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We describe an optical system that allows for direct observation of the photonic Josephson effects in

two weakly linked microcavities containing ultracold two-level atoms. We show that, by moving the

ultracold atoms within one cavity, we could simulate an analogous superconducting circuit and realize

both the alternating- and direct-current (ac and dc) photonic Josephson effects. This provides a strategy for

constructing novel interference devices of coherent photons and enables new investigations of the effect of

many-body physics in strongly coupled atom-cavity systems.
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The strongly correlated dynamics of coherent photons
has achieved many exciting experimental and theoretical
advances such as effective photon-photon repulsion [1], the
Mott insulator-superfluid quantum phase transition of light
[2], simulations of the quantum magnetic dynamics of spin
models [3], and quantum magnetic dynamics of polarized
light in arrays of microcavities [4]. Compared to other
strongly correlated many-particle systems in condensed
matter physics or cold atoms, an optical correlation system
has the advantage of accessing individual lattices experi-
mentally [5]. In addition, it offers the ability to design
quantum-mechanical devices for quantum information
processes.

In this Letter, we explore the photonic Josephson effects
of a strongly interacting many-body optical system where
the polaritons condense into a superfluid quantum phase.
The wave function of this phase is a superposition of the
coherent states of photons and two-level atoms [6]. When
the freedom of the atom polarization is integrated out, the
superfluid phase can be described by the order parameter of
the photon wave function via an effective field theory [7].
These coherent photons are novel quasiparticles that are
self-interacting and behave like massive bosons; thus, they
can serve as good candidates for the quantum simulations
of the correlation effects in condensed matter physics.

In real experiments, the striking signatures of the
Josephson effects are demonstrated by measuring the
chemical potential-current relation of the ac and dc
Josephson effects [8]. This is analogous to the voltage-
current characteristic in a superconducting Josephson junc-
tion biased by external circuits [9]. But in charge-neutral
systems such as atomic Bose-Einstein condensates
(BECs), where the external circuits and current sources
are absent, it is very difficult to implement the chemical
potential-current relation [10]. Here we set up an optical
correlation system consisting of two weakly linked micro-
cavities with ultracold atoms within each cavity. We show
that, by moving the atoms in a modulated local atom field,

we can realize a time-dependent coupling between the
moving atoms and cavity photons; thus, a biased photonic
current could be applied. This technique, for the first time,
provides a practical way to explore the photonic Josephson
effects, which play important roles for understanding the
temporal interference of coherent photons.
The system under investigation is schematically de-

picted in Fig. 1(a). We have considered two fiber-based
Fabry-Perot (FFP) or ultrahigh-finesse optical cavities
[11,12], which can achieve the strong coupling regime
with large single-atom peak coupling rate g0 and a small
rate of decay of the cavity field �. The two cavities are
linked with the intercavity tunneling amplitude K, and
each cavity contains Na ¼ 104 two-level 87Rb atoms
trapped by an external magnetic potential or dipole
beam. We choose the relevant parameters g0=2� ¼
215 MHz [11] and ð�; �Þ=2� ¼ ð1:3; 3:0Þ MHz [12]. The
corresponding characteristic time scales of these parame-
ters will be further discussed later. In Fig. 1(b), a far-
detuned optical lattice is switched on to increase the atomic
confinement and gain control over the coupling rate, where
the period of the overlap between the cavity mode and the
optical lattice is 6:4 �m [12]. By moving the ultracold
atoms within the cavity, one can realize a tunable coupling
rate, which is crucial for an experimental realization of the
dc photonic Josephson effects. Figure 1(c) shows the
modulated local atom-field coupling rate gðxÞ, where

g2ðxÞ ¼ R �ðrÞ
Na jg0 cosð2�x=�CÞ expð�r2?=w

2Þj2dr, with w

and �C being the mode radius and wavelength.
The Hamiltonian for our Josephson coupled atom-field

interaction system can be described by a combination of
the Dicke Hamiltonian [13] with photon tunneling between
two weakly linked microcavities. In the rotating-wave
approximation, the many-body dynamics of the full system
is given by the following Hamiltonian:

