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Combinatorial optimization underpins applications in artificial intelligence,
logistics, and network design, yet classical techniques such as greedy search
and dynamic programming struggle to balance efficiency and solution quality
at scale. We present a probabilistic framework that embeds true random
number generators based on spin-transfer-torque magnetic tunnel junctions
into a greedy solver. Intrinsic stochastic switching enables configurable ran-
dom number distributions, which we use to inject controlled randomness via a
temperature parameter that interpolates between deterministic and stochas-
tic choices, balancing exploration and exploitation. Applied to the traveling
salesman problem, the framework yields high-quality tours and outperforms
simulated annealing and genetic algorithms in solution quality and con-
vergence speed. In larger instances with up to 70 cities, it maintains its
advantage, reaching near-optimal solutions with fewer iterations and reduced
computational cost. These results show that hardware true randomness with
tunable statistics can improve heuristic search and motivate integrated,
energy-efficient probabilistic hardware for scalable optimization.

Combinatorial optimization is a cornerstone of modern computational
science, playing a pivotal role in domains ranging from artificial
intelligence and machine learning* to logistics®> and operations
research®. The objective is to identify an optimal configuration from a
finite but exponentially large set of possibilities, where even modest
increases in problem size can render classical methods impractical due
to the exponential growth of computational complexity’. While
deterministic algorithms such as dynamic programming® and branch-
and-bound’ have proven effective for small-scale problems, they often
fail to scale efficiently to larger scenarios or escape local optima when

confronted with the complex landscapes of combinatorial spaces™.

In recent years, there has been a paradigm shift towards incor-
porating randomness into optimization algorithms” ™, leading to a
emerging class of techniques termed stochastic or probabilistic
optimization*?°. Methods such as simulated annealing, genetic algo-
rithms, and Monte Carlo simulations have demonstrated the potential
of randomness to diversify search strategies, enabling algorithms to
explore solution spaces more comprehensively and escape local
minima. However, the efficacy of these methods is highly dependent
on the quality and configurability of the random number generators
(RNGs) employed”?*, Traditional RNGs, whether pseudo-random or
hardware-based, often lack the flexibility required to dynamically
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adjust their distribution characteristics, limiting their adaptability to
different optimization scenarios.

A promising development in this field is the utilization of mag-
netic tunneling junctions (MT]Js) as a source of true random numbers,
enabling true random number generators (TRNGs), which exploit
inherent physical randomness rather than deterministic algorithmic
processes”*', MT]Js, typically used in non-volatile memory
technologies® %, exhibit probabilistic switching behavior that can be
finely tuned by external control parameters such as voltage or mag-
netic field strength. This inherent stochasticity—referred to as hard-
ware randomness due to its direct physical origin—makes MTJ-based
TRNGs uniquely suited for probabilistic computing®*, where the
randomness can be directly mapped onto computational processes.
The ability to configure the probability distribution of an MT)J-based
TRNG—effectively creating probabilistic bits (p-bits), binary units
defined by probabilistic rather than deterministic states—enables an
alternative approach to algorithm design, where the degree of ran-
domness can be adjusted in real time to influence decision-making
processes®*,

Prior conceptual and simulation-level frameworks, such as the
SPINBIS spintronics-based Bayesian inference engine built on MTJ
stochastic bit-stream generators®, and spin-orbit-torque-based Baye-
sian reasoning hardware”, have demonstrated the feasibility of
MT]J-based probabilistic inference in data-fusion and inference tasks.
Distinctively, our work goes beyond these precedents by experimen-
tally embedding MT]J-based, probability-distribution-configurable
TRNGs into a probabilistic greedy algorithm for TSP optimization. This
hybrid hardware-algorithm co-design is, to our knowledge, a repre-
sentative fully experimental demonstration of Bayesian-PDF-matched
probabilistic optimization for combinatorial problems.

