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A topological charge pump transfers charge in a quantized fashion. The quantization is stable against

the detailed form of the pumping protocols and external noises and shares the same topological origin as

the quantum Hall effect. We propose an experimental setup to realize topological charge pumping of cold

fermionic atoms in a one-dimensional optical lattice. The quantization of the pumped charge is confirmed

by first-principles simulations of the dynamics of uniform and trapped systems. Quantum effects are

shown to be crucial for the topological protection of the charge quantization. Finite-temperature and

nonadiabatic effects on the experimental observables are discussed. The realization of such a topological

charge pump serves as a firm step toward exploring topological states and nonequilibrium dynamics using

cold atoms.
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Introduction.—Charge pumping is a standard method to
generate a steady current in solid-state circuits [1–5]
through adiabatically and periodically time-varying
potentials. The effect bears a similarity to the famous
Archimedes screw [6], where water is pumped by a rotat-
ing spiral tube. However, quantum physics offers a more
intriguing phenomenon: quantum charge pumping, where
the charge transferred in each pumping cycle is exactly
quantized. Thouless [1] has shown that the one-
dimensional (1D) quantum charge pump shares the same
topological origin as the two-dimensional (2D) quantum
Hall effect (QHE) [7]. The amount of pumped charge can
be expressed by the Chern number of a 2D QHE
Hamiltonian [8]. In other areas of condensed matter phys-
ics, the theory of quantized charge pumping also lays a firm
foundation for the modern theory of polarization of crys-
talline solids [9,10], the theory for Z2 spin pump [11,12],
and inspired the theoretical connection [13] between the
3D Z2 topological insulators and the 4D quantum Hall
effect [14]. The word quantum in the quantum charge
pumping has twofold meanings. First, the pumped charge
is quantized. Second, one actually relies on the quantum
mechanics (thus, the concept of Berry phase and energy
gap) for the topological protection of the quantized charge.

A clean and highly tunable cold atom system provides
an opportunity to realize and detect this topological charge
pumping effect. Specifically, advances in constructing
optical superlattice structure [15–17] and nonequilibrium
control of lattice intensity and phases [18] allow the real-
ization of a charge pumping setup, which we will propose
in this Letter. In situ detection with the single-site resolu-
tion [19–21] allows the detection of topological charge
pumping. The equivalence of 1D topological charge pump-
ing and the 2D quantum Hall effect connects our proposal
to recent efforts of exploring topological quantum phases
with synthetic gauge field [22–25] and spin-orbit couplings

[26–28], where one of the landmarks is to realize the
quantum Hall effect [7] and topological insulator [29] state
in atomic quantum gases.
In this Letter, we consider the topological charge pump-

ing of cold fermions in a 1D optical lattice potential. First,
we show that the proposed potential indeed realizes the
topological charge pumping by calculating its Chern
number and ab initio simulation of the pumping process.
Compared with the corresponding classical dynamics, we
show that quantum effects are crucial for the topological
protection of the quantized charge pumping. We then con-
sider the effect of a harmonic trap and predict the topo-
logical quantization of the center of mass of the cloud in
realistic experimental situations.
Our proposal is based on a time-dependent 1D optical

superlattice of the form [15–18]

VOLðx; tÞ ¼ V1cos
2

�
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We use the lattice constant d as the unit of length and the
recoil energy ER ¼ ð@2�2=2md2Þ as the unit of energy,
where m is the mass of the atom. Such superlattices have
been experimentally realized in Refs. [15–18]. The lattice
strengths V1 and V2 and the phase factor ’ can be tuned
dynamically.
We propose to vary the relative phase linearly with time

’ðtÞ ¼ �t

T
: (2)

The lattice then changes in time with a period T. In the
absence of the static short wavelength lattice controlled by
the V1 term, the V2 term describes a sliding lattice shown in
Fig. 1(a). Including the V1 term, one realizes the Rice-Mele
model [30] in a continuous space setup, as illustrated in
Figs. 1(b) and 1(c). This can easily be seen by expanding
the V2 term (neglecting spatially independent constants)
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into two oscillating terms individually controlling the
dimerized hopping amplitudes and the sublattice energy
offsets:

V2 cos

�
2�t

T

�
cos2

�
�x

d

�
þ V2 sin

�
2�t

T

�
cos2

�
�x

d
��

4

�
: (3)

At time t ¼ 0 and t ¼ T=2, only the first term is nonzero,
realizing the Su-Schrieffer-Heeger (SSH) model [31]. This
model exhibits two topologically distinguishable phases
which are protected by inversion symmetry. The second
term of Eq. (3) breaks this inversion symmetry and
smoothly connects the two phases of the SSH model. At
t ¼ T=4, the system has uniform hopping amplitude but
different on-site energies at two sublattices. At t ¼ T=2,
the system enters a different topological phase of the SSH
model than at t ¼ 0. Since the gap of the Hamiltonian does
not close during the pumping process, we can define a
topological index associated with the pumping process.
This index is just the Chern number of a 2D QHE
Hamiltonian and gives the charge pumped during one
cycle. The continuum potential Eq. (1) interpolates
between the sliding potential and the Rice-Mele model.
They are topologically equivalent since one could adiabati-
cally switch on the V1 term without closing the gap [32].

