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High-order above-threshold ionization �ATI� is investigated in the frequency domain, based on a nonpertur-
bative quantum electrodynamics theoretical approach. The transition matrix element of high-order ATI is
expressed as a superposition of products of generalized Bessel functions, which represent probability ampli-
tudes of finding electrons with given energies. From the frequency-domain viewpoint the high-order ATI can
be described simply as an ATI followed by laser-assisted collision �LAC�, and the features of high-order ATI
reflect mainly the characteristics of LAC. We investigate thoroughly the LAC, finding that the plateau can be
simulated by a simple classical model. We also discuss the correspondence between the time- and frequency-
domain pictures of rescattering ATI.
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I. INTRODUCTION

The above-threshold ionization �ATI�, where an atom ab-
sorbs more photons than the minimum number necessary for
ionization, is probably the most fundamental strong-field
phenomenon. Since its first experiment �1� there has been
considerable progress in understanding this process. Espe-
cially, the recent observations of high-order ATI �2–4� have
attracted much attention. It is due to the rescattering of the
ionized electron at the atomic core and shows new features,
such as the appearance of a plateau with a cutoff around
10Up and the sidelobes in the angular distribution of the ATI
spectra. Here, Up denotes the ponderomotive energy in the
laser field.

Presently, there are two different principal approaches to
the theoretical treatment of the ATI process. The first group
is based on a numerical integration of the time-dependent
Schrödinger equation �5�. This approach is rather compli-
cated, and requires a large amount of computation time. The
second group is based on the Keldysh-Faisal-Reiss �KFR�
model �6�, or the conventional strong-field approximation
�7–9�. The approach generally applies the saddle-point
method, and the results can be formulated in terms of the
quantum-mechanical path integral, which can be related fur-
ther to the three-step simple-man model �10�.

The three-step model considers the temporal evolution of
an electronic wave packet under the interaction of a time-
dependent classical field. It can be regarded as the time-
domain description of ATI. In this paper, we shall develop a
frequency-domain theory of high-order ATI, based on a non-
perturbative quantum electrodynamics �QED� theoretical ap-
proach. In contrast with the time-domain description of ATI,
frequency-domain theory describes rescattering ATI from the
viewpoint of transitions between time-independent states.
Specifically, rescattering ATI consists of two steps. The first
step involves the transition from the atomic ground state to a

quantized-field Volkov state with momentum p1. This is just
the direct ATI. The second step is the process of laser-
assisted collision �LAC� �11–13�, which involves transition
from a quantized-field Volkov state with momentum p1 to
other Volkov state with momentum p. Importantly, each
stage of the process is physical �i.e., no off-energy-shell en-
tities appear� and can be described by a simple analytical
expression. Step-by-step energy conservation is achieved in
all subprocesses. We note that previously a frequency-
domain theory of high-order harmonic generation �HHG� has
been developed by Fu and co-workers �14–16�.

The time- and frequency-domain theories of rescattering
ATI provide complementary viewpoints for understanding
rescattering ATI. In the frequency-domain theory the rescat-
tering ATI can be decoupled into a direct ATI and LAC; thus,
the role of these subprocesses can be investigated separately.
We find that the plateau and sidelobes in the rescattering ATI
spectra have their origins in LAC. By contrast, the time-
domain theory analyzes the temporal evolution of the elec-
tronic wave packet in the time-dependent classical field and
has the advantage of explaining the cutoff law.

This paper is organized as follows. Section 2 presents a
frequency-theory of high-order ATI, where the rescattering
ATI is described as an ATI followed by LAC. The transition
matrix element of high-order ATI is represented by an ana-
lytic closed form. In Sec. III we establish the correspondence
between the frequency- and time-domain theories of high-
order ATI. We shall show that the time-dependent formula
based on solving the time-dependent Schrödinger equation
with a classical field can be derived from our theory. Section
IV presents numerical results. Interpretation of the
frequency-domain picture of rescattering ATI is given in Sec.
V. Through understanding the physics underlying the gener-
alized Bessel functions, a simple approximation for the tran-
sition matrix element of rescattering ATI is provided. Be-
cause the spectrum of the rescattering ATI reflects mainly the
characteristics of LAC, it is important to understand LAC
thoroughly. Section VI is devoted to this topic. The LAC
exhibits similar plateaus and anomalous angular photoelec-*Author to whom correspondence should be addressed.
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tron distributions as those in the rescattering ATI. Moreover,
the plateau can be simulated by a simple classical model.
Finally, Sec. VII is the discussion and conclusion.

