中国科学院物理研究所
北京凝聚态物理国家研究中心
SC3组供稿
第4期
2010年03月05日
铁基超导体薄膜研究进展--FeTe母体在薄膜状态下超导
薄膜研究是凝聚态物理研究中的一个重要方面,它推动了半导体和光学产业的发展进步,催生并促进了量子受限效应、表面界面效应等与维度和尺度特性相关研究领域的出现和发展。对超导研究而言,由于其亚稳态特性,薄膜研究在很长时间内一直是人们探索新材料并获得性能优异材料的重要手段。在上世纪八十年代中期铜氧化物超导电性被发现以前,A15相Nb3Ge薄膜长期保持着超导转变温度的记录。近年来被广泛关注的薄膜中的界面超导电性,以及超导与铁磁、铁电等多种其它物性材料的复合薄膜界面效应的研究也是凝聚态物理研究的前沿热点。同时,薄膜研究还是超导材料应用的重要方面,包括超导微波应用、超导电子学、超导电力传输、超导量子计算等。
从2008年新的铁基高温超导体发现以来,铁基超导薄膜的研究进展相对缓慢。这是因为较难精确控制人们所需要的亚稳相中的多元素配比、以及多种热力学相之间的互相竞争。由于元素配比和不同热力学相竞争所导致的较少量的杂质,在块状材料的合成中有时可以接受,但对低维的薄膜材料却不能允许。迄今已发现四种主要晶体结构的铁基超导体,包括含砷或磷(chalcogens)的1111相、122相、111相,以及含氧硫族元素(pnictogens)的11相。它们都具有超导的Fe-X(X为As、P、Se、S或Te等)层,且前三类超导体中这些层由La-O等隔离层隔开,而超导的11相FeSe、Fe(Se,Te)只有Fe-X层,晶体结构最简单。目前人们只得到了11相的单相、外延、超导薄膜。而对含砷的铁基超导体而言,经过近两年的探索,仍未能得到单相的超导薄膜。
中国科学院物理研究所/北京凝聚态物理国家实验室(筹)超导实验室的曹立新副研究员带领博士生韩烨、李位勇,与相关科研人员合作,在国际上率先制备出单相的外延FeSe超导薄膜(第十届全国超导薄膜和超导电子器件学术研讨会,大连,2008年10月11日-15日),率先发表文章(Journal of Physics: Condensed Matter 21, 235702, 2009),并申请了国家专利。
此后,他们又系统研究了FeSe 、Fe(Se,Te)以及FeTe薄膜,他们发现FeTe母体在薄膜状态下超导,转变温度13 K,接近Fe(Se,Te)固溶体所能达到的最高值,远高于FeSe薄膜的超导转变温度。而到目前为止,FeTe块材在常压和高压状态下都没有发现超导。人们普遍认为铁基超导电性与自旋密度波密切相关,实验发现高压下自旋涨落在FeSe中明显增强而且超导转变温度提高到37 K;同时,理论计算表明FeTe比FeSe有更强的自旋涨落并可能有更高的超导转变温度。但是实验上FeTe并没有在高压下观察到预期的现象。曹立新等人注意到,在超导的FeTe薄膜中,晶格在生长平面内不是被压缩,而是被拉伸,类似于一种“负压力效应”。同时他们发现,在非超导的FeTe块材中70 K左右出现的结构和自旋涨落的一级相变,在超导薄膜中被明显弱化。
该项研究对铁基超导体新材料探索和超导机理研究具有一定的指导意义。相关成果刊登在2010年1月8日的Physical Review Letters上(Physical Review Letters 104, 017003, 2010)。上述研究工作得到国家自然科学基金委、科技部和中国科学院的资助。
从2008年新的铁基高温超导体发现以来,铁基超导薄膜的研究进展相对缓慢。这是因为较难精确控制人们所需要的亚稳相中的多元素配比、以及多种热力学相之间的互相竞争。由于元素配比和不同热力学相竞争所导致的较少量的杂质,在块状材料的合成中有时可以接受,但对低维的薄膜材料却不能允许。迄今已发现四种主要晶体结构的铁基超导体,包括含砷或磷(chalcogens)的1111相、122相、111相,以及含氧硫族元素(pnictogens)的11相。它们都具有超导的Fe-X(X为As、P、Se、S或Te等)层,且前三类超导体中这些层由La-O等隔离层隔开,而超导的11相FeSe、Fe(Se,Te)只有Fe-X层,晶体结构最简单。目前人们只得到了11相的单相、外延、超导薄膜。而对含砷的铁基超导体而言,经过近两年的探索,仍未能得到单相的超导薄膜。
中国科学院物理研究所/北京凝聚态物理国家实验室(筹)超导实验室的曹立新副研究员带领博士生韩烨、李位勇,与相关科研人员合作,在国际上率先制备出单相的外延FeSe超导薄膜(第十届全国超导薄膜和超导电子器件学术研讨会,大连,2008年10月11日-15日),率先发表文章(Journal of Physics: Condensed Matter 21, 235702, 2009),并申请了国家专利。
此后,他们又系统研究了FeSe 、Fe(Se,Te)以及FeTe薄膜,他们发现FeTe母体在薄膜状态下超导,转变温度13 K,接近Fe(Se,Te)固溶体所能达到的最高值,远高于FeSe薄膜的超导转变温度。而到目前为止,FeTe块材在常压和高压状态下都没有发现超导。人们普遍认为铁基超导电性与自旋密度波密切相关,实验发现高压下自旋涨落在FeSe中明显增强而且超导转变温度提高到37 K;同时,理论计算表明FeTe比FeSe有更强的自旋涨落并可能有更高的超导转变温度。但是实验上FeTe并没有在高压下观察到预期的现象。曹立新等人注意到,在超导的FeTe薄膜中,晶格在生长平面内不是被压缩,而是被拉伸,类似于一种“负压力效应”。同时他们发现,在非超导的FeTe块材中70 K左右出现的结构和自旋涨落的一级相变,在超导薄膜中被明显弱化。
该项研究对铁基超导体新材料探索和超导机理研究具有一定的指导意义。相关成果刊登在2010年1月8日的Physical Review Letters上(Physical Review Letters 104, 017003, 2010)。上述研究工作得到国家自然科学基金委、科技部和中国科学院的资助。
![]() |
图1 在4种不同基片上沉积生长的FeTe超导薄膜的X射线衍射图谱,32个薄膜的c-轴晶格常数,以及薄膜中Fe-Te-Fe键角的变化情况。可以看出,超导的FeTe薄膜表现出较小的c-轴和较大的a-轴晶格常数以及显著增大的Fe-Te-Fe键角。 |
![]() |
图2 FeTe超导薄膜的电阻转变和抗磁转变温度曲线。可以看出, FeTe块材中出现的一级相变在超导薄膜中被明显弱化。 |