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Lattice models forming bands with higher Chern number offer an intriguing possibility for new phases

of matter with no analogue in continuum Landau levels. Here, we establish the existence of a number of

new bulk insulating states at fractional filling in flat bands with a Chern number C ¼ N > 1, forming in a

recently proposed pyrochlore model with strong spin-orbit coupling. In particular, we find compelling

evidence for a series of stable states at � ¼ 1=ð2N þ 1Þ for fermions as well as bosonic states at � ¼
1=ðN þ 1Þ. By examining the topological ground state degeneracies and the excitation structure as well as

the entanglement spectrum, we conclude that these states are Abelian. We also explicitly demonstrate that

these states are nevertheless qualitatively different from conventional quantum Hall (multilayer) states due

to the novel properties of the underlying band structure.
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Introduction.—The recent discovery of nearly flat bands
with a unit Chern numberC ¼ 1 in itinerant lattice systems
[1–3] has spurred plenty of theoretical excitement [4–20]
as these bands may harbor lattice analogues of fractional
quantum Hall (FQH) states that do not require an external
magnetic field and may potentially persist at very high
temperatures.

While flat C ¼ 1 bands are very similar to continuum
Landau levels, lattice models can harbor bands with higher
Chern number and may therefore host qualitatively new
phases of matter with no analogue in the continuum. Two
independent groups have very recently shown that flat
bands with arbitrary higher Chern number can in fact be
systematically created in multilayer systems [21,22]
assuming only short-range hopping (see also Ref. [23]
for a nice earlier construction of a flat C ¼ 2 band)
and, as such, provide promising platforms for new phe-
nomena [21–25].

In this work we study the crucial effect of interactions
in the original pyrochlore (multilayer kagome) lattice
model proposed for flat bands with arbitrary Chern number
C ¼ N [21]. While a very recent study [24] focusing on
interactions in a fairly flat C ¼ 2 band on the triangular
lattice reported an intriguing � ¼ 1=3 bosonic state, we
find compelling evidence for a whole series of incompress-
ible fractional Chern insulator (FCI) states, both for fermi-
ons at � ¼ 1=ð2N þ 1Þ and for bosons at � ¼ 1=ðN þ 1Þ,
N ¼ 2, 3, 4. We also demonstrate that the states which we
discover are, despite a number of similarities, qualitatively
different from conventional (single and multilayer) FQH
states.

Setup.—We focus on the model describing Rashba spin-
orbit coupled particles on pyrochlore slabs including N

kagome layers (from K1 to KN) introduced in Ref. [21].
The single-particle Hamiltonian in real space is

H ¼ X

i;j;�

tijc
y
i�cj� þ i

X

i;j;�;�

�ijðEij �RijÞ � ��� cyi�cj�:

Although next-nearest hopping is needed to get very flat
C ¼ N bands, we consider only nearest neighbor hopping
tij ¼ t1 ¼ �1 and �ij ¼ �1 (�1 ¼ 1:1 for fermions and

�1 ¼ 0:9 for bosons) within each kagome layer, as well as
tij ¼ t? [26] when involving the triangular layers for

simplicity. In momentum space, there are 4N � 1 bands
assuming spin polarization, and there is a flat band with
Chern number C ¼ N for suitable choices of hopping
parameters [21].
As is customary, we take the flat band limit and consider

the case when the flat band is partially filled by interacting
particles with an interaction Hamiltonian Hint. We diago-
nalizeHint projected to the flat band for a finite system with
N1 � N2 unit cells.
Fermion energetics.—We consider fermions with a near-

