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ABSTRACT: Magnetism in van der Waals semiconductors offers significant
potential for fundamental research on low-dimensional magnetism and the
development of high-performance two-dimensional spintronic devices. Here,
we report the growth, physical properties, and first-principles calculations of a
new dual-octahedral transition metal chalcogenide (DTMC) MnSi2Te4.
MnSi2Te4 features a layered structure with an intralayer heterostructure,
where the metal octahedra and nonmetal dimeric octahedra form zigzag
chains alternately. Property characterization reveals that MnSi2Te4 is a
collinear G-type antiferromagnetic semiconductor, with a Neél temperature
TN of 18.6 K and a significant unsaturated negative magnetoresistance
(NMR) reaching −42.5% at 9 T and 100 K. First-principles calculations on
the electronic band structure demonstrate that the large NMR primarily
originates from the spin splitting due to parity-time symmetry breaking. This
study not only discovers a new member of DTMCs with a unique crystal structure and large NMR, but also establishes a promising
platform for investigating next-generation spintronic devices.

■ INTRODUCTION
van der Waals (vdW) magnetic semiconductors have garnered
considerable interest over the past decades owing to their
peculiar properties and potential applications in electronic
devices.1,2 The combination of high tunability arising from the
semiconductor nature and the long-range two-dimensional
(2D) magnetism enables vdW magnetic semiconductors to
regulate charge and spin simultaneously,3,4 rendering them
promising candidates for spintronic devices, including
magnetic storage, spin-polarized carrier generation, spin
filtering, and logic computation.5−7 The 2D structure also
facilitates the construction of vdW heterostructures, which can
host novel interfacial transport properties with minimal lattice
mismatch.8 Moreover, some vdW magnetic semiconductors
have exhibited tunneling magnetoresistance (MR) and large
negative magnetoresistance (NMR), yielding enhanced per-
formance in modern magnetic sensors.9

Transition metal octahedra, serving as the fundamental
building blocks of transition metal chalcogenides (TMCs) with
relatively weak interlayer coupling, allow for the construction
of various types of intrinsic vdW magnetic semiconductors
through interlayer or intralayer structural modifications (Figure
1).10 Simple stacking of identical transition metal octahedra
leads to transition metal dichalcogenides (TMDs),11−13 while
interlayer intercalation leads to the formation of intercalated
TMDs.14−16 Despite numerous theoretical predictions of

potential vdW magnets from these two categories,17−19 very
few of them can be experimentally realized, and most of them
exhibit metallic behavior.20,21 Achieving the coexistence of
intrinsic magnetism and semiconducting properties in vdW
materials remains a significant challenge.10,22 By the ordered
substitution of nonmetal dimeric octahedra for metal
octahedra, an emerging family of ternary transition metal
chalcogenides can be obtained, namely, dual-octahedral
transition metal chalcogenides (DTMCs). Notable examples
of DTMCs include MnPSe3,

23,24 CrGeTe3,
25−27 and

CrSiTe3,
28,29 which demonstrate remarkable low-dimensional

phenomena, such as intrinsic long-range magnetism in the 2D
limit and positive/negative large magnetoresistance. Addition-
ally, the intercalation of metal atoms into the interlayer space
of DTMCs leads to other types of novel quasi-2D compounds,
such as Mn3Si2Te6,

30,31 which can be thought of as an example
of interlayer structural modification. DTMCs typically exhibit a
honeycomb-like intralayer arrangement of metal octahedra and
nonmetal dimeric octahedra, naturally inspiring researchers to
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explore the possibility of other intralayer arrangements, such as
zigzag or stripe. However, stemming from the possible
limitations imposed by synthesis conditions or structural
stability, experimental reports on DTMCs with nonhoney-
comb arrangements are still scarce. On the other hand, the
experimental realization of nonhoneycomb intralayer arrange-
ments will give more insight into the exploration of new vdW
materials and corresponding functionalities.