In this study, we propose an advanced optimization framework
that leverages MTJ-based TRNGs to solve complex combinatorial
problems. Specifically, we introduce a probabilistic greedy algorithm
for the traveling salesman problem (TSP)*****! - a canonical example
in combinatorial optimization - to showcase the potential of this
approach. The TSP challenges a solver to find the shortest possible
route that visits a given set of cities and returns to the starting point,
and it is well known for its non-deterministic polynomial-hardness (NP-

Hardness). By incorporating MTJ-based TRNGs into the decision-
making process, we can modulate the selection strategy for the next
city, transitioning smoothly between deterministic greedy choices and
purely random selection. This dynamic adaptability enables the algo-
rithm to effectively balance exploration and exploitation, thereby
improving its ability to find high-quality solutions efficiently.

Results and Discussion

Figure 1 presents a detailed characterization of the MTJ-based TRNG
employed in this study. The resulting R-H hysteresis loops, shown in
Fig. 1b, reveals a clear and sharp switching between high and low
resistance states, confirming the stability and reproducibility of the
MT]J’s magnetic switching behavior. The MTJ has a high tunnel mag-
netoresistance (TMR) ratio ~175%, which is essential for ensuring reli-
able and distinct resistance states. The MT]J’s resistance switching
behavior under current pulses is illustrated in Fig. 1c.

By applying a series of current pulses, we observed stochastic
switching of the free layer's magnetization, resulting in resistance
changes. This stochastic behavior serves as the basis for the MTJ-based
TRNG. To further analyze the switching probability, Fig. 1d plots the
probability of switching as a function of the applied write voltage. The
experimental data (green circles) show a gradual increase in switching
probability (Ps,) with increasing voltage (V), which is accurately cap-
tured by the fitted sigmoidal curve (black solid line). The fitting para-
meters b and c indicate the sharpness and offset of the curve.
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This relationship P, (V) is crucial, as it enables precise control
over the probability distribution of generated random numbers. Fig-
ure le demonstrates the results of continuous resistance measure-
ments at three fixed voltages: 0.275V, 0.282V, and 0.288YV,
corresponding to P, of 25%, 48%, and 81%, respectively. These mea-
surements confirm that the device can achieve consistent and repea-
table switching behavior, with well-defined probability at each voltage
level. The ability to finely tune the switching probability by adjusting
the voltage is a key advantage of MTJ-based TRNGs, allowing for the
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Fig. 1| Characterization of the performance of a TRNG based on an MT]J.

a Schematic of the device structure and measurement setup. b R-H hysteresis loops
obtained by sweeping an out-of-plane magnetic field. c Resistance switching behavior
of the MTJ induced by current pulses, which trigger free layer magnetization

switching. d MT]J switching probability as a function of applied write voltage. The
black solid line represents the fitted sigmoidal curve. e Resistance measurements
from continuous testing at fixed voltages of 0.275V, 0.282V, and 0.288V, corre-
sponding to switching probabilities of 25%, 48%, and 81%, respectively.
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Fig. 2 | Probability-distribution-configurable TRNGs based on multiple MT]Js.

a Schematic diagram illustrating the connection of four MT]Js to the NI PXle system
through a probe card and adapter board. b Generated random numbers exhibiting
a Gaussian distribution. ¢ Error analysis of the Gaussian-distributed random num-
bers, with the left axis representing KL divergence and the right axis representing

Index Index

the mean squared error. d Neighbor correlation of the Gaussian-distributed ran-
dom numbers. The color intensity indicates the sample point density, and the
concentric circles indicate weak neighbor correlation. e-g Random number gen-
eration results for several typical probability distributions: (e) uniform distribution,
(f) exponential decay distribution, and (g) user-defined arbitrary distribution.

generation of random numbers with specific statistical properties tai-
lored to various probabilistic algorithms. While achieving fine-grained
control over switching probabilities typically requires highly precise
voltage tuning, we adopt a hybrid control scheme previously validated
in ref. 42, where switching probability is regulated via pulse-width
modulation rather than analog amplitude adjustment. This digital
control method ensures consistent sigmoidal switching behavior
across devices, even when target probabilities are closely spaced.
Moreover, the use of a self-stabilizing feedback mechanism compen-
sates for device variation and drift, allowing robust and scalable
probability distribution generation without relying on high-resolution
voltage sources.

