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We propose an experimental technique for classifying the topology of band structures realized in optical

lattices, based on a generalization of topological charge pumping in quantum Hall systems to cold atoms

in optical lattices. Time-of-flight measurement along one spatial direction combined with in situ detection

along the transverse direction provides a direct measure of the system’s Chern number, as we illustrate by

calculations for the Hofstadter lattice. Based on an analogy with Wannier function techniques of

topological band theory, the method is very general and also allows the measurement of other topological

invariants, such as the Z2 topological invariant of time-reversal symmetric insulators.
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Recent advances in experimental techniques have led to
realization of synthetic gauge fields [1–5] and spin-orbit
coupling [6,7] in cold atomic gases. These new develop-
ments allow one to study a variety of topological phases of
condensed matter physics by using cold gases of neutral
atoms trapped in optical lattices. Such topological phases
occur in systems whose Hilbert space has a nontrivial
topological structure, and they are classified according to
the value of a corresponding quantum number, the topo-
logical invariant.

Particular examples of such phases in condensed matter
include the quantum Hall insulators [8] or the quantum
anomalous Hall insulators [9], where the topological in-
variant of the Hilbert space is the so-called Chern number
[10]. Some recent experiments [3–5,11] point towards the
possibility of realizing an optical lattice with a nonzero
Chern number in the near future.

Once the desired lattice is created, the question of ex-
perimental verification of the nontrivial topology arises.
Unlike condensed matter systems, where a routine mea-
surement of the Hall conductance reveals the Chern number
value [8], cold atom systems require a special setup [12] for
transport measurements. Edge state probes of condensed
matter experiments also become cumbersome in a cold
atom environment, since the smooth harmonic potential
washes out the edge states associated with the quantum
Hall state. This problem can potentially be circumvented
by enhancing a weak Bragg signal from the topological
edge states by means of specifically tuned Raman transi-
tions [13,14]. Other approaches, which do not have an
immediate analogy among solid state experiments, might
also allow for themeasurement of Chern numbers in optical
lattices [15–19]. However, the quest for a universal method
to obtain Chern numbers and other topological invariants
directly in a single measurement, avoiding a sophisticated
experimental setup or data analysis, remains open.

In this Letter, we tackle the problem of detecting topo-
logical invariants in optical lattice systems from a very

different perspective, drawing an analogy to the theory of
electric polarization of crystalline solids [20] to suggest a
simple and effective method to measure Chern numbers in
cold atom systems. We introduce the concept of hybrid
time-of-flight (HTOF) images, referring to an in situ mea-
surement of the cloud’s density in one direction during free
expansion in the other. The HTOF reveals the topology of
the optical lattice just as hybrid Wannier functions (HWFs)
do in band theory [21,22]. We illustrate our approach by
numerical simulations of a square optical lattice that real-
izes a Hofstadter model [23] and discuss how it works in
lattices with a more complicated geometry. Our method
does not require the presence of the sharp edge states and is
not affected by a soft harmonic trap. It can also be used to
detect the Z2 topological invariant of time-reversal (T )
symmetric topological insulators.
The modern theory of electric polarization of crystalline

solids [20,24] relates the electronic polarization P to the
geometry of the underlying band structure. For a 1D insulator
with a single occupied bandP ¼ 1

2�

H
BZ AðkÞdk, where k is

the crystal momentum, AðkÞ ¼ ihukj@kjuki is the Berry
connection [25], and the u’s are the lattice-periodic parts
of the Bloch functions. Alternatively, we will use the fact
that the polarization can bewritten [20] as the center of mass
of the Wannier function constructed for the occupied band
[26], which can be defined as an expectation value of the
position operator projected onto the occupied state [27,28].
In two dimensions (2D) an insulating Hamiltonian can

be viewed as a fictitious 1D insulator subject to an external
parameter kx. Polarization of this 1D insulator can be
defined by means of HWFs [29], which are localized in
only one direction retaining Bloch character in the other.
The polarization at each kx is given by the center of mass of
the corresponding HWF [22].
The definitions of electronic polarization given above

are gauge dependent, meaning that P is defined only
modulo a lattice vector. For measurements, one has to
consider the change in polarization induced by a change
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in an external parameter [20]. In the 2D insulator consid-
ered above, kx plays the role of such a parameter. When kx
is adiabatically changed by 2�, the change in polarization,
i.e., the shift of the HWF center, is proportional to the
Chern number [20]. This is a manifestation of topological
charge pumping [30,31], with kx being the adiabatic pump-
ing parameter.