Infinite system.—We first consider topological charge
pumping of spinless fermions in an infinite periodic system
with Hamiltonian

Hðx; tÞ ¼ � @
2

2m
r2 þ VOLðx; tÞ: (4)

There are several advantages to working with a continuum
model instead of a tight-binding lattice model like in
Ref. [33]. Continuum models apply to a broader range of
experimental situations, including shallow optical lattices.

Multiband effects are fully included in our calculations
[34]. A continuum model also allows us to directly com-
pare with classical pumping dynamics and to demonstrate
the importance of quantum effects for the topological
protection of the pumped charge.
Figure 2(a) shows the spatial-temporal structure of

VOLðx; tÞ for V1 ¼ V2 ¼ 4ER, which we will refer to
as the Rice-Mele pumping potential in the following.
Performing a Fourier transform of Hðx; tÞ, we obtain the
Bloch Hamiltonian Hðkx; tÞ, which satisfies the periodicity
conditions Hðkx þ 2�; tÞ ¼ Hðkx; tÞ and Hðkx; tþ TÞ ¼
Hðkx; tÞ. Since there is always a gap to higher bands, we
can calculate the Chern number of the lowest band of
Hðkx; tÞ as if it was a two-dimensional Hamiltonian
[35,36]. Figure 2(b) shows the Berry curvature distribution
in the kx � t space. Integration of the Berry curvature
over the Brillouin zone shows that the Chern number is
equal to 1.
Thouless showed [1] that at zero temperature under the

adiabatic approximation, the pumped charge equals the
Chern number for a filled band. We now proceed to simu-
late the pumping process and directly calculate the pumped
charge. For an infinite system, the pumped charge
is defined through the integration of the total current
(see the Supplemental Material for details [37]):
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FIG. 1 (color online). Two topological equivalent pumping
lattices. (a) A sliding lattice (V1 ¼ 0, V2 ¼ 1ER) (b) A continu-
ous Rice-Mele pump [30] (V1 ¼ 2ER, V2 ¼ 1ER), where the
dimerization of hopping amplitudes and on-site energies is
modulated periodically. At t ¼ 0 and t ¼ T=2, different topo-
logical phases of the Su-Schrieffer-Heeger lattice [31] are real-
ized. (c) A tight-binding schematic view of the pumping process
in (b). The two pumping processes (a) and (b) are topologically
equivalent for the lowest band and can be adiabatically con-
nected; see the main text.

(c)

(((a(a)))))

FIG. 2 (color online). (a) Spatial-temporal structure of the
optical lattice Eq. (1) for V1 ¼ V2 ¼ 4ER. (b) Berry curvature
distribution of the lowest band of Hðkx; tÞ. Integration over the
Brillouin zone shows the Chern number equals 1. (c) Pumped
charge and total current Eq. (5) of an infinite-sized system with
T ¼ 40@=ER and one particle per unit cell. The pumped charge
is quantized at full pumping cycles.
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�nðtÞ ¼
Z t

0
dt0Jðt0Þ: (5)

Figure 2(c) shows the current and pumped charge for
pumping cycle T ¼ 40@=ER in the Rice-Mele pumping
potential (the band gap is �1:5ER). The sudden onset of
pumping causes high frequency oscillations of the current.
The pumped charge is quantized at times that are multiples
of the cycle time T. Our calculations show that modifying
the quantum pump by changing V1 and V2 results in a
different current JðtÞ; however, the pumped charge remains
quantized. One thus realizes a topological pump, neither
relying on a tight-binding approximation nor the details of
the pumping protocol.

Figure 3 shows nonadiabatic and finite-temperature
effects on the quantization of pumped charge. Quantization
is precise for slow pumping and low temperature compared
to the band gap. Considering 40K atoms and d ¼ 532 nm,
one has @=ER ¼ 36:4 �s and ER=kB ¼ 0:21 �K. Thus,
for a pumping period longer than 50@=ER � 2 ms and
initial temperature lower than 0:1ER=kB � 20 nK, the
pumped charge is quantized to within 0.2%. Such a pump
is feasible within current experimental abilities.

To demonstrate the importance of quantum mechanics
for topological protection, we examine classical pumping
in the same lattice potential. For a sliding lattice (V1 ¼ 0,
V2 ¼ 4ER), both the quantum and classical pump transfer
units charge in one cycle. However, mapping the classical
problem to a classical pendulum (see the Supplemental

