i R; Ih j is a projector which
projects out states other than R; Ij i (We’ll use α as integrated indices
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for s⊗η⊗t in this section):

R; Ij i=
Y

α2I
bf R;αy vaccumj i ð8Þ

R; Ij i R; Ih j=
Y

α2I
bnR;fα

Y
β=2I 1� bnR;fβ

� �
ð9Þ

Here, we use a diagonal bPR because only density-density interac-
tion is included. TheGutzwiller variational wavefunction is obtainedby
acting bPR on a trial non-interacting Fermi Sea Φ0

		 

:

ΨG

		 

=
Y

R
bPR Φ0

		 
 ð10Þ

Gutzwiller approximation puts some constraints on λI :
53,55
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The total energy is then (Nm: number of unit cells or k points):

Etotal =
1
Nm

ΨG, j, bH0 + bU + bW + bV jΨG

D E
ð13Þ

The first term is the kinetic energy (we denotebOD E
0
= Φ0

� 		bO Φ0
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Where Zα is the renormalization factor (the site index R is omitted
from now; n0

fα = bnRfα

D E
0
):

Zα = λ
>Rαλ ð15Þ
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The second term is the interaction energy among “f-orbitals”:

Ef f
int = λHintm
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Since bPR does not contain “c-orbitals”, ΨG, j, bW + bV jΨG

D E
=

Φ0, j, bW + bV jΦ0

D E
under Gutzwiller approximation. Using Hartree

approximation for these 2 terms:
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Here we denote n0
f =

P
α n

0
fα and n0

c =
P

β n
0
cβ. Notice that we

dropped the self-energy in Φ0

� 		bV Φ0

		 

since we want to reduce the

number of variables in the final energy functional (using the total
occupancy of “c-orbitals” instead of their individual occupancies,
which will become clear in the following text).

We use an efficient variational scheme developed in ref. 49, where
orbital occupancies are input variables for the energy functional. Since
were considering a no-symmetry breaking state, only the total occu-
pancy nf (denoted as νf in the main text) matters for f-orbitals as
nfα =

nf

8 . To reduce the number of total variables in the energy func-
tional, we only consider the total occupancy for c-orbitals nc (denoted
as νc in the main text). The energy functional EG = Etotal when varia-
tional constraints are satisfied:
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Where λF , λB, EF , EB are Lagrange multipliers for constraints on Φ0

		 

and λ. Given a set of ðnf ,ncÞ, we treat Φ0

		 

and λ as independent

variables which should minimize EGjnf ,nc
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minEGjnf , nc
can be found by solving the 2 linear Eqs. (24) and (25)

self-consistently. The solution of (24) gives us χα , which serves as input
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for (25). Conversely, the solution of (25) gives us Zα , which serves as
input for (24).

Given an electron filling ν, we have nf +nc = ν. The inverse com-
pressibility κ�1 = ∂2 min EG

∂ν2 is calculated numerically. The presented
result for inverse compressibility is smoothed to compensate numer-
ical errors.We note that the THFmodel is particle-hole symmetric [40]
and theminimal TBmodel we used possesses an approximate particle-
hole symmetry [52]. The doping-dependent redistribution of charges
between the localized f- and itinerant c- orbitals is a result of our cal-
culation, which is performed on a fully-symmetric state with a particle-
hole symmetric interaction Hamiltonian. Therefore, the f-c orbital
charge redistribution is alsoparticle-hole symmetric inour calculation.
We hence only performed calculations in the electron-doped side
(Fig. 3c andSupplementary Fig. S5). Inorder to capture the asymmetric
behavior of electron and hole sides observed in experiments, onemay
need to consider symmetry breaking phases in their calculation (For
example, breaking C2zT symmetry). In Fig. 3c, the calculated νc
becomes negative in a small filling range around ν = 0.7. This occurs in
the region where the electron compressibility reaches its maximum,
and a steep increase in νf vs ν is observed. This result reflects that the f-
orbitals indeed dominate the low-energy physics of the minimal-TB
model as they constitute up to 95% of the flat bands.

Data availability
The data supporting the findings in this work are publicly available
online at https://doi.org/10.5281/zenodo.17066806.
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