Herein, we report the successful single-crystal synthesis and
physical property characterization of a new Mn-based vdW
antiferromagnetic (AFM) semiconductor, MnSi2Te4. The
[MnTe6] metal octahedra and [Si2Te6] nonmetal dimeric
octahedra in MnSi2Te4 form zigzag chains alternately to
construct an intralayer heterostructure, subsequently stacking
into the three-dimensional DTMC structure with a moderate
interlayer separation. Magnetic susceptibility, isothermal

Figure 1. Designing new types of TMCs via interlayer or intralayer structural modifications. (a) Homogeneous octahedral arrangements in
conventional TMDs (e.g., 1T-MX2) or self-intercalated TMDs (e.g., M2X3). (b) Honeycomb octahedral arrangements in previously reported
DTMCs (e.g., MAX3) and intercalated DTMCs (e.g., M3A2X6). (c) Other types of intralayer arrangements for octahedra in potential DTMCs.

Figure 2. Intralayer heterostructure and vdW features of MnSi2Te4. (a) Crystal structure determined from SCXRD. (b) Schematic diagram of the
zigzag arrangement of [MnTe6] and [Si2Te6] octahedra. (c) XRD pattern of the MnSi2Te4 single crystal. The inset shows an optical image of a
representative as-grown single crystal. (d) HAADF-STEM image of the MnSi2Te4 crystal acquired along the b-axis, illustrating the basal plane
spacing and the interlayer distance. (e) SAED pattern of the MnSi2Te4 crystal acquired along the b-axis. (f) Atomic force microscopy image of the
exfoliated MnSi2Te4 thin flake with the corresponding height profile.
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magnetization, and single-crystal neutron diffraction measure-
ments collectively reveal a collinear G-type AFM ordering
below TN = 18.6 K, with the easy axis aligned approximately
along the b-axis. Specific heat capacity further confirms the
AFM transition and hints at a semiconductive character with a
nearly negligible Sommerfeld coefficient, which is confirmed by
the temperature-dependent resistivity. The in-plane hetero-
structure also results in anisotropic in-plane resistivity and
different magnitudes of angle-dependent MR with current
applied along different directions. Moreover, a notable
unsaturated NMR was observed with decreasing temperature,
reaching −42.5% at 100 K under 9 T, where the spin splitting
induced by the parity-time (PT) symmetry breaking under an
external magnetic field serves as the primary mechanism of
such a large NMR. MnSi2Te4 not only offers insights into
designing new vdW magnetic semiconductors with unique
crystal and magnetic structure, but also represents a versatile
platform for exploring the fundamentals of 2D magnetism and
developing novel spintronic devices.

■ RESULTS AND DISCUSSION
Crystal Structure. Revealed by single-crystal X-ray

diffraction (SCXRD), MnSi2Te4 crystallizes in a triclinic
space group P1̅ (No. 2) with lattice parameters a =
6.8715(4) Å, b = 8.0842(5) Å, c = 8.3731(5) Å, α =
75.8555(17)°, β = 66.2416(16)°, and γ = 89.9983(16)°
(Tables S1 and S2). As a member of DTMCs, MnSi2Te4 is
composed of quintuple layers formed by the ordered
arrangement of [MnTe6] and [Si2Te6] octahedra, which
stack along the crystallographic c-axis, forming a layered

structure. In contrast to previously reported DTMCs featuring
honeycomb lattices,32−34 the transition metal octahedra
[MnTe6] and nonmetal dimeric octahedra [Si2Te6] in
MnSi2Te4 are arranged in zigzag chains along the a-axis,
alternating along the b-axis, resulting in an intralayer
heterostructure (Figure 2a,b). Such variation in the arrange-
ment of octahedra leads to a pronounced reduction of
symmetry and enhanced octahedral distortion compared to
honeycomb lattice counterparts (Figure S1 and Tables S3 and
S4). The as-grown MnSi2Te4 single crystals appear as shiny,
black stripe-like flakes, with the chemical composition Mn/Si/
Te = 1:2:4 and Mn2+ bonding state determined via energy-
dispersive spectroscopy (EDS) and X-ray photoelectron
spectroscopy (XPS), respectively (Figures S2 and S3). The
X-ray diffraction (XRD) pattern of the crystal exclusively
exhibits sharp (00l) (l = integer) diffraction peaks, indicating
that the crystal surface is parallel to the ab-plane. The
interplanar spacing determined by the position of the (001)
diffraction peak at 12.0° is 7.39 Å, consistent with the
interlayer spacing d(00l) obtained from SCXRD (Figure 2c).
To investigate the intralayer and interlayer atomic arrange-

ment, the MnSi2Te4 specimen was examined with high-angle
annular dark-field scanning transmission electron microscopy
(HAADF-STEM). The HAADF-STEM images and the
selected-area electron diffraction (SAED) patterns (Figures
2d,e and S4) are in good agreement with the structure
determined from SCXRD data, which clearly reveal the
alternating arrangement of octahedral chains, further confirm-
ing the high crystalline quality of the MnSi2Te4 single crystal.
The HAADF-STEM images also reveal the layered structure of