Material [37]) shows that this is accidental, and the
pumped charge is not exactly quantized. This accidental
quantization is removed by changing the atom mass, the
lattice constant, or the pumping potential. Figure 3 shows
that the pumped charge drops to close to zero for the
classical Rice-Mele pump at low temperature. It is because
of the potential minima felt by the classical particle does
not shift in space. On the contrary, the quantization in
the quantum case is protected by an energy gap and
survives as one distorts the pumping potential to the
Rice-Mele model. The difference between classical and
quantum behavior is due to the absence of Berry phases
and energy gaps in classical dynamics. This comparison
highlights the importance of quantum effects for topo-
logical protection.
At finite temperatures, quantization in the quantum

pump remains stable for temperature smaller than the
energy gap (see Fig. 3). The quantum to classical transition

is determined by the condition n� � 1, where � ¼
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2��=m

p
is the thermal de Broglie wavelength, � is the

inverse temperature, and n is the average density of the
system. Classical behavior dominates when ��1 �
ð4ðndÞ2=�ÞER. For a shallow optical lattice nd� 1, the
quantum to classical crossover happens at temperatures
much larger than ER. For

40K atoms and d ¼ 532 nm,
the whole temperature region of the quantum to classical
crossover in Fig. 3 can be achieved in experiments.
Trapped system.—To connect to real experimental situ-

ations, we link the quantization to a simple physical
observable: the center of mass of a cloud in a harmonic
trap VtrapðxÞ ¼ ð1=2Þm!2

Tx
2, which varies slowly com-

pared to the optical lattice. In Fig. 4(a), we show the initial

FIG. 3 (color online). The pumped charge after one cycle vs
temperature for the quantum and classical case. Quantization of
the pumped charge is visible for temperature lower than the band
gap. For the classical case, there is no such topological protec-
tion and the pumped charge depends on the pumping protocols.
The inset shows the nonadiabatic (finite-pumping time) effect on
the pumped charge of a quantum Rice-Mele pump. The upper
axis shows the realistic temperature and time estimated for 40K
atoms in a d ¼ 532 nm laser.

(a)

(b)

FIG. 4 (color online). (a) Initial density distribution in a har-
monic trap with !T ¼ 0:03ER, V1 ¼ V2 ¼ 4ER, and particle
number N ¼ 40. The green curve shows the continuous space
density, while the blue curve shows the occupation number
integrated over each unit cell. (b) Occupation number after
several cycles of pumping with T ¼ 40@=ER, time increases
from left to right. The cloud shifts to the right, and the center
of mass position is quantized; see Fig. 5.
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ground-state density distribution �ðx; t ¼ 0Þ in a trap with
frequency !T ¼ 0:03ER. In order to clearly see the nature
of the state of trapped gas, we integrate the density over
each unit cell, arriving at site occupations

niðtÞ ¼
Z
�i

dx�ðx; tÞ; (6)

which are show as blue lines in Fig. 4(a). We see a band
insulator (ni ¼ 1) in the center of the trap with very small
metallic wings.

Calculating the time evolution, we show in Fig. 4(b) the
occupation number after multiple pumping cycles for V1 ¼
V2 ¼ 4ER and T ¼ 40@=ER. We observe that the cloud
shifts to the right under the action of the pump. To reveal
the topological nature of this drift, we show that the center
of mass (c.m.) of the cloud

hxðtÞi ¼ 1

N

Z 1

�1
dx�ðx; tÞx (7)

encodes the topological pumped charge �n

hxi=d ¼ �n: (8)

Equation (8) links the pumped charge�nwith the physical
observables hxi. Experimentally, the c.m. position hxi can
be measured precisely, either by in situmeasurement of the
density distribution or deduced indirectly from time-of-
flight imaging [38,39]. The topological pumping effect
can then be identified as a quantization of c.m. position
at multiple pumping cycles. To proof Eq. (8), we multiply x
to both sides of the continuity equation and then integrate
over spacetime, noticing that the current dies out at infinity
for a trapped system.

Figure 5 shows the total current J, pumped charge �n,
and c.m. hxi in a trap. The relationship Eq. (8) is evident
from the plot, and we clearly see quantization of the

pumped charge and c.m. at every full pumping cycle.
The similarities between Figs. 2 and 5 show that the
external trap and finite size of the atomic cloud do not
affect the precise quantization of the pumped charge. The
observation of this effect in cold atom systems is thus
highly feasible, with in situ imaging techniques for the
atomic cloud [19–21].
Finite-size effects and metallic edges will, in principle,

give a nonquantized value of the pumped charge. Any such
deviation from an integer value is, however, not visible in
our simulations and will be even smaller in the experimen-
tal situation where the trap is larger and finite-size effects
are thus smaller. While topological pumping is stable
against weak interactions [40], interaction effects can
also easily be avoided by using spin-polarized atoms.
Conclusion.—We have proposed a realistic experimental

setup to realize the topological pumping of cold atoms. Our
setup naturally interpolates between sliding potentials and
the Rice-Mele model [30] commonly studied in condensed
matter physics. The quantization of the pumped charge can
be observed from a quantization of the center of mass
motion of the atomic cloud, is independent of the details
of the pumping protocol, and is robust with respect to
nonzero temperature. The experimental observation of
topological pumping in cold atoms will be a big step
toward exploring topological states and nonequilibrium
dynamics in cold atom systems.
As further steps, interactions on a fractionally occupied

lattice may open up an energy gap, and one could pump a
fractional charge in each pumping cycle. With two spin
species, it will be interesting to see Z2 spin pumping where
the Wannier centers of two time-reversal-symmetrical
states split and exchange [12,41].
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