II. BASIC THEORY

We consider a quantized single-mode laser field of fre-
quency �. The Hamiltonian of the atom-radiation system is

H = H0 + U�r� + V , �1�

where

H0 =
�− i � �2

2me
+ �Na �2�

is the free-electron and free-photon energy operator. Na
= �a†a+aa†� /2 is the photon number operator with a �a†� the
annihilation �creation� operator of the laser photon mode.
U�r� is the atomic binding potential. The electron-photon
interaction is

V = −
e

me
A�r� · �− i � � +

e2A2�r�
2me

, �3�

where the vector potential is A�r�=g��̂aeik·r+c.c�, g
= �2�Ve�−1/2, Ve is the normalization volume of the field,
while �̂=x cos�� /2�+ iy sin�� /2� is the polarization vector of
the laser photon mode.

The initial state of ATI is ��i�= ��i�r� ,ni�=�i�r� � �ni�,
which is the eigenstate of the Hamiltonian H0+U�r� with
energies Ei=−EB+ �ni+

1
2

��. Here, �i�r� is the ground-state
wave function of the atomic electron with binding energy EB,
and �ni� is the Fock state of the laser mode with photon
number ni. On the other hand, the final state �� f�= ��pn� of
energy Ef =Epn is the quantized-field Volkov state �17�

�pn = Ve
−1/2 �

j=−n

�

exp�i�p + �up − j�k� · r	J j��,�,	��*


exp�− ij	���n + j� , �4�

which is the eigenstate of the electron–laser-mode subsystem
with Hamiltonian H0+V. This eigenstate is valid under the
large-photon-number approximation and its corresponding
eigenvalue is Epn= �p2 /2me�+ �n+ 1

2 +up��, where up

=e2�2 /me� is the ponderomotive energy in units of the pho-
ton energy of the laser. Further, we have �=g
n, which
gives the half amplitude of the classical field in the limits
g→0 and n→�. The generalized Bessel functions J j are
defined in terms of ordinary Bessel functions as

J j��,�,	�� = �
m=−�

�

J−j−2m���Jm���e2im	�, �5�

where �= �2�e�� /me��p · �̂, �= �up /2�cos �, and
	�=tan−1��py / px�tan�� /2��.

The time-independent feature of the fully quantized
Hamiltonian enables us to treat ATI as a genuine scattering
process in an isolated system that consists of the photons and
the atom. Energy is conserved throughout the interaction,

and formal scattering theory �18� thus applies. The boundary
conditions are that U is on and V is off in the remote past,
whereas V is on and U is off after collision. The correspond-
ing scattering wave functions of the initial and final states are
thus

�i
+ = �i +

1

Ei − H + i�
V�i �6�

and

� f
− = � f +

1

Ef − H − i�
U� f , �7�

respectively. Physically, �i
+ is the state at t=0 which devel-

ops from a precollision state �i in the remote past, while � f
−

is the state at t=0 which evolves to a postcollision state � f in
the remote future. Therefore, the S matrix for the transition
from �i to � f is given by Sfi= �� f

− ��i
+�, which can be ex-

pressed as

Sfi = 
 fi − 2�i
�Ef − Ei�Tfi. �8�

Here,

Tfi = �� f
−�V��i� = �� f�V��i� + �� f�U

1

Ef − H + i�
V��i� �9�

is the transition matrix element.
The first and second terms in Eq. �9� correspond to the

processes of direct and rescattering ATI. Thus, Tfi can be
expressed as Tfi=Td+Tr, where Td and Tr are the transition
matrix elements for the direct and rescattering ATI, respec-
tively. In the following, we shall assume that the laser field is
linearly polarized along the x axis; therefore 	�=0 and the
generalized Bessel functions become real. We also impose
the long-wavelength approximation. In this case, the transi-
tion matrix element of the direct ATI becomes

Td = ��pn�V��i,ni� = Ve
−1/2��up − j���p�J j��,�� , �10�

with j=ni−n. Here, ��p� is the Fourier transform of the
initial wave function �i�r�. On the other hand, the transition
matrix element of rescattering ATI is given by

Tr = �� f�U
1

Ef − H + i�
V��i�

= �
p1n1

��pn�U
1

Ef − H0 − U − V + i�
��p1n1

���p1n1
�V��i,ni� .

�11�

Here, the completeness relation of the Volkov states ��p1n1
�

has been used. We assume that the effect of the binding
potential U can be neglected when the electron is in the
continuum; then we obtain

Tr = − i� �
p1n1

��pn�U��p1n1
���p1n1

�V��i,ni�
�Ef − Ep1n1
� .