Figure 3. Uniaxial anisotropic AFM ground state. (a) Temperature-dependent magnetic susceptibility measured in ZFC and FC protocols under
magnetic fields in different directions. The inset shows the dχ/dT vs T plot along with the Neél temperature TN for H ∥ b. (b) Isothermal
magnetization curves measured at 2 K under magnetic fields with different directions. (c) Single-crystal neutron diffraction pattern in the (H, 0.5,
and L) scattering plane at 5 K, where the yellow and red arrows denote the magnetic peaks corresponding to magnetic wave vectors of q1 = (0,
−0.5, and 0.5) and q2 = (0, 0.5, and −0.25), respectively. (d) Schematic diagram of the refined magnetic structure, with red and green arrows
representing opposite magnetic moments. For clarity, only [MnTe6] octahedra are displayed. (e) Temperature-dependent specific heat capacity.
The inset shows a magnified view of specific heat capacity near the transition temperature. (f) Cp/T vs T2 plot in the low-temperature region with
linear fitting based on the Debye model.
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MnSi2Te4 with a basal spacing of d = 7.38 Å, which is
consistent with d(00l). The calculated interlayer distance is
dvdW = 3.13 Å,35 close to that of graphite and h-BN,36,37

suggesting the vdW feature and potential applications in
nanodevices when approaching the 2D limit. Through
mechanical exfoliation, bulk MnSi2Te4 crystals can be easily
exfoliated (Figure S5), with a thickness down to approximately
6 ± 2 nm (corresponding to ∼7 layers) as confirmed by the
atomic force microscopy measurements (Figure 2f). These
results indicate that MnSi2Te4 is a promising candidate for
exploring low-dimensional physics and applications, given its
ability to be readily exfoliated into atomically thin layers
(including monolayers) through mechanical exfoliation and
alternative methods.38−40 Moreover, the unique layered
structure opens up the possibility of designing a variety of
DTMCs by modulating the interlayer or intralayer arrange-
ment of established TMCs through ordered octahedral
substitution.

Magnetic Properties and Specific Heat Capacity. The
temperature-dependent magnetic susceptibility χ measured
under magnetic fields with different directions is presented in
Figure 3a. All magnetic susceptibility curves in zero-field-
cooling (ZFC) and field-cooling (FC) protocols show a kink at
TN = 18.6 K and little bifurcation below TN, suggesting a
possible AFM transition. χa and χ⊥ show only a weak
temperature dependence below TN, whereas χb drops rapidly
with decreasing temperature, indicating that the easy axis is
predominantly oriented along the b-axis. In the high-temper-

ature paramagnetic (PM) region (150−300 K), χ(T) curves
follow the Curie−Weiss law χ = χ0 + C/(T − θ), where χ0 is
the temperature-independent component, C the Curie
constant, and θ the Curie temperature. Further cooling leads
to a deviation from Curie−Weiss behavior, accompanied by a
broad hump of magnetic susceptibility around 40 K (∼2TN),
similar to the maximum of χ observed in MnPS3.41 All Curie−
Weiss fittings yield negative θ with |θ|/TN ≈ 5 > 1 (Figure S6a
and Table S5), confirming the presence of a strong AFM
interaction and moderate frustration. The fitted effective
magnetic moment of Mn at high temperature, μeff = (8C/
n)1/2 (n is the number of magnetic atoms per formula), is
5.685(1) μB/Mn for H ∥ a, 6.019(1) μB/Mn for H ∥ b, and
6.090(2) μB/Mn for H ⊥ ab, all close to the theoretical
magnetic moment of Mn2+ in the high-spin state (S = 5/2, μeff
= 5.92 μB/Mn). These results indicate that Mn in MnSi2Te4
primarily exists as Mn2+ ions, in agreement with the valence
states derived from XPS (Figure S3). Figure 3b illustrates the
anisotropic isothermal magnetization (M(H)), where all M(H)
curves exhibit typical AFM behavior at 2 K, characterized by an
approximately linear field dependence and the absence of
hysteresis or saturation up to 8 T. Further increasing the
magnetic field results in a spin-flip transition for H ∥ b with a
critical field HSF = 10.8(8) T at 2 K, which gradually increases
with increasing temperature and vanishes above TN (Figure
S7).
The magnetic ground state of MnSi2Te4 was further