Figure 2 showcases the versatility of the MTJ-based TRNG in
generating random numbers with configurable probability distribu-
tions. The schematic diagram in Fig. 2a illustrates the experimental
setup, where multiple MTJs are connected to the NI PXle system
through a probe card and adapter board (Supplement I). This config-
uration enables the simultaneous measurement of multiple MTJs,
allowing for efficient data collection and parallel testing of different
devices.

Figure 2b displays the random numbers generated by the MTJ-
based TRNGs. The generated values align closely with the expected
Gaussian distribution, as evidenced by the smooth bell-shaped curve.
This Gaussian-distributed randomness is achieved by carefully
adjusting the write voltage of the MT]Js, demonstrating the flexibility of
the TRNG in producing specific distributions. The transformation from
binary Bernoulli TRNGs into a probability-distribution-function-
configurable TRNG modeled as a Bayesian network can be found in
Supplement Il in details.

To quantitatively evaluate the accuracy of the generated dis-
tributions, Fig. 2c presents the error analysis, where the left axis
represents the Kullback-Leibler (KL) divergence and the right axis
represents the mean squared error (MSE). The KL divergence measures
the difference between the experimentally generated distribution and
the theoretical Gaussian distribution, while the MSE quantifies the
average deviation of the generated values from the expected mean and
variance. Both metrics indicate minimal errors, confirming the high
fidelity of the MTJ-based TRNG in replicating desired distributions.

The neighbor correlation of the generated random numbers is
analyzed in Fig. 2d, where the color intensity represents the sample
point density. The nearly uniform distribution of points and the pre-
sence of concentric circles indicate negligibly weak neighboring cor-
relation, signifying that the generated random numbers are
statistically independent. Our STT-MT]Js are not low-barrier ones and
each random number is generated by a reset-sampling circle, therefore
correlevance between neighboring random numbers no longer an
issue here. This property is essential for ensuring that the TRNG can
produce high-quality random numbers suitable for applications
requiring true randomness, such as probabilistic algorithms and
cryptographic operations.

Figure 2e-g demonstrate the capability of the TRNG to generate
random numbers following various probability distributions. Figure 2e
presents a uniform distribution, where each value has an equal prob-
ability of being sampled. Figure 2f shows an exponential decay dis-
tribution, characterized by a high probability for smaller values and a
rapidly decreasing probability for larger values. Finally, Fig. 2g illus-
trates a user-defined arbitrary distribution, highlighting the flexibility
of the TRNG in generating custom probability profiles. This configur-
ability is critical for integrating the TRNG into a wide range of appli-
cations, from stochastic optimization to artificial intelligence, where
diverse probability distributions are needed to guide decision-making
processes. The probabilistic nature of the algorithm inherently miti-
gates the influence of occasional transient faults or soft errors in ran-
dom number generation. Additionally, the embedded self-calibration
and stabilization routines further ensure robustness by identifying and
correcting persistent anomalous switching behaviors at the hardware
level. It is important to note that the experimentally demonstrated
capability of generating random numbers with configurable and
dynamically tunable probability distributions (Fig. 2) directly supports
the probabilistic selection mechanism required by our greedy algo-
rithm in solving the TSP (Fig. 3). At each iterative step of the algorithm,
the MTJ-based TRNG efficiently provides random samples precisely
matching the dynamically updated probability distribution defined by
Eq. (1). This intrinsic alignment between the MTJ-based TRNG cap-
abilities and the probabilistic selection mechanism greatly enhances
both the solution quality and computational efficiency, clearly
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Fig. 3 | Probability of selecting the next city under different temperature (kzT)
conditions. When kgT approaches 0, the algorithm always selects the closest city,
equivalent to a greedy algorithm. When kgT approaches infinity, the selection

probability for each remaining city is equal, which is analogous to random selec-
tion. When kT is within a suitable intermediate range, a probabilistic greedy
algorithm can be achieved.

distinguishing our approach from traditional algorithms that rely on
fixed or less-flexible random number generators.