�12�

In deriving Eq. �12� the relation lim�→0+� / ��Ef −E��2+�2�
=�
�Ef −E�� has been used. The physics underlying Eq. �12�
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is clear. Specifically, ��p1n1
�V��i ,ni� represents the direct

ATI amplitude, where the ground-state electron absorbs j1
=ni−n1 photons from the laser field and ionizes; whereas
��pn�U��p1n1

� represents the amplitude of LAC in which the
ionized electron absorbs n1−n photons from the field during
its collision with the nucleus, and the canonical momentum
of the electron changes from p1 to p as a result. Therefore,
from the frequency-domain viewpoint, the rescattering ATI
can be described simply as an ATI followed by LAC with all
ATI channels summed up coherently. We note that the energy
is conserved during these processes.

The transition matrix element of LAC can be evaluated by
using the quantized Volkov states, and we obtain

TLAC = ��pn�U��p1n1
� = Ve

−1�
j

J j−s��1,��J j��,���p�U�p1� ,

�13�

where s=n1−n and

�p�U�p1� =� dr3 exp�− i�p − p1� · r�U�r� . �14�

By inserting Eqs. �10� and �13� into Eq. �12� we obtain the
transition matrix element of the rescattering ATI of the qth
order �q=ni−n�

Tr
�q� = i�Ve

−3/2 �
p1,j1,j

��up − j1���p1��p�U�p1�J j1
��1,��


 J j1+j−q��1,��J j��,��
�Epn − Ep1n1
� . �15�

Moreover, by using the addition theorem of generalized
Bessel functions

�
j

J j−s��1,��J j��,�� = Js��1 − �� , �16�

we finally obtain

Tr
�q� = i�Ve

−3/2 �
p1,j1

��up − j1���p1��p�U�p1�J j1
��1,��


 Jq−j1
��1 − ��
�Epn − Ep1n1

� . �17�

III. CORRESPONDENCE BETWEEN FREQUENCY-
DOMAIN AND TIME-DOMAIN THEORIES

OF HIGH-ORDER ATI

We have developed a frequency-domain theory of high-
order ATI based on the formal scattering approach, which is
applicable because the total Hamiltonian of the atom-
radiation system is time independent due to the quantization
of the field. One may ask how this approach is related to the
more conventional S-matrix method based on solving the
time-dependent Schrödinger equation with a classical field.
Generally speaking, the connection between the formal scat-
tering theory and the time-dependent S-matrix presentations
has been discussed by Gell-Mann and Goldberger �18� and
by Lippmann and Schwinger �19�. In this section, we shall
show explicitly that the time-dependent formula of high-
order ATI can be derived directly from our theory.

Let us start with Eqs. �8� and �9�. By using the following
two identities:


�Ef − Ei� =
1

2�
�

−�

�

dt exp�− i�Ei − Ef�t� , �18�

and

1

Ef − H + i�
= − i�

−�

t

dt� exp�− i�Ei − H + i���t� − t�� ,

�19�

because Ef =Ei, the rescattering part of the S matrix becomes

Sfi
r = �

−�

�

dt e−i�Ei−Ef�t�
−�

t

dt��� f�Ue−i�Ei−H+i���t�−t�V��i� .

�20�

We make the approximation of neglecting the effect of the
binding potential U when the electron is in the continuum;
then we obtain

Sfi
r = �

p1n1

�
−�

�

dt�
−�

t

dt���pn�U��p1n1
�ei�Epn−Ep1n1

�t


 ��p1n1
�V��i,ni�ei�Ep1n1

−Ei�t�. �21�

Now, we define a unitary operator u�t�=exp�i�tNa� and re-
write Eq. �21� as

Sfi
r = �

p1n1

�
−�

�

dt��pn�u†�t�Uu�t���p1n1
�ei�Epn−Ep1n1

�t


 �
−�

t

dt���p1n1
�u†�t��


�u�t��Vu†�t���u�t����i,ni�ei�Ep1n1
−Ei�t�. �22�

Here, the unitary transforms are given by

u�t���pn� = Ve
−1/2eiEpnte−i��p2/2me+up��t−p·r�


 �
j=−n

�

J j��,��eij�t�n + j� �23�

and

V�t�� = u�t��Vu†�t�� = −
e

me
A�t� · �− i � � +

e2A2�t�
2me

,

�24�

where A�t�=g��̂a exp�−i�t�+c.c.� is the time-dependent
vector potential. If we neglect the difference between
Fock states �n� of different n and replace �n+ j� by �ni−1�
��ni+1�� in evaluating the matrix elements �n+ j�a�ni�
��n+ j�a†�ni��, then Eq. �22� becomes
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Sfi
r = �

−�

�

dt� dp1��p�r,t��U�r���p1
�r,t��


�
−�

t

dt���p1
�r,t���Vc�t����i�r,t��� . �25�

Here,

Vc�t� = −
e

me
Ac�t� · �− i � � +

e2Ac
2�t�

2me
�26�

is the interaction between an electron and a classical field
with potential Ac�t�=��x exp�−i�t�+c.c.�, �i�r , t�
=eiEBt�i�r� is the time-dependent atomic ground-state wave
function, and �p�r , t� is the classical Volkov state defined as

�p�r,t� = Ve
−1/2 exp
ip · r − i

p2

2me
t

− i�
−�

t

dt��−
e

me
Ac�t�� · p +

e2Ac
2�t��

2me
�� .