characterized by using single-crystal neutron diffraction. As

Figure 4. Semiconductor behavior, large NMR, and in-plane anisotropy. (a) Temperature-dependent resistivity with I ∥ a (S#1 and S#2) and I ∥ b
(S#3). The inset shows the linear fits in the temperature range of 105−120 K based on the thermal activation model. (b) Tauc plot derived from
UV−vis−IR spectra. (c) Temperature-dependent resistivity with I ∥ a (S#1) under an out-of-plane (H ⊥ ab) magnetic field. The inset shows the
corresponding thermal activation energy Eα with I ∥ a and I ∥ b. (d) MR with I ∥ a (S#2) under an out-of-plane magnetic field measured at
different temperatures. The MR curves at 100 K with I ∥ a under an in-plane magnetic field (dashed black line) and I ∥ b (S#3) under an out-of-
plane magnetic field (dashed purple line) are included for comparison. (e) Angle-dependent MR with I ∥ a (S#2) and the magnetic field rotating in
the plane normal to the a-axis. (f) Angle-dependent MR with I ∥ b (S#3) and the magnetic field rotating in the plane normal to the b-axis. The
insets in panels (e) and (f) show the magnetotransport measuring geometry, where θ denotes the angle between H and the vector n normal to the
ab-plane.
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revealed by the diffraction patterns at 5 K in the (H, 0.5, L)
and (H, −0.5, L) planes (Figures 3c and S8), the magnetic
peaks are indexed by two distinct magnetic wave vectors: q1 =
(0, −0.5, 0.5) and q2 = (0, 0.5, −0.25). Symmetry analysis
based on the magnetic wave vectors and the P1̅ space group
reveals that MnSi2Te4 exhibits a collinear G-type AFM ground
state, with antiparallel aligned spins between the nearest-
neighbor magnetic ions and a small tilting away from the b-axis
in zero field (Figures 3d and S9). Compared to the
crystallographic unit cell, the magnetic unit cell is doubled
along both the b- and the c-axes. The magnetic moment m =
(0.635(2), 1.420(4), −0.430(12)) is predominantly aligned
along the b-axis, with a slight tilt toward the a- and c-axes.
The specific heat capacity was measured over a temperature

range of 2−200 K (Figure 3e). A λ-shaped peak corresponding
to the occurrence of a magnetic transition is observed at 18.8
K, in agreement with the Neél temperature determined from
the magnetic susceptibility. The low-temperature specific heat
capacity was fitted by the Debye model C = γT + βT3 (Figure
3f), where γT and βT3 represent the electronic and phononic
contributions, respectively. The Sommerfeld coefficient γ,
proportional to the density of states (DOS, g(EF)) at the
Fermi level EF, was determined to be 1.43 mJ mol−1 K−2 per
formula unit. The near-zero DOS around EF suggests a
semiconducting nature of MnSi2Te4.

42

It should be noted that two anomalies are observed in the
magnetic properties of MnSi2Te4: (i) a deviation from the
Curie−Weiss law accompanied by a broad hump around 40 K
in χ(T) curves, and (ii) a discrepancy between the saturated
magnetic moment determined by neutron diffraction at low-
temperature (1.614(8) μB at 5 K) and that estimated from the
high-temperature Curie−Weiss fitting (S ≈ 5/2, μeff ≈ 5.92 μB,
μsat ≈ 5 μB for T > 150 K). The deviation from Curie−Weiss
behavior can be typically understood within two frameworks: a
thermally driven spin crossover scenario,43,44 which predom-
inantly reduces the saturation magnetic moment and the
corresponding C through depopulation of the high-spin state
(Figure S10), and the critical fluctuation scenario (as reported
in DTMCs such as MnPS3