est neighbor repulsion Hint ¼
P

hi;jininj [27] and begin by

considering a bilayer kagome system at filling � ¼ 1=5 in
the C ¼ 2 band. For each system size that we study, there
are five quasidegenerate ground states at the bottom of the
energy spectrum. These lowest states are separated from
other excited states by a clear energy gap, which is a
necessary condition for the � ¼ 1=5 fermionic FCI state
[Fig. 1(a)]. The energy gap is always significantly larger
than the ground state splitting for various system sizes, and
a finite-size scaling analysis of the energy gap shows that
it is very likely to survive in the thermodynamic limit
[Fig. 1(b)] [28]. To corroborate that the ground states are
topologically nontrivial, we also check the spectral flow
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under twisted boundary conditions, which amounts to in-
serting magnetic flux through the cycles of the system
(i.e., through the handles of the torus). For a many-body
state �, the twisted boundary condition in the xðyÞ direc-
tion is �ðrj þ N1ð2Þa1ð2ÞÞ ¼ expði�Þ�ðrjÞ, where � is the

boundary phase and a1ð2Þ is the lattice vector. By calculat-

ing the spectral flow for some system sizes where the
ground states are in different (K1, K2) sectors, we find
that when � changes from 0 to 5� 2�, the five ground
states evolve into each other, being always separated from
excited states by a gap, and finally return to the initial
configuration [Fig. 1(c)]. The behavior of the spectral flow

indicates that the Hall conductance is �H ¼ 2
5
e2

h [29],

which we have also confirmed by calculating the many-
body Chern number.

The quasihole excitations, which carry fractional charge
[30] and statistics [31–33], are one of the most important
characteristics for FQH states in Landau levels. Here, we
first investigate the quasihole excitations of our C ¼ 2,
� ¼ 1=5 fermionic FCI state. By keeping Ne fixed and
changing N1 and/or N2, we can add one hole and more
holes into the system. A clear gap that separates the low-
lying states from high-excited states exists in the quasihole
excitation spectrum. The total number of states below the
gap is identical to that for the � ¼ 1=5 fermionic Laughlin

state in the Landau level on the torus. Moreover, the ground
state momenta and counting of quasiholes can be predicted
by an exclusion rule known from the thin-torus limit of the
FQH system [34]: By folding the two-dimensional mo-
menta (k1, k2) to one dimension as k1D � k1 þ N1k2 [5],
this rule implies that there are no more than p particles
in q consecutive orbitals at, and slightly below, � ¼ p=q.
This shows that the quantum dimension of the quasiholes is
dqh ¼ 1, which is a hallmark of Abelian statistics [35].

In the three-layer kagome system, we find similar evi-
dence for a � ¼ 1=7, C ¼ 3 fermionic FCI state (see Fig. 2
for a summary of these results). The gap scaling is again
convincing albeit with a gap being roughly 20% of the gap
observed at � ¼ 1=5 in the C ¼ 2 band. A clear gap in the
quasihole excitation spectrum of the � ¼ 1=7 state can be
identified, and the total number of states below the gap is
identical to that for the � ¼ 1=7 fermionic Laughlin state
in the Landau level on the torus. In the four-layer kagome
system, we find some clues of a � ¼ 1=9, C ¼ 4 fermionic
FCI state, again clearly resolved, albeit with a yet smaller
gap [36].
Boson energetics.—We now turn our attention to bosons

with on-site repulsion Hint ¼ P
iniðni � 1Þ in the bilayer,

three-layer, and four-layer kagome systems. In the bilayer
kagome system, we find a � ¼ 1=3 bosonic FCI state [36],

FIG. 2 (color online). Results for the � ¼ 1=7, C ¼ 3 fermi-
onic FCI state in a three-layer kagome system with N1 ¼ Ne and
N2 ¼ 7. (a) The low-lying energy spectrum for Ne ¼ 5, Ne ¼ 6,
and Ne ¼ 7. (b) The finite-size scaling analysis for both energy
gap and ground state splitting. (c) The y-direction spectral flow
for Ne ¼ 5. (d) The quasihole excitations for Ne ¼ 5, N1 ¼ 6,
and N2 ¼ 6 (one hole is added, 36 states below the gap). (e) The
quasihole excitations for Ne ¼ 4, N1 ¼ 5, and N2 ¼ 6 (two
holes are added, 75 states below the gap). (f) The quasihole
excitations for Ne ¼ 5, N1 ¼ 6, and N2 ¼ 7 (seven holes are
added, 2772 states below the gap).