�27�

Using a similar approach, it can be proven easily that the S
matrix of direct ATI is

Sfi
d = − i�

−�

�

dt��p�r,t��Vc�t���i�r,t�� . �28�

Equations �25� and �28� are the starting point of the
strong-field approximation based on classical electromag-
netic field. Most theories then applied the saddle-point
method, where the high-order ATI can be formulated in
terms of quantum paths, which describe the orbits of a re-
leased electron driven by the incident laser field. This ap-
proach presents the quantum-mechanical representation of
the three-step simple-man model.

IV. NUMERICAL RESULTS

In the nonperturbative QED theory, the transition matrix
element of high-order ATI is represented by an analytical
expression in a closed and compact form. In the following,
we shall present numerical results of the high-order ATI
spectra and photoelectron angular distributions by using Eqs.
�10� and �17�. Let us consider a hydrogenlike atom �EB

=13.6 eV� irradiated by a linearly polarized neodymium-
doped yttrium aluminum garnet �Nd:YAG� laser ��
=1.165 eV� of intensity 2.2
1014 W/cm2. The correspond-
ing parameters are up=20 and EB /�=11.7. The ground-state
s wave function in the momentum space is assumed to have
the Gaussian form ��p�= �4� /��3/4 exp�−�p2 /2��� with �
=2meEB; while, instead of using the Coulomb potential, here
a short-range atomic potential is used, i.e., U=−exp�−r� /r,
so that �p�U�p1�=4� / �1+ �p−p1�2�.

We first consider the rescattering ATI. According to Eq.
�12�, the transition matrix element of rescattering ATI can be
represented as the coherent superposition of LAC ampli-
tudes, with incident electrons originating from different ATI

channels. Specifically, we express Eq. �12� as Tr=�kTrk.
Here,

Trk = − i��
p1

��pn�U��p1n1
���p1n1

�V��i,ni�
�Ef − Ep1n1
�

�29�

with n1=ni− j0−k+1; j0 is the minimum number of photons
the atoms need to absorb to achieve ionization and k is the
ordinal number of ATI channels. Figure 1 presents the res-
cattering ATI spectra of separate ATI channels for k= �a� 1,
�b� 4, �c� 10, and �d� 30 when the scattered electrons are
along the direction of the incident field polarization. We then
present the rescattering ATI spectrum when contributions
from all ATI channels are added up coherently �solid curve in
Fig. 2�. For comparison, we also present spectra with a finite
number of ATI channels. The dashed, dotted, dot-dashed, and
dot-dot-dashed curves in Fig. 2 present the spectra when we
include one �k=1�, four �k=1–4�, ten �k=1–10�, and 50
�k=1–50� ATI channels, respectively. These curves indicate
that only four ATI channels are required to characterize the
rescattering ATI spectrum with the correct cutoff. However,
to obtain a good convergence at the cutoff region, as many as
about 50 ATI channels should be added up coherently.

Now, we study the angular dependence of high-order ATI,
which includes both direct and rescattering ATI. Let � be the
angle of the photoelectron emission with respect to the di-
rection of incident field polarization. Figure 3 presents the
ATI spectra for �=0° �solid curve�, 20° �dashed curve�, and
30° �dotted curve�. For �=0°, the height of the ATI spectrum
decreases generally for the kinetic energy Ek less than 2Up,
which is then followed by a plateau with a cutoff around
10Up. As is well known, the low-energy region 0–2Up origi-
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FIG. 1. Rescattering ATI of separate ATI channels for k= �a� 1,
�b� 4, �c� 10, and �d� 30 when the scattered electrons are along the
direction of incident field polarization. The corresponding param-
eters are up=20 and EB /�=11.7.
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nates from the direct ionization process. On the other hand,
within the high-energy plateau region 2Up–10Up the photo-
electron spectrum consists almost entirely of the contribution
from rescattered electrons. We also find that the cutoff en-
ergy decreases with increase of the angle of the electron
emission �.