Ĥ ¼ X
i¼1;2

ĤD
i þKðĉ y

1 ĉ 2 þ H:c:Þ; (1)
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Ĥ D
i ¼ !C ĉ

y
i ĉ i þ

XNa

j¼1

!A

2
ðb̂yi;jb̂i;j � âyi;jâi;jÞ

þ giðb̂yi;jâi;j ĉ i þ ĉ y
i â

y
i;jb̂i;jÞ; (2)

where !C and !A are the cavity and atom resonance
frequencies, respectively, with the detuning �C ¼ !C �
!A. ĉ y

i (ĉ i) is the single-mode creation (annihilation)

operator of the photons in each cavity; âi;j and b̂i;j are

fermion operators, which are naturally associated with the
lower and upper levels of each atom and satisfy the
single-occupancy constraint [7]. The modulated local
atom-field coupling rate giðxÞ ’ 2�� ½50 cosð2�x=6:4Þ þ
150� MHz. The intercavity tunneling amplitude is given by
K ¼ 2!C

R
dr½�iðrÞ � �ðrÞ�w�

1ðrÞw2ðrÞ [3], where �iðrÞ
and wiðrÞ are the dielectric function and the eigenmode
of an individual single cavity, respectively, and �ðrÞ is the
dielectric function of the coupled cavities.

We first analyze the excitations of the atom-cavity sys-
tem with the Hamiltonian (2). We work in the grand-

canonical ensemble ~̂H
D
i ¼ ĤD

i ��iN̂
ex
i , with the total

number of excitations fixed by N̂ex
i ¼ P

Na

j¼1
1
2 �

ðb̂yi;jb̂i;j � âyi;jâi;j þ 1Þ þ ĉ y
i ĉ i. By using the coherent

state functional integral representation for the partition

function [6,7] with single-occupancy constraint âyi;jâi;j þ
b̂yi;jb̂i;j ¼ 1 and integrating over the fermion fields, one

arrives at an effective action for photons

Seff½c i� ¼
Z �

0
d	c �

i ð@	 þ ~!i
CÞc i ��iN

a=2

� NaTr ln
@	 þ ~"i gic i=

ffiffiffiffiffiffiffi
Na

p
gic

�
i =

ffiffiffiffiffiffiffi
Na

p
@	 � ~"i

 !
; (3)

where ~!i
C ¼ !C ��i and ~"i ¼ ð!A ��iÞ=2. Making the

static assumption c ið	Þ ¼ �i, then the free energy is
written as Fi ¼ ln½2 coshð12�EiÞ�=�þ ~!i

Cj�ij2 �
�iN

a=2, with Ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~"2i þ g2i j�ij2

q
.

The mean-field equations of a polariton condensate are
determined by the saddle condition @Fi=@�

�
i ¼ 0 com-

bined with the excitation density constraint equation �ex
i ¼

1
�Na

@Fi

@�i
, which read

~! i
C�i ¼ g2i N

a �i

2Ei

; �ex
i � 1

2
¼ j�ij2

Na � ~"i
2Ei

: (4)

Here we have let � ! 1 and considered only the zero-
temperature excitations of the system, with the ground
state energy of the Hamiltonian (2) given by Ei ¼
~!i
Cj�ij2 � NaEi ��iN

a=2.
When the atoms are placed at a position of the cavity

with a fixed coupling rate g, the chemical potential � and
the coherent field amplitude � of the system are then
dependent on the excitation density �ex and detuning �C.
For the atomic resonance (�C ¼ 0) and low excitation
density (�ex < 0:5), there exists an important feature of
the above Eqs. (4): The photon occupancy density � ¼
j�j2=Na is linearly dependent on the excitation density

FIG. 2 (color online). Excitations of a polariton condensate.
This diagram shows the dependence of excitation density �ex on
the coupling rate g for chemical potential ð��!CÞ=gmin

ffiffiffiffiffiffiffi
Na

p ¼
�1 (red line) and the chemical potential as a function of g for the
excitation density �ex ¼ 0:3 (blue line). The inset shows the
photon occupancy density � as a function of the excitation
density �ex for atomic resonance (�C ¼ 0), where the red dashed
line is the linear fitting.
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FIG. 1 (color online). Experimental setup and control of the
coupling along the resonator axis. (a) Two FFP cavities are
linked with a intercavity tunneling amplitude K. Each cavity
contains Na two-level 87Rb atoms trapped by an external mag-
netic potential or dipole beam. g is the coherent coupling rate
between an individual atom and the cavity field; � and � are the
dissipation rate of the atomic spontaneous emission and the
cavity field itself, respectively. (b) The atoms are placed at a
position x along the cavity axis and are loaded into the optical
lattice. The cavity mode (�C ¼ 780 nm) and far-detuned optical
lattice (�L ¼ 830 nm) standing waves in each cavity have a
variable overlap with a 6:4 �m period. (c) The loaded atoms
show a strongly modulated coupling depending on the local
overlap between lattice and cavity mode.