Maintaining precise switching probability control in large-scale or
on-chip implementations is crucial. In our recent work*’, we demon-
strated a scalable hybrid control approach in which pulse-width
modulation (PWM) replaces the need for high-resolution analog vol-
tage tuning. By adjusting the duration of fixed-amplitude pulses using
simple digital logic, the system effectively maintains the desired
probability distribution across devices, even under thermal drift and
process variation. This strategy significantly reduces the requirement
for high-resolution DACs or ADCs, making the architecture well-suited
for scalable on-chip integration.

Compared to pseudo-random number generators (PRNGs), MTJ-
based TRNGs offer significant advantages in probabilistic computing
applications, particularly through their ability to directly generate and
dynamically tune probability distributions in real time. Unlike deter-
ministic PRNGs, which typically require additional computational
overhead for mapping uniform random outputs into desired dis-
tributions, MTJ-based TRNGs inherently produce physically-generated
randomness with precisely controllable statistics via simple external
parameters (e.g., applied voltage or pulse width). This feature sig-
nificantly reduces complexity and latency, while also offering
enhanced parallelism and power efficiency in hardware
implementations.

While this work primarily focuses on distribution configurability,
we emphasize that the random bitstreams generated by our MT]Js have
been rigorously validated*. In that study, we conducted comprehen-
sive statistical evaluations using the NIST SP800-22 test suite, con-
firming that the TRNG outputs exhibit high entropy and pass all
standard randomness tests without requiring post-processing. The
same device architecture and control protocols were employed in this
work, ensuring that the TRNGs used for TSP solving maintain equiva-
lent statistical quality. Additional statistical evaluation of the TRNG-
generated bitstreams is provided in Supplement LLI. The current bit-
stream generation rate in our experimental setup is limited by the
speed of the NI PXle data acquisition system, operating at approxi-
mately 500 kHz per MTJ. However, the intrinsic switching times of STT-
MT]Js allow for much faster operation. With high-speed peripheral
circuits and optimized on-chip integration, generation rates
approaching the GHz range are feasible, as reported in recent high-
speed TRNG demonstrations*. This positions our MTJ-based TRNGs as

suitable candidates for future high-throughput probabilistic comput-
ing applications.

Figure 3 presents the probabilistic greedy algorithm’s mechanism
for selecting the next city in the traveling salesman problem (TSP)
under varying temperature conditions. The algorithm utilizes the MTJ-
based TRNG to generate random numbers that influence the city
selection process, allowing for a probabilistic adjustment of the greedy
strategy. The selection probability P;,;(N) of the next city N is a func-
tion of the distance d; between the current city N and N as well as a
temperature parameter kg7 as shown in Eq. (1).

Piy(N) =1~ by exp(~dyy /ksT)/Z
s )
zZ= Za — by exp(—dyg /ksT)

i=1

Here b; indicates the accessibility of the i city and b;=1 once the
i city has been visited or else b;= 0 if it is to be visited. Thus, the final
probability of choosing a specific route P=[1P.;(N)=<exp[-(Cd;)/kgT]
and, straightforwardly, the shortest route S = (3d;)min has the highest
probability to be experimentally sampled. This feature assures the
convergence of this probabilistic greedy algorithm. More details can
be found in the Supplement V.

It is worth noting that the decision of choosing the next city relies
on a probabilistic sampling operation according to the series of
probabilities P.(N) with N being the city indices to be visited. This
probability-distribution-function (PDF) defined by P.;(N) changes
dynamically step by step, which calls for a random number generator
that can output random numbers according to the time-variant PDFs.
Fortunately, our TRNGs with configurable PDFs match this require-
ment well.

When kgT approaches zero, the algorithm operates as a determi-
nistic greedy algorithm, always selecting the closest city to the current
one. In this regime, the probability of choosing the closest city is nearly
100%, leading to rapid but potentially suboptimal solutions due to the
algorithm’s inability to escape local minima.