High-order ATI is also characterized by anomalous pho-
toelectron angular distributions �20�. Figure 4 presents the
photoelectron angular distributions with �a� Ek /Up=2.5
�solid curve� and 5 �dashed curve�; �b� Ek /Up=7.5 �solid
curve� and 8.5 �dashed curve�; �c� Ek /Up=9 �solid curve�
and 9.5 �dashed curve�; �d� Ek /Up=10 �solid curve� and 10.5
�dashed curve�. Here, only the dependence on the polar angle
� between the directions of photoelectron emission and inci-
dent field polarization is shown, because the angular distri-
butions are expected to have an azimuthal symmetry with
respect to the field polarization axis. As is well known, the
angular distributions of direct ATI are generally strongly
aligned along the direction of incident field polarization.
However, drastic changes are presented in angular distribu-
tions of rescattered photoelectrons, namely, within the pla-
teau region the angular distributions become noticeably
broader, and then gradually narrow on further increasing the

electron energy toward the plateau cutoff. The photoelectron
angular distributions presented in Fig. 4 confirm this general
rule. They also show the appearance of sidelobes in the high-
energy part of the spectrum, i.e., the photoelectron emissions
are concentrated mainly in a few separate narrow regions
which are centered at values of the angle � different from
zero. This sidelobe structure gradually disappears near the
plateau cutoff region.

V. FREQUENCY-DOMAIN INTERPRETATION
OF RESCATTERING ATI

In the framework of formal scattering theory, ATI is
treated as a time-independent scattering process in an iso-
lated system that consists of photons and an atom. Thus,
step-by-step energy conservation is achieved in all subpro-
cesses, i.e., Ei=Ep1n1

=Ef, or

− EB + �ni + 1/2�� = �p1
2/2me� + �n1 + 1/2 + up��

= �p2/2me� + �n + 1/2 + up�� . �30�

Physically, Eq. �30� indicates that a ground-state atom is first
ionized by absorbing j1=ni−n1 photons from the laser field.
The ionized electron then collides with the nucleus and
changes its canonical momentum from p1 to p after absorb-
ing s=n1−n additional photons. Here, although photon num-
bers, which approach infinity for a strong field, are involved
for the requirement of energy conservation, there are just
dummy parameters in our theory.

Now, let us compare the classical-field and quantized-field
treatments of the motion of electrons in a laser field. For the
former case, electrons exhibit quiver motion and the time-
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dependent energy of electrons in a linearly polarized field is
given by

Ec
e�t� =

p2

2me
+ up� + ��� cos �t + 2� cos 2�t� . �31�

Similarly, in the quantized-field theory we can eliminate the
photon states and focus our attention on the electronic mo-
tion as in the case of the classical-field theory. According to
Eq. �4�, the quantized-field Volkov state forms a nonfactor-
izable entangled state of the electron and quantized field. As
a consequence, although the photon number of the system is
indeterminate, if we find that the field is in a state �n− j� with
probability amplitude J−j�� ,��eip·r and photon energy �n
− j+1/2��, then the energy of the electron is determined and
is given by

Ej
e�p� = Epn − �n − j + 1/2�� =

p2

2me
+ up� + j� . �32�

In other words, J−j�� ,��eip·r can be interpreted as the prob-
ability amplitude that an electron at r has energy Ej

e�p� �16�.
From this viewpoint, the motion of electrons in a quantized
field has the following features. First, due to the periodic
nature of the quiver motion, the electronic energy Ej

e�p� is
quantized in the quantized field. Second, a comparison be-
tween Eq. �32� and Eq. �31� indicates that j� in Eq. �32�
corresponds to the time-dependent part of the quiver motion
energy, i.e., ��� cos �t+2� cos 2�t�, in Eq. �31�. Finally, the
electronic energy Ej

e�p� exhibits a distribution with probabil-
ity amplitude given by J−j�� ,��eip·r. From the classical
viewpoint, this corresponds to the fact that, due to the quiver
motion, there are distributions of the classically laser-dressed
electronic energy Ec

e�t�. We note that the generalized Bessel
functions, which, to our knowledge, were first introduced by
Brown and Kibble �21�, have been widely used in multipho-
ton processes �22,23�. They also appear in all transition ma-
trix elements of the multiphoton effects when they are
treated by a nonperturbative QED method �14–16,24,25�.

Let us consider the electronic probability amplitudes at
different states during the rescattering process. First, the
electron of energy −EB ionizes from the atomic ground state
into the continuum through tunneling. In this process, we
have, from Eqs. �30� and �32�, the conservation of energy

− EB = �p1
2/2me� + up� − j1� = E−j1

e �p1� . �33�

Here, the electronic energy E−j1
e �p1� is negative, manifesting

the nonclassical nature of the tunneling, and the transition
matrix is proportional to the probability amplitude of elec-
trons of energy E−j1

e �p1�, i.e., J j1
��1 ,��. Subsequently, the

electron has probability amplitude J j−s��1 ,�� of having en-
ergy Es−j

e �p1�= �p1
2 /2me�+up�+ �s− j�� before it collides

with the nucleus at r=0. The electron then changes its mo-
mentum from p1 to p during the collision. Since the collision
is elastic, we have Es−j

e �p1�=E−j
e �p�, i.e.,

�p1
2/2me� + up� + �s − j�� = �p2/2me� + up� − j� , �34�

The transition matrix is proportional to J j�� ,��, which is the
probability amplitude of an electron having final energy