PRL 102, 023602 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

16 JANUARY 2009

023602-2



approximately (see the inset in Fig. 2). The linear relation
can keep constant the total number of the coherent photons
of two weakly linked polariton condensates. This will be
beneficial when we consider the photonic tunneling be-
tween two cavities.

Moreover, we have switched on a far-detuned optical
lattice to modulate the atom-field coupling rate [see
Fig. 1(b)]. The atoms feel a tunable coupling rate gðxÞ
while moving along the cavity axis, resulting in variable
excitations in the atom-cavity system. Figure 2 shows the
dependence of excitation density �ex on the coupling rate g

for ð��!CÞ=gmin

ffiffiffiffiffiffiffi
Na

p ¼ �1 and the chemical potential
as a function of g for �ex ¼ 0:3. We see that the excitations
are determined by the tunable coupling rate, which enables
an investigation of the photonic Josephson effects.

Now we explore the ac and dc Josephson effects of
coherent photons in the system described by the
Hamiltonian (1). The two cavities are initially tuned to
atomic resonance, and both polariton condensates are ex-
cited in equilibrium with a low excitation density. The
macroscopic wave function of the system can then be
described as j�ðtÞi ¼ �1ðtÞj1i þ�2ðtÞj2i, with jii being
the two base states for each polariton condensate and

�iðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
NiðtÞ

p
ei
iðtÞ being the complex amplitudes

[14,15]. The total number of the coherent photons N ¼
N1 þ N2 is a constant, but the photon occupations NiðtÞ
and phases 
iðtÞ are time-dependent. For low density ex-
citations, we can expand the ground state energy of each
atom-cavity system to the second order of the coherent
photon occupancy density. Then the dynamics of the co-
herent photonic tunneling is approximately described by
the following effective nonlinear Schrödinger equation:

i@
@j�ðtÞi

@t
’
�X

i

ðE0
i þUij�ij2Þjiihij þKðj1ih2j

þ j2ih1jÞ
�
j�ðtÞi; (5)

where E0
i ¼ !C ��i � gi=4Ai are the zero-point ener-

gies in each cavity and Ui ¼ gi=16
ffiffiffiffiffiffiffi
Na

p
A3

i are the effec-
tive photonic self-interactions induced by the coupling

between the atoms and the photons. Here Ai ¼ ð!C �

�iÞ=gi
ffiffiffiffiffiffiffi
Na

p
is the dimensionless chemical potential. Then

from the above Eq. (5), we obtain equations of motion for
the relative population �ðtÞ ¼ ½N1ðtÞ � N2ðtÞ�=N and rela-
tive phase �ðtÞ ¼ 
2ðtÞ � 
1ðtÞ, which read

@ _�ðtÞ ¼ ð2EJ=NÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2ðtÞ

q
sin�ðtÞ; (6)

@ _�ðtÞ ¼ FlxðtÞ þ NEC

2
�ðtÞ þ 2EJ�ðtÞ

N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2ðtÞp cos�ðtÞ;

(7)

where EJ ¼ NK is the Josephson coupling energy and
EC ¼ U1 þU2 is the capacitive energy which is almost a
constant. lxðtÞ describes the motion of the atoms in one of

the cavities, and F ¼ ffiffiffiffiffiffiffi
Na

p ð�ex=2A3 � 1=2AÞdg=dx is
the average force exerted by the external trap on single
atoms which generates the chemical potential difference
FlxðtÞ between the two cavities. Here both of the polariton
condensates are initially excited with the same dimension-
less chemical potential A in each cavity.
We confine ourselves to the Josephson regime (EC �

EJ) and consider a small population imbalance (� � 1). In
this case, Eq. (6) is reduced to the atomic current-phase

relation _� ’ !J sin�, with the critical photonic current
given by !J ¼ 2EJ=@N. Then combined with Eq. (7),

one arrives at the driven pendulum phase equation €� ¼
!2

pðsin�þ v=vcÞ, where!p ¼ ffiffiffiffiffiffiffiffiffiffiffi
EJEC

p
=@ is the Josephson

plasma frequency and vc ¼ @!2
p=F is the critical velocity.