41,45), where the deviation from
mean-field behavior enhances the critical exponent γ in χ ∼ (T
− TN)−γ (or even crosses over to an exponential temperature
dependence) due to changes in effective dimension and
anisotropic exchange couplings (Table S7). In MnSi2Te4,
although the χmT plot and the magnetic entropy derived from
the specific heat capacity (Figures S6b and S11) possibly hint a
partial spin crossover from the high-spin state,43,44 the peak
positions and line shapes in X-ray absorption spectroscopy
(XAS) spectra did not change significantly as the temperature
decreases,46−48 only exhibiting a slight reduction in the
branching ratio (Figure S12). The contributions of critical
fluctuation near TN might also be an explanation, considering
the quasi-2D/one-dimensional structural characteristics, leav-
ing an interesting issue for MnSi2Te4. The comprehensive
understanding will require further investigations, such as
temperature-dependent XPS and Raman spectroscopy, high-
field magnetization measurements, inelastic neutron scattering,
and corresponding Monte Carlo simulations of the anisotropic
exchange coupling.

Electrical Transport Properties. As shown in Figure 4a,
the temperature-dependent in-plane resistivity with current
applied along different directions increases monotonically with
a decrease in temperature, exhibiting typical semiconductor
behavior and clear in-plane anisotropy. The corresponding

conductivity σxx = 1/ρxx follows a thermally activated
Arrhenius behavior σ(T) = σ0 e−βT, where β = Eα/2kBT, kB is
the Boltzmann constant, Eα is the thermal activation energy.
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The linear fit of ln σxx vs 1/T (Figure 4a, inset) yields Eα = 0.37
eV with I ∥ a (S#1, 0.38 eV for S#2) and 0.40 eV with I ∥ b
(S#3), smaller than the optical band gap (Eg = 0.92 eV)
determined from the Tauc plot of ultraviolet−visible−infrared
(UV−vis−IR) spectra (Figure 4b).50 Given the presence of
dual-valence states in the XPS spectra (Figure S3), the
discrepancy between Eα and Eg can be attributed to the defect
levels.51

Under an out-of-plane magnetic field (Figure 4c), the
resistivity with I ∥ a at the lower side of the measuring
temperature decreases significantly with increasing magnetic
field, and the corresponding thermal activation energy
decreases monotonically. Considering the persistent substantial
field dependence of magnetization at such high temperatures
(Figure S7), the decrease suggests a possible magnetic-field-
induced modification of the band gap, which might result in
pronounced NMR.52 Figure 4d summarizes the normalized
MR [(R(H) − R0)/R0 × 100%] with current applied along
different directions under different magnetic fields. For I ∥ a,
an unsaturated NMR is observed at all measured temperatures
under an out-of-plane magnetic field (H ⊥ ab) up to 9 T, with
the absolute value increasing monotonically with decreasing
temperature and reaching −42.5% at 9 T and 100 K. By
rotating the magnetic field parallel to the b-axis, the MR
reduces to −31% at 9 T and 100 K. For I ∥ b, the MR only
reaches −18% at 100 K under an out-of-plane magnetic field
(H ⊥ ab) up to 9 T, much smaller than that for I ∥ a under an
out-of-plane magnetic field, further indicating the in-plane
anisotropy. Angle-dependent MR reveals 2-fold symmetries
with an increasing magnitude ΔR = [(R(θ) − R(θ0))/R(θ0)]
as the temperature decreases (Figure 4e,f), reaching an
amplitude of ∼20% for I ∥ a and ∼7% for I ∥ b at 9 T and
100 K, indicating distinct anisotropic behaviors with current
applied along different directions above TN.
The strong resistance response to applied magnetic field is

crucial for magnetic sensing and switching devices,53 and the
pronounced NMR in MnSi2Te4 is comparable to that of many
established materials exhibiting large NMR at significantly
lower temperatures, including CeCuAs2 (−15% at 9 T, 2 K),
CrSBr (−40% at 2 T, 30 K), CrGeTe3 (−40% at 4 T, 65 K),
and the Fe/Cr structure (−45% at 2 T, 4.2 K).53−56 The large
NMR and its relatively high occurrence temperature guarantee
functional magnetic detection across a broader temperature
range. The NMR persisting above the magnetic transition
temperature is also observed in some TMCs with short-range
ordering induced by spin fluctuations, such as CrGeTe3,
CrSiTe3, and CrPS4, where the NMR reaches the maximum
near the transition temperature and sharply decreases with
increasing temperature.56−58 By contrast, the large NMR
currently observed in MnSi2Te4 occurs at a temperature
significantly higher than TN, where the spin fluctuations are
usually expected to be weak. Though there exist some AFM
materials capable of sustaining NMR via strong spin
fluctuations at such a high temperature, they usually exhibit
magnetic structures incorporating ferromagnetic interactions
(e.g., A-type AFM) and a sign reversal in the slope of resistivity
at relatively high temperature, which is distinctly absent in
MnSi2Te4 (G-type AFM).59,60 Considering the persistent
substantial field dependence of magnetization and the
observed decrease in activation energy, the spin fluctuations
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might be less predominant in MnSi2Te4 at such a high
temperature. Nevertheless, the large NMR could be further
enhanced at lower temperatures, especially in the vicinity of
TN, offering promising opportunities for further exploration
and broadening the potential applications of MnSi2Te4 in field-
sensitive devices.9