E−j
e �p�. Therefore, considering rescattering ATI as a direct

ATI followed by LAC, the transition matrix element of the
qth-order rescattering ATI is proportional to
J j1

��1 ,��J j1+j−q��1 ,��J j�� ,��, as shown in Eq. �15�, be-
cause the total number of photons absorbed in the rescatter-
ing ATI is q= j1+s. We can make a further approximation by
neglecting all details related to the atomic structure and ex-
press the transition matrix element of rescattering ATI simply
as

Tr
�q� � �

p1,j1,j
J j1

��1,��J j1+j−q��1,��J j��,��
�Epn − Ep1n1
� .

�35�

The solid curve in Fig. 5 presents the numerical result with
parameters up=20, EB /�=11.7, and 	=0°. To check the va-
lidity of this approximation, we also plot the result based on
the exact solution of the rescattering ATI �dashed curve in
Fig. 5�. These curves agree quite well, especially when the
kinetic energy is larger than 3Up, indicating that the main
features of the rescattering ATI originate from the interaction
of the electrons with the laser field.

VI. LASER-ASSISTED COLLISION

The frequency-domain theory of high-order ATI considers
the probability amplitudes of electrons at different stages,
and therefore provides a different description of high-order
ATI from the conventional time-domain theory. One main
characteristic of this theory is that the rescattering ATI can be
decoupled into a direct ATI and LAC. This decoupling en-
ables us to investigate the physical origins of some features
of rescattering ATI. In this section, we shall make detailed
studies of LAC. Through comparison between the spectra of
LAC and rescattering ATI, we find that the plateau and side-
lobes in the rescattering ATI have their origins in LAC. The
underlying physics of the plateau and angular distributions in
LAC are also investigated.

We first present numerical results of LAC based on Eq.
�13�. The solid and dashed curves in Fig. 6 show the differ-
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FIG. 5. Rescattering ATI spectrum based on Eq. �35�, where all
details related to the atomic structure are neglected �solid curve�.
Parameters are up=20, EB /�=11.7, and �=0°. For comparison, the
rescattering ATI spectrum based on the exact solution �i.e., Eq. �17��
is also given �dashed curve�.
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ential LAC cross sections versus the final energy for the
backward and forward scatterings, respectively, when both
the initial and final momenta are along the direction of inci-
dent field polarization. The incident energies are chosen to be
�a� 1.55, �b� 5.05, �c� 12.04, and �d� 35.34 eV, corresponding
to the first, fourth, tenth, and 30th ATI channels, respectively.
These spectra show plateaus with regular oscillation. Now,
we turn to the rescattering ATI spectra of separate ATI chan-
nels �see Fig. 1�. As is well known, the photoelectron angular
distributions of the direct ATI are strongly aligned along the
x and −x directions of the incident field polarization; there-
fore, there exist both backward and forward scatterings in the
rescattering ATI. Comparing Fig. 1 with Fig. 6, we find that,
when the kinetic energy Ek is larger than Ecutof f

�F� , which is the
cutoff of the forward scattering of LAC, the rescattering ATI
originates mainly from the backward scattering. By contrast,
both the backward and forward scatterings contribute to the
rescattering ATI when Ek�Ecutof f

�F� , leading to a much com-
plicated interference structure in this regime. We then study
the angular distributions of the scattered electrons. Figure 7
presents the differential LAC cross sections of the backward
scattering as a function of the scattering angle for �a�
Ef /Up=2.5 �solid curve� and 5 �dashed curve�; �b� Ef /Up
=7.5 �solid curve� and 8.5 �dashed curve�; �c� Ef /Up=9
�solid curve� and 9.5 �dashed curve�; �d� Ef /Up=10 �solid
curve� and 10.5 �dashed curve� when Ei=5.05 eV, corre-
sponding to the fourth ATI channel. Once again, we find that
the angular distributions of the scattered electron show simi-
lar characteristics to those in the rescattering ATI, i.e., in the
low-energy region the angular distributions are noticeably
broader, and then gradually narrow on further increasing the
electron energy toward the plateau cutoff. Moreover, there

exist sidelobes, which gradually disappear near the plateau
cutoff. One interesting thing is to compare the angular dis-
tributions of the rescattering ATI and the LAC of the fourth
ATI channel, which have approximately the same cutoff.
From Figs. 4 and 7, we find that they have similar angular
distributions when the kinetic energy is higher than 8Up.