Conversely, when kgT is extremely high, the selection probability
for each remaining city becomes nearly uniform, leading to a selection
process similar to a random walk. This behavior encourages explora-
tion of the solution space but at the cost of reduced efficiency in
converging to high-quality solutions. The optimal performance is
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Fig. 4 | Hardware test results for solving the Burmal4 problem using the
Probabilistic Greedy Algorithm. a Map of the Burmal4 problem, where the solid
line represents the known optimal solution and the dashed line indicates the best
solution obtained using the classic greedy algorithm. b Total distance statistics of
TSP solutions across the range of kgT=1-400. The red dashed line marks the
known optimal solution, while the green, orange and red solid lines connect the
maximum, minimum, and average total distances, respectively, obtained at each
kgT value. ¢ Distribution of solution distances at six selected kg T values, showing

300
kT

Total Distance (x1000 km)

improved performance and reaching the optimal solution when kg T is in the range
of 40-60. d Relationship between the best path distance and the number of
iterations for four selected kg T values. When kg T = 60, the optimal solution can be
achieved within 1000 iterations. e Scatter plot of the best solutions across kg
T=1-400 (left) and density distribution plots of solutions within 0, 50, and 100
kilometers of the known best solution (right). Each density plot is based on 100
independent solution runs using the probabilistic greedy algorithm.

observed at intermediate kg7-values, where the algorithm effectively
balances exploration (randomness) and exploitation (favoring shorter
distances), allowing it to escape local optima and discover near-
optimal solutions with high probability. Practical considerations
regarding frequent adjustments of MTJ-based TRNG distributions have
shown minimal overhead. This is primarily because reconfigurations
involve only modest voltage adjustments via a small set of parameters.
Furthermore, implementing parallel and pipeline operations effec-
tively reduces latency, ensuring these hardware-level adjustments do
not significantly affect the overall algorithm performance.

It is important to acknowledge existing epsilon-greedy methods
commonly used in reinforcement learning and optimization tasks*!,
which similarly balance exploration (randomness) and exploitation
(optimal choice). However, our proposed MTJ-based probabilistic
greedy algorithm significantly diverges from traditional epsilon-
greedy methods in several critical aspects. Unlike epsilon-greedy
algorithms, which typically employ a fixed probability (¢) to introduce
uniformly random choices, our algorithm continuously and dynami-
cally updates a probability distribution for city selection at every step,
based on distances and the adjustable temperature parameter kg7 (Eq.
(1)). This dynamic adjustment provides a more nuanced and context-
sensitive trade-off between exploration and exploitation. Moreover,
the direct hardware-based randomness offered by MTJ-based TRNGs
facilitates immediate, real-time, and computationally efficient gen-
eration of precisely tuned probability distributions, eliminating the
computational overhead associated with transforming uniformly dis-
tributed pseudo-random numbers into desired distributions. Conse-
quently, our method achieves superior encoding efficiency,
algorithmic flexibility, and scalability, representing a substantial
advancement beyond traditional epsilon-greedy approaches.

Figure 4 provides experimental results demonstrating the appli-
cation of the MTJ-based TRNGs in solving the TSP using the prob-
abilistic greedy algorithm. Figure 4a depicts the map of the Burmal4

TSP problem (n=14, where n denotes the problem size), where the
solid line indicates the known optimal solution, and the dashed line
represents the best solution obtained using a classic greedy algorithm.
The probabilistic greedy algorithm, driven by the MTJ-based TRNG,
consistently identifies paths that are closer to the optimal solution, as
shown by the reduced total distance metrics. Figure 4b illustrates the
variation in total distance across a range of kgT values from 1 to 400.
The orange dashed line marks the known optimal solution, while the
green, orange, and red solid lines connect the maximum, minimum,
and average total distances, respectively, obtained at each kgT value.
The results indicate that the algorithm achieves optimal or near-
optimal solutions when kg T is within the range of 40 to 60, highlighting
the significance of selecting an appropriate temperature parameter to
balance the probabilistic selection strategy.