FIG. 1 (color online). Results for the � ¼ 1=5, C ¼ 2 fermi-
onic FCI state in a bilayer kagome system with N1 ¼ 5
and N2 ¼ Ne. (a) The low-lying energy spectrum for Ne ¼ 4,
Ne ¼ 6, and Ne ¼ 8. (b) The finite-size scaling analysis for both
energy gap and ground state splitting. (c) The x-direction spec-
tral flow for Ne ¼ 7. (d) The quasihole excitations for Ne ¼ 4,
N1 ¼ 3, and N2 ¼ 7 (one hole is added, 21 states below the gap).
(e) The quasihole excitations for Ne ¼ 5, N1 ¼ 3, and N2 ¼ 9
(two holes are added, 81 states below the gap). (f) The quasihole
excitations for Ne ¼ 5, N1 ¼ 5, and N2 ¼ 6 (five holes are
added, 756 states below the gap).

PRL 109, 186805 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

2 NOVEMBER 2012

186805-2



presumably corresponding to the same phase as the � ¼
1=3 recently observed in a C ¼ 2 band on the triangular
lattice [24]. In the three-layer kagome system, we find
convincing evidence for a new � ¼ 1=4 bosonic FCI state
in the C ¼ 3 band as displayed in Fig. 3 [37]. We also find
an interesting � ¼ 1=5, C ¼ 4 bosonic FCI state in the
four-layer kagome system [36]. Note that, in contrast to
C ¼ 1 systems, bosonic FCI states can form at a Laughlin
fraction with an odd denominator when C> 1. In each
case, a clear gap exists above the ground state manifold, as
well as in the quasihole excitation spectrum. Again, the
counting of quasiholes can be predicted by the thin-torus-
like exclusion rule. While the rule for predicting ground
state momenta of the boson states must be slightly modi-
fied [38], this is analogous with the case in C ¼ 1 bands.

Entanglement spectra.—To further corroborate our find-
ing of FCI phases, we have investigated the particle en-
tanglement spectra [39,40]. This provides an independent
test of the excitation structure of the system and can be
used to discard competing possibilities, such as charge
density waves [5]. The results from the largest systems
we have studied are displayed in Fig. 4. Here, we find that,
although the bandwidth of the manifold of low-energy
levels is relatively large (which appears to be the generic
situation for FCI as well as FQH states), there is a clear

entanglement gap separating these levels from generic
ones. Strikingly, the number of low-lying levels exactly
matches the pertinent quasihole in the corresponding
Abelian FQH states. For smaller systems we sometimes
observe deviations when NA is too large [36], but the
overall picture conclusively rules out a charge density
wave explanation (cf., e.g., Ref. [20]).
Consequences of mutual interlayer entanglement.—It is

tempting to associate the higher Chern bands with conven-
tional multilayer FQH systems as these systems are topo-
logically equivalent (both have N chiral edge states, etc.).
However, the dynamics of all layers in the higher Chern
bands is invariably entangled (independent of the interlayer
tunneling strength t? � 0) due to the novel band structure,
while the layers in the FQH system can in principle be
independent. To probe the consequences of this, we now
consider the case of variable interaction strength in the
different kagome layers with fermions at � ¼ 1=7 filling
in a three-layer kagome system as an example (Fig. 5).
Here we weaken the interaction in the midlayer K2 as
Hintð�Þ ¼ P

hi;jininj � �
P

hi;ji2K2
ninj with � 2 ½0; 1�.