Magnetic Configurations and Electronic Structure.
To understand the electrical transport properties of MnSi2Te4,
the electronic band structures were investigated by using first-
principles calculations with different magnetic configurations
considered (Figure S14). Upon application of a sufficiently
strong magnetic field along the b-axis or perpendicular to the
ab-plane, MnSi2Te4 exhibits ferromagnetic (FM) configura-
tions, with the calculated band structures demonstrating strong
spin splitting, showing indirect band gaps of 0.660 and 0.622
eV (Figure 5a,b), respectively. Owing to its centrosymmetric
structure, MnSi2Te4 preserves PT symmetry in both the AFM
and PM phases, resulting in Kramers degeneracy throughout
the Brillouin zone.61 The spin-degenerate band structure of the
AFM ground state in the absence of an external magnetic field
(Figure 5c) was also calculated, showing an indirect band gap
of 0.915 eV, which is ∼40% larger than that of the FM states.
This band gap is very close to the experimentally observed
ones, well above TN from the optical measurement at room
temperature, validating the possibility of using the AFM band
gap as that of the PM state for simplicity. The narrowing of the
band gap will naturally induce an increase in conductivity,

resulting in the observed NMR under an external magnetic
field. As depicted in Figure 5a,b, the narrowing of the band gap
would happen as the external magnetic field begins to polarize
the randomly oriented magnetic moments in the PM state.
During the polarization, PT symmetry breaking induces spin
splitting of bands, lifting the Kramers degeneracy, thereby
reducing the band gap and subsequently triggering NMR.
According to the experimentally measured isothermal magnet-
ization curves, the anisotropic large NMR can be accurately
described by the Drude model (Figure 5d, see Note S5 for
details), demonstrating the validity of the spin splitting
mechanism as the origin of the observed large NMR.

■ CONCLUSIONS
In summary, we have synthesized a new vdW AFM
semiconductor MnSi2Te4. MnSi2Te4 belongs to the family of
DTMCs but demonstrates a distinctive in-plane architecture
featuring a heterostructure with a zigzag arrangement of
distorted [MnTe6] and [Si2Te6] octahedra. Magnetic suscept-
ibility, isothermal magnetization, and single-crystal neutron
diffraction measurements reveal collinear G-type AFM order-
ing, with the easy axis oriented approximately along the b-axis
and a Neél temperature TN = 18.6 K. The temperature-
dependent resistivity and MR exhibit typical semiconductor
behavior, with pronounced unsaturated NMR at temperatures
significantly above TN. The electronic structure, determined
through first-principles calculations, explains the observed

Figure 5. Calculated band structures and MR of MnSi2Te4. Electronic band structures of FM configurations with (a) H ∥ b, (b) H ⊥ ab, and (c)
the AFM configuration. The corresponding spin (⟨s⟩) is assigned as +1 when positive and −1 when negative. The arrows indicate the conduction
band minimum and valence band maximum for each band structure. (d) Simulated MR at different temperatures. The inset demonstrates the
influence of spin splitting induced by PT symmetry breaking on the band structure.
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NMR via spin splitting induced by PT symmetry breaking,
which aligns with the magnetic and electrical transport
properties. These results indicate that MnSi2Te4 not only
demonstrates the feasibility of designing DTMCs with unique
octahedral arrangements and properties through intralayer
structural modulation but also serves as a promising candidate
for investigating low-dimensional magnetism and developing
field-sensitive devices and next-generation spintronic devices.
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