Figure 4c further investigates the distribution of solution dis-
tances at six selected kgT values, showing improved performance and
reaching the optimal solution when kgT is between 40 and 60. This
analysis underscores the robustness of the probabilistic greedy algo-
rithm in finding high-quality solutions when driven by suitably tuned
randomness. Figure 4d examines the relationship between the best
path distance and the number of iterations (where one iteration is
defined as a single complete solution route, visiting each city exactly
once) for four selected kT values. When kg T = 60, the optimal solution
is achieved within 1000 iterations, demonstrating the efficiency of the
algorithm in converging to high-quality solutions. Figure 4e presents a
scatter plot of the best solutions obtained across the kgT range and
density distribution plots of solutions within 0, 50 and 100 kilometers
of the known optimal solution, further validating the algorithm’s
effectiveness. For visibility, the density of the O kilometer is scaled by a
factor of 50. The appearance of a clear peak shape in the distribution
plots indicates the existence of an optimal kg7, highlighting the algo-
rithm’s sensitivity to temperature parameters in achieving high-quality
solutions.
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Iterations

increases for kg7T=0.1, 1.3, 2.0, and 3.0. d Comparison of solutions found by
heuristic algorithms (Genetic algorithm, SA algorithm, Greedy algorithm, and
Probabilistic Greedy algorithm), with the horizontal axis representing the number
of iterations. Each data point represents the average of 10 independent runs, with
error bars showing standard deviations. e A schematic diagram of the core design
of a TSP solver based on an MT]J array, highlighting the key components and con-
nections within the solver architecture.

The solver still works well when the city number is increased
significantly. Figure 5 illustrates the simulated results obtained with
the st70 problem, offering a comprehensive comparison of our algo-
rithm against other established methods. In the map shown for the
st70 problem, the optimal solution is indicated by a solid line, serving
as a benchmark for evaluating the performance of different algo-
rithms. The st70 problem, with its 70 cities, presents a considerable
computational challenge, making it an ideal test case for demon-
strating the efficacy of both heuristic and exact algorithms. The com-
parison of time and space complexity among the algorithms—Brute
Force, Dynamic Programming, Genetic Algorithm, Simulated Anneal-
ing (SA), Greedy Algorithm, and Probabilistic Greedy Algorithm—
clearly highlights the benefits of heuristic methods. While exhaustive
approaches like Brute Force and Dynamic Programming struggle with
scalability as n increases, heuristic algorithms, particularly the Prob-
abilistic Greedy and Genetic algorithms, strike a balance between
computational efficiency and solution quality. This contrast is evident
from the results where n=70 is used, showcasing the advantage of
these more advanced approaches when tackling larger problems. As
the number of iterations grows, the quality of the solutions improves,
particularly when varying the thermal fluctuation parameter kgT.
Across different values (kg7=0.1,1.3, 2.0, and 3.0), the results indicate
that the algorithm’s performance is highly sensitive to this parameter,
with intermediate values (e.g., 1.3) leading to a more optimal con-
vergence rate. The gradual improvement in path quality with increas-
ing iterations underscores the algorithm’s ability to refine its solution
over time. When comparing different heuristic approaches—Genetic
Algorithm, Simulated Annealing (SA), Greedy Algorithm, and Prob-
abilistic Greedy Algorithm—the results reveal that incorporating sto-
chastic elements, as seen in the Probabilistic Greedy Algorithm,
significantly enhances performance. It is worth noting that while the SA
can only evaluate the situation of exchanging two cities at a sample,
the Probabilistic Greedy Algorithm can take all the remaining cities
into account for a single sampling owing to the arbitrary PDF

configurability of our MTJ-TRNGs. Thus, the latter can deal with a
higher entanglement degree, which accounts for its faster con-
vergence speed. By avoiding local optima, the probabilistic variant
consistently outperforms the classic Greedy Algorithm, especially in
later iterations, demonstrating its potential for yielding superior
solutions. Moreover, our MTJ-based probabilistic framework can also
benefit advanced metaheuristics such as Ant Colony Optimization
(ACO) and Particle Swarm Optimization (PSO). By integrating
hardware-level randomness, these metaheuristics can systematically
enhance their exploration strategies, potentially leading to improved
solution quality and faster convergence due to more effective escape
from local optima.

We note that the parameter kg7, which governs the shape of the
exponential probability distribution, is currently selected empirically
for each problem instance. While effective in practice, developing a
more systematic or adaptive strategy for temperature tuning—analo-
gous to annealing schedules or meta-optimization—remains an
important avenue for future work, particularly to enhance scalability
and generalizability.