We find that, even when the interaction in the midlayer is
vanishing (� ¼ 1), the ground state degeneracy and energy
gap are still finite, and the ground states have a large
overlap with those for � ¼ 0. We also calculate the spec-
tral flow, the quasihole excitation spectrum, and the entan-
glement spectrum, and those results confirm that the
ground states for � ¼ 1 are qualitatively the same as those
for � ¼ 0 [36]. This is strikingly different compared to the
FQHmultilayer case, where the gap would close (at least in
the weak tunneling regime).
Discussion.—In this work, we have provided evidence

for a number of new strongly correlated states emerging in
nearly flat bands with higher Chern number. These states
are likely to be Abelian, as they share ground state degen-
eracies and excitation structure with Laughlin-like states at
the same filling fractions (whenever they exist). In addition
to the fact that the FCI states found here can be realized
at anomalous filling fractions (for bosons) compared to
single-layer FQH states, we have shown that these new

FIG. 3 (color online). Evidence for the � ¼ 1=4, C ¼ 3 bo-
sonic FCI state in a three-layer kagome system with N1 ¼ 4 and
N2 ¼ Nb. (a) The low-lying energy spectrum for Nb ¼ 4,
Nb ¼ 6, and Nb ¼ 8. (b) The finite-size scaling analysis for
both energy gap and ground state splitting. (c) The x-direction
spectral flow for Nb ¼ 7. (d) The quasihole excitations for Nb ¼
5, N1 ¼ 3, and N2 ¼ 7 (one hole is added, 21 states below the
gap). (e) The quasihole excitations for Nb ¼ 4, N1 ¼ 3, and
N2 ¼ 6 (two holes are added, 45 states below the gap). (f) The
quasihole excitations for Nb ¼ 5, N1 ¼ 4, and N2 ¼ 6 (four
holes are added, 336 states below the gap).

FIG. 4 (color online). Particle entanglement spectra probing
the NA ¼ 3 quasihole excitations of the (a) Ne ¼ 7, � ¼ 1=5,
C ¼ 2 state on the 5� 7 lattice (2695 states below the gap) and
(b) Ne ¼ 7, � ¼ 1=7, C ¼ 3 state on the 7� 7 lattice (7105
states below the gap).
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states are also qualitatively distinct from conventional
multilayer FQH states by weakening the interaction in
the midlayer.

We note that, while multilayer FQH states generically
have higher ground state degeneracy than the states found
here, it is well known that, e.g., symmetrizing simple
Abelian multilayer states can have dramatic consequences
[41], most saliently leading to non-Abelian phases with a
reduced ground state degeneracy. Symmetrizing can also
lead to Abelian single band FQH states with a yet smaller
ground state degeneracy, reminiscent of the FCI states
discovered here. In this context, we note that there are a
number of intriguing similarities between the states re-
ported here and composite fermion states for bosons at
� ¼ p

pþ1 and fermions at � ¼ p
2pþ1 , such as sharing the

same Hall conductance, ground state degeneracy, and
filling fraction denominator. Moreover, the composite fer-
mion states have the form of (anti)symmetrized multilayer
states, and such states have recently been confirmed to
exist also in C ¼ 1 Chern bands [10,11]. This is suggestive
of a flux attachment picture [42] also for the C> 1 states
presented here.

It is very likely that the C> 1 bands can also harbor
many other incompressible phases, and an exhaustive in-
vestigation of the phase diagram remains a challenge for
future works using more sophisticated techniques includ-
ing considering tilted samples [11] to obtain a more precise
finite-size scaling control. Nevertheless, the states pre-
sented here appear to be the most stable ones as indicated
by preliminary scans of more generic filling fractions (for
relatively small system sizes).

Another open issue is whether our findings are relevant
to experiments. One class of candidate systems is cold
atom setups with artificial gauge fields [43–45], while
another that is especially well suited for the present model
is provided by conveniently grown spin-orbit coupled solid
state materials, such as the pyrochlore iridates [46–50].
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