Our results demonstrate clearly that the plateau and side-
lobes in the rescattering ATI have their origins in LAC. To
get a better understanding of the nature of plateau and angu-
lar distribution here we analyze the electronic trajectories in
LAC. Let us consider an electron in a classical field with
potential Ac�t�=��x exp�−i�t�+c.c.�. The classical action,
which is defined as Sc�t ,p�= �1/2me��dt�p−eAc�t��2, is

Sc�t,p� = � p2

2me
+ up��t + � sin �t + � sin 2�t . �36�

Using the relation

J j��,�� =
1

2�
�

−�

�

d� exp�i�� sin � + � sin 2� + j��� ,

�37�

we obtain

J j��,�� =
�

2�
�

0

T

dt exp�− i�Sc�t,p� − E−j
e �p�t�	 , �38�

where T=2� /�. According to Eq. �13�, the transition matrix
element for a scattering from an incident momentum pi to a
final momentum p f can then be represented in terms of the
classical action as
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TLAC = Ve
−1 �2

2�
�p f�U�pi��

0

T

dt exp�− i�Sc�t,pi,p f�� ,

�39�

where �Sc�t ,pi ,p f�=Sc�t ,pi�−Sc�t ,p f�.
The time integral in Eq. �39� can be evaluated by using

the saddle-point method, which gives

TLAC = Ve
−1 �2

2�
�p f�U�pi��

�


 2�

i�Sc��t�,pi,p f�


exp�− i�Sc�t�,pi,p f�� , �40�

where the saddle points t� are found from

�p f − eAc�t���2 = �pi − eAc�t���2, �41�

which represents an elastic scattering of electrons from an
incident momentum pi to a final momentum p f at time t�.
There are two real solutions of Eq. �41�, corresponding to
two classical trajectories, when the kinetic energy of the scat-
tered electron is smaller than the cutoff energy. For the for-
ward and backward scattering we have t1= �1/��cos−1��pi

+ pf� /4e�� and �1/��cos−1��pi− pf� /4e��, respectively;
while t2= �2� /��− t1. Using these solutions, the transition
matrix element can be expressed as an analytic form, given
by

TLAC =
�2

�Ve
�p f�U�pi�
 2�

�2��i − � f�sin �t1


cos�s�t1 + ��i − � f�sin �t1 − �/4� , �42�

where �i= �2�e�� /me��pi · �̂ and � f = �2�e�� /me��p f · �̂; while
s= �p f

2−pi
2� /2me� is the number of photons absorbed during

the collision. On the other hand, there is no classically al-
lowed trajectory when the energy of the scattered electron is
beyond the cutoff; as a result, the collision time is an imagi-
nary value given by t1= �i /��cosh−1��pf − pi� /4e��.

Based on the saddle-point method, Fig. 8 presents the
numerical results of LAC spectra with parameters the same
as those used in Fig. 6. These results are consistent with the
results using Eq. �13� �see Fig. 6�. Since there are two tra-
jectories for each classically allowed Ef, their interference
gives rise to a characteristic oscillatory behavior of the LAC
spectrum, which, according to Eq. �42�, has minima at s�t1
+ ��i−� f�sin �t1−� /4��2n+1�� /2. We then consider the
angular dependence of the cutoff energy Ecutof f for the back-
ward scattering. From Eq. �41�, we have

Ecutof f�	� =
1

2
�2e� cos 	 + 
pi

2 + 4e�pi + 4e2�2 cos2 	�2,

�43�

where the scattering angle 	 is defined as the angle between
p f and −x. This equation shows a decrease of the cutoff
energy as 	 increases, which can be explained as follows.
The incident velocity of the electron at collision time t�

equals vi�t��=pi−eAc�t��, while the final momentum with
velocity v f�t�� just after the collision is given by p f =v f�t��
+eAc�t��, where vi�t�� and v f�t�� have the same magnitude

because the collision is elastic. The cutoff origins from the
collision where the incident velocity has maximum magni-
tude vmax= pi+2�e��. For the backward scattering the corre-
sponding final momentum at cutoff is p f =−�pi+4�e���x. On
the other hand, if there is an angle between v f and −x then
the magnitude of p f decreases as the scattering angle in-
creases, leading to a decrease of the cutoff energy as 	 in-
creases. With this relationship, the broadening of the angular
distribution as Ef decreases becomes evident, because the
maximum scattering angle 	max for a given final energy Ef
can be estimated from Ef �Ecutof f�	max�. Finally, we find that
LAC spectra can be simulated by a simple classical argu-
ment. We assume that the cross section of LAC with final
energy Ef�t�� is proportional to the time duration 
t� where
the scattered electrons have energies lying within the interval
�Ef�t�� ,Ef�t��+
Ef�. The dotted curves in Fig. 8 present our
simulations of the backward scattering, where the existence
of the plateau indicates that the plateau is classical in nature.
The plateau can also be predicted by an analytic expression.
Specifically, in the plateau regime the probability of LAC is
given by