Finally, the schematic in Fig. 5e illustrates the core design of a TSP
solver based on an MT] array. This hardware-based solver taps into the
inherent randomness of the MT]J array, which can be efficiently reused
to generate random numbers of any required length. This modularity
and scalability make the MT]J array particularly well-suited for prob-
abilistic algorithms like Simulated Annealing and Probabilistic Greedy
Algorithm, enhancing the solver’s adaptability for larger and more
complex TSP instances. The ability to expand the random number
generation capability of the MTJ array according to an arbitrarily cus-
tomized PDF without sacrificing performance is a crucial innovation,
positioning this design as a versatile and efficient solution for
hardware-accelerated optimization tasks.

To provide a transparent system-level comparison, we summarize
key performance metrics of our prototype platform versus projected
FPGA/ASIC implementations in Table 1. The prototype, implemented
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Table 1 | Benchmark comparison between prototype and projected MTJ-based probabilistic TSP solvers

Platform Sampling / Iteration Rate Time per 14-city solution (~10* Energy per solution (estimated)
iterations)
Prototype (NI-PXle + STT- ~0.5 MHz (instrument-limited) ~20 ms ~10™J (dominated by external instrumentation
MTJ, ~100 nm) overhead)
Projected FPGA (spin-CMOS co- 10-50 MHz (conservative) 0.2-1ms 10%-1072J
design)
Projected ASIC (STT-/SOT-MTJ, >100 MHz (intrinsic MTJ<10 ns <0.1ms 10°-107°J
28 nm node) switching)

with 100 nm STT-MT]Js controlled by NI-PXIe instrumentation, oper-
ates at ~0.5MHz and requires ~20 ms per 14-city TSP solution, with
energy dominated by instrumentation overhead. In contrast, projec-
tions based on published MT) switching speeds ( <10 ns)* and intrinsic
switching energies (f]-pJ per event)® indicate that a dedicated FPGA or
ASIC could achieve sub-millisecond or even sub-0.1 ms solution times
with microjoule-level energy consumption. This analysis highlights the
large performance headroom available for integrated spintronic
probabilistic solvers.

Furthermore, we note that the step-by-step probabilistic decision-
making process in our algorithm bears strong resemblance to the
autoregressive sampling mechanism employed in large language
models (LLMs), where each token is sampled based on a dynamically
updated softmax distribution. This conceptual alignment suggests a
future direction for integrating MTJ-based probabilistic hardware with
Alinference and generation tasks that involve structured randomness.

This paper presents a distinct probabilistic greedy algorithm that
utilizes the stochastic properties of MTJ-based TRNGs to solve com-
plex combinatorial optimization problems. By integrating MTJ-based
TRNGs with the PDF reconfigurability into the optimization frame-
work, we can dynamically adjust the degree of randomness in the
decision-making process, allowing the algorithm to strike an optimal
balance between exploration and exploitation. This capability is
achieved through the control of a temperature parameter, which
modulates the randomness level and enables the algorithm to adapt its
strategy based on the problem state.

The effectiveness of the proposed approach is demonstrated
through extensive experimentation on the traveling salesman pro-
blem. Our results show that the probabilistic greedy algorithm con-
sistently achieves superior performance compared to classical
methods such as simulated annealing and genetic algorithms, both in
terms of solution quality and convergence speed. When applied to
larger problem instances in simulation, the algorithm exhibits excel-
lent scalability and robustness, maintaining a competitive edge even as
the number of cities increases to 70. For significantly larger-scale
problems involving hundreds or thousands of nodes, practical imple-
mentations may require adaptive parameter tuning strategies, paral-
lelization techniques, or decomposition of the problem into
manageable subproblems. Nonetheless, there are no fundamental
limitations preventing the scalability of our proposed method. The key
advantage of this approach lies in its ability to dynamically modulate
randomness through the MTJ-based TRNG, which enhances the algo-
rithm’s capacity to escape local optima and discover near-optimal
solutions efficiently.

In the current implementation, the temperature-like parameter
kgT, which governs the exploration-exploitation trade-off, is deter-
mined empirically for each problem instance. While this heuristic
approach is effective in practice, developing a systematic or adaptive
tuning strategy remains an important direction for future work.