Further, for condensates in the Josephson regime, the phase

evolution equation _� ¼ ���=@ applies, with �� ¼
�1 ��2 the chemical potential difference. One then de-
rives an analogous superconducting circuit [10]

!J sin�þG��þ4 _�=ðNEC=2Þ ¼ _�equil; (8)

where _�equil ¼ !Jv=vc is the applied photonic current bias

and �equil is the equilibrium value of the relative popula-

tion. G is the conductance due to the noncoherent photons,
which is negligible during the characteristic time scale of
the cavity coherent process. Finally, combined with the
atomic current-phase relation, the chemical potential dif-
ference is then associated with the population imbalance

FIG. 3 (color online). The chemical potential-current relation in the polariton condensates. (a),(b) Time evolution of the relative
population (solid line) and phase (dashed line) for (a) v ¼ 0:8vc and (b) v ¼ 1:5vc. (c) Dependence of the relative population (solid
line) and the chemical potential difference (dashed line) on the velocity of the moving optical lattice. This diagram shows that there
exists a sharp transition with the critical velocity vc ¼ 0:48 �m=�s.
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�� ¼ NEC

2 ð�� �equilÞ. This relation can be used to mea-

sure the chemical potential difference between two cavity
polariton condensates in experiments.

To perform the chemical potential-current relation in the
polariton condensates, we solve Eqs. (6) and (7) numeri-
cally, and the results are shown in Fig. 3. Initially, the
atoms in each cavity are positioned at x ¼ 1:6 �m, and
both of the polariton condensates are excited at a density
�ex ¼ 0:3. The corresponding values of the energy pa-
rameters are ECN=@ ¼ 7:06 ns�1 and EJ=N@ ¼
6:29� 10�4 ns�1 with the intercavity tunneling amplitude
K ¼ 2�� 0:1 MHz. Then the atoms in one of the cav-
ities are moved at a constant velocity with the average
force F ¼ 6:6 ns�1 �m�1, and we finally observe the
population imbalance between two cavities at tf ¼ 200 ns.

The dependence of the relative population and the
chemical potential difference on the velocity of the moving
optical lattice is shown in Fig. 3(c), which exhibits a sharp
transition at vc ¼ 0:48 �m=�s. Below the critical veloc-

ity, a finite photonic current source _�equil is applied, and the

system then takes an averaged constant phase difference
between two condensates; see Fig. 3(a). The chemical
potential difference is proportional to the time average of
_�, that is,��=@ ¼ 1

tf

Rtf
0

_�dt, which is locked around zero

in this case. Thus a constant coherent photonic current _� ¼
_�equil flows through the cavities, and finally a finite popu-

lation imbalance exists, which can be measured in a cavity
experiment. This is the dc photonic Josephson effect.

Moreover, when v > vc, _�equil exceeds the critical pho-

tonic current !J, then the relative phase starts running, and
the population imbalance remains on a low average value;
see Fig. 3(b). Some photonic current flows through the
capacitive paths, resulting in a finite chemical potential
difference ��. In this case, one can observe the ac pho-
tonic Josephson effect, i.e., the oscillations of population
difference between the two cavities.

Experimentally, the dc and ac photonic Josephson ef-
fects can be observed by measuring the coherent photons
transmitted from each cavity with a standard photon count-
ing system. In our system, where the atom-field interaction
is in the strong coupling regime, the dynamics of the atom-
cavity system is quantum dissipative [16]. The typical time
scales of the dissipations are determined by cavity photon
lifetime 	� ¼ 2�=�� 754 ns and atom spontaneous emis-
sion lifetime 	� ¼ 2�=�� 330 ns. Here we have chosen

the operation time tf ¼ 200 ns. This is within the above

time scales and corresponds to a couple of plasma oscil-
lations with period 	p ¼ 2�=!p � 100 ns.

Another aspect of our proposal that should be considered
is the motion of the atoms. In each cavity, the atoms are
confined in a single lattice site by ramping up a tight

optical lattice. While the atoms in one of the cavities are
moved by the external trap, the kinetic energy increasing
rate of the atoms should be smaller than the harmonic
frequency of the optical lattice; thus, the atoms could be
adiabatically moved. Besides, to confine the atoms in a
single lattice site, one could couple Bose-Einstein conden-
sates of the atoms to the cavities as shown in the recent
experiment [12]. The kinetic energy of the atoms can then
be neglected, which is valid for the wide line condition
Erec � @�; see the supplementary notes of [12]. Further, it
was found that heating of BECs will not affect the energy
spectrum of the excitation.
In summary, we have shown how to implement the

quantum coherent photonic tunneling between two cavity
polariton condensates. Such experiments will allow us to
observe directly the ac and dc photonic Josephson effects,
which are of particular significance for exploring novel
phenomena of cavity quantum electrodynamics and ultra-
cold atoms. Moreover, this technique may be beneficial to
the realization of future quantum interference devices.
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