P � 
t� = � �t�

�Ef
�
Ef . �44�

Since t�= �1/��cos−1��pi−
2meEf� /4e��, we have

P �
1


2meEf

�4e��2 − �pi − 
2meEf�2

. �45�

We note that this equation is not applicable near the cutoff
because P→� at the cutoff.
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VII. DISCUSSION AND CONCLUSION

The time- and frequency-domain theories of rescattering
ATI provide complementary viewpoints for understanding
rescattering ATI. For the former case, we investigate the tem-
poral evolution of the electronic wave packet, while, for the
latter case, the probability amplitudes of electrons at differ-
ent stages are investigated. Let us first consider the time-
domain approach to rescattering ATI, where the concept of
quantum paths has proved very useful. Specifically, the ma-
trix element of rescattering ATI can be represented as the
coherent sum of exponentials of the action of these orbits �9�,
i.e.,

Tr � �
n

det� �2S

�qj�qk
���1/2�

exp�iS�tn,tn�,p1n�� . �46�

where qj �j ,k=1, . . . ,5� runs over the five variables t , t� ,p1.
On the other hand, the action in Eq. �46� is

S�t,t�,p1� = −
1

2m
�

t

�

d��p − eA����2 −
1

2m
�

t�

t

d��p1

− eA����2 + �
−�

t�
d� EB, �47�

which illustrates the temporal evolution of the electronic
wave packet: a ground state unperturbed by the field for
times earlier than t�, propagation in the laser field for times
between the ionization time t� and the rescattering time t, and
final propagation in the laser field after rescattering. The sta-
tionary points �tn , tn� ,p1n� of the action are given by the so-
lutions of the three equations

�p1 − eA�t���2 = − 2mEB, �48�

�p1 − eA�t��2 = �p − eA�t��2, �49�

�t − t��p1 = �
t�

t

d� eA�t� . �50�

Of these, the first expresses energy conservation when the
electron at time t� tunnels into the continuum, the second
enforces elastic rescattering at time t, and the third makes
sure that the electron returns to its starting point.

Now, we consider the correspondence between the
frequency- and time-domain pictures of rescattering ATI. Let
us focus our attention on the energy of electrons at different
stages in the frequency-domain approach. The energy of an
electron in a quantized field is given by Ej

e�p�= �p2 /2me�
+up�+ j�; therefore, corresponding to Eqs. �48� and �49� we

have E−j1
e �p1�=−EB and Eq−j1−j

e �p1�=E−j
e �p�, expressing the

energy conservation at the times of tunneling and elastic res-
cattering, respectively. Moreover, the probability amplitude
of an electron having energy Ej

e�p� is proportional to
J−j�� ,��; therefore, as a simple approximation, the matrix
element of the qth-order rescattering ATI can be represented
as the sum of terms J j1

��1 ,��J j1+j−q��1 ,��J j�� ,��, as pre-
sented in Eq. �35�. Here, the general Bessel functions, which
represent the probability amplitudes of electrons with given
energies, play a similar role to the action in the time-domain
theory.

Now, we discuss the underlying physics of the plateau in
the rescattering ATI from the frequency-domain viewpoint.
As mentioned in Ref. �16�, the spectral density of the elec-
tron at the location of the nucleus after direct ATI exhibits
plateaus, leading to the appearance of a plateau in the HHG.
Since the kinetic energy of the electron Ek=v2 /2me, the
probability of finding an electron with velocity of magnitude
v also has a plateau structure. Now, according to the three-
step model of rescattering ATI, there exists a correspondence
between the velocities of electrons before the collision and
the final energies Ef; thus, the rescattering ATI spectra ex-
hibit plateaus also. Finally, we note that in general nonper-
turbative QED theory is valid for very long pulses. However,
Zhang et al. �26� have pointed out that this approach can be
adapted to the few-cycle case by treating the short pulses as
a three-mode field. Using this method, they studied the
carrier-envelope phase dependence of the photoelectron an-
gular distributions in direct ATI.

In conclusion, high-order ATI is investigated in the fre-
quency domain, based on a nonperturbative QED theoretical
approach. The transition matrix element of rescattering ATI
is expressed as a superposition of products of generalized
Bessel functions, which represent probability amplitudes of
finding electrons with given energies. From the frequency-
domain viewpoint, the rescattering ATI can be described sim-
ply as an ATI followed by LAC, and the features of rescat-
tering ATI reflect mainly the characteristics of LAC. We
investigate thoroughly the LAC, finding that the plateau can
be simulated by a simple classical model. We also discuss the
correspondence between the time- and frequency-domain
pictures of rescattering ATI.
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