Additionally, although we demonstrate hardware results on
medium-scale TSP instances (e.g., Burmal4), the results for larger
problems (e.g., st70) are obtained through algorithm-level simula-
tions. These simulations validate the algorithmic scalability of our
approach, while the underlying hardware design—requiring only log,N

MTJs for encoding an N-choice distribution—offers intrinsic archi-
tectural advantages for future large-scale implementations. It is worth
noting that, besides the logarithmic scaling of MTJ count (O(log,N)),
our probabilistic greedy algorithm requires only O(N) auxiliary mem-
ory for conditional probability parameters, which remains significantly
more favorable than the O(N?) parameter storage required in Boltz-
mann or Ising machines.

The integration of MTJ-based TRNGs offers a promising direction
for developing hardware-accelerated optimization frameworks, with
potential applications extending beyond TSP to other NP-hard pro-
blems. This framework can be readily generalized to other combina-
torial optimization problems, such as graph coloring or scheduling
tasks, by simply redefining the specific cost function and adjusting the
temperature parameter accordingly. A concrete adaptation of the
probabilistic greedy framework to the graph coloring problem is
presented in Supplement VI. Future work will explore the integration
of these TRNGs into parallel and distributed computing architectures,
as well as their combination with advanced machine learning models
to further expand the capabilities of probabilistic optimization meth-
ods. This research establishes a solid foundation for leveraging
hardware-level stochasticity in computational algorithms, offering
additional possibilities for tackling complex optimization challenges
with greater efficiency and effectiveness®.

While the current study emphasizes the feasibility and statistical
behavior of MTJ-assisted probabilistic solvers, we acknowledge that
absolute runtime, energy, and area efficiency have not been char-
acterized in this work. Our experimental platform involves instrument-
level control and is not representative of a fully integrated solution.
Future efforts will focus on ASIC- or FPGA-based implementations to
enable rigorous evaluation of system-level performance metrics,
leveraging the intrinsic speed and low-power characteristics of spin-
tronic devices. Beyond traditional combinatorial problems, our fra-
mework also holds potential for accelerating probabilistic Al models,
such as autoregressive generators, by serving as a hardware-
compatible platform for structured random sampling.

Methods

The stack structure of the employed STT-MTJ devices**™*, as depicted
in Fig. 1a, is from top to bottom capping/CoFeB/Mo/CoFeB/MgO/
CoFeB/Mo/[Co/Pt],;-based synthetic anti-ferromagnetic structure/
Seed/SiO,. The multilayer films were deposited by magnetron sput-
tering on a thermally oxidized silicon substrate under a vacuum
environment of 107 Pa. Following deposition, the films were annealed
at high temperature in an external magnetic field perpendicular to the
film plane. The devices were then patterned into cylindrical STT-MT]Js
using standard lithography and etching processes. Magneto-transport
measurements of the fabricated devices were conducted using an
Hprobe H3DM tester. The samples were subsequently connected to a
Keysight B1500A semiconductor analyzer and a NI PXle system
through a probe card and adapter board, enabling comprehensive
experimental control and data acquisition through a Python-based
interface. This setup facilitated precise electrical measurements and
switching probability characterization of the STT-MT]Js, providing a
reliable platform for evaluating their performance as TRNGs. To
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ensure stable operation and mitigate the impact of device-to-device
variations and long-term drift, we previously developed self-stabilizing
techniques and pulse-width modulation strategies for MTJ-based
TRNGs. These methods allow each MT) to autonomously correct its
switching probabilities, ensuring consistent random number genera-
tion across large-scale device arrays without frequent manual
calibration*>*°, Specifically, for the TSP solver implementation repor-
ted herein (e.g., Burmal4 problem), four MTJs were utilized to gen-
erate the required configurable random distributions. All MTJ devices
used exhibited consistent sigmoid-shaped switching probability
curves with stable and reproducible behavior, as characterized and
verified prior to algorithmic integration.

Data availability

All data needed to evaluate the conclusions in the paper are present in
the paper and available at https://doi.org/10.6084/m9.figshare.
28071089.

Code availability
The code used in this work is available at: https://doi.org/10.5281/
zenodo.17503789
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