A generalization of these ideas to cold atomic gases is a
natural way to measure the Chern number in optical latti-
ces. We replace the HWFs of band theory with hybrid
densities �ðkx; yÞ, which are the particle densities resolved
along the y direction as a function of kx. Note that, while
for an extended system the HWF charge center position
cannot be reconstructed from the single particle density
[24], this becomes possible in a finite system where the
position operator is well defined [32]. Hence in a system
with finite extent Ly in the y direction we can calculate the

HWF center as

�yðkxÞ ¼
RLy

0 y�ðkx; yÞdyRLy

0 �ðkx; yÞdy
: (1)

The proportionality between the shift of the HWF center
and the Chern number still holds in the open system. The
Chern number measures the charge transported from one
boundary to the other as kx is cycled by 2�. An experi-
mental measurement of the shift in the hybrid density will
hence directly determine the Chern number.

Experimentally, �ðkx; yÞ is measured by an HTOF mea-
surement, in which the lattice and trap are switched off
along the x direction while keeping the lattice and har-
monic confinement unchanged in the y direction. In the
long time limit [33] TOF images map out the crystal
momentum distribution along kx [34]. At the same time,
the system is still confined in the y direction, and a real-
space density resolution can be done.

We now show HTOF unambiguously determine the
Chern number by performing a numerical simulation of
the Hofstadter model [23] on a square lattice. Its
Hamiltonian is given by

Hlattice¼�Jx
X

m;n

ei2�n�cymþ1;ncm;n�Jy
X

m;n

cym;nþ1cm;nþH:c:;

(2)

where J� is the hopping amplitude in the � ¼ fx; yg direc-
tion and cm;n is the fermionic annihilation operator, withm
and n being the column and row indices of the lattice,
respectively (see Fig. 1).

An atom hopping clockwise around a plaquette accu-
mulates a phase �. We consider � ¼ p=q, where p and q
are two relatively prime integers. The hopping matrix
elements Jxe

i2�n� along the x direction depend on the
row index n so that each unit cell contains q sites. In the
following, we fix q ¼ 7 and assume that only the lowest
band is occupied. The Chern number C of the lowest band

is determined by the Diophantine equation 1 ¼ qsþ pC
[10,35,36], where s is an integer and jCj � q=2.
We first consider an infinite ribbon of this model with

width Ly ¼ 10, setting Jx ¼ Jy ¼ J and p ¼ 1, which

corresponds to a Chern number C ¼ 1. In the spectrum
shown in Fig. 2(a), we see that, as expected for p ¼ 1, two
edge states cross the Fermi level. Analogously to the 2D
insulator considered above, this setup can be viewed as a
finite 1D chain subject to a kx-driven pump. From this
point of view, the hybrid density �ðkx; nÞ describes the
change in the density of the 1D system as a function of
the pumping parameter. Figure 2(b) shows that the hybrid
density is shifted by one unit cell in the bulk, indicating
that a single charge is pumped across the system, as
expected for C ¼ 1.
We calculate the kx dependence of the HWF center by

taking a tight-binding limit of Eq. (1):

�nðkxÞ ¼
P

n n�ðkx; nÞP
n �ðkx; nÞ

: (3)

FIG. 1 (color online). Square lattice illustrating the Hofstadter
model of Eq. (2). The oval marks q ¼ 7 sites of the unit cell.
Small arrows indicate the directions in which the phase of the
hopping amplitude is chosen to be positive. Different colors of
these arrows correspond to different values of the phase. Large
arrows indicate the direction of the free expansion of the atomic
cloud in HTOF images.

(a) (b)

(c)

FIG. 2 (color online). Results for a ribbon (Ly ¼ 10) of the
Hofstadter lattice model with p=q ¼ 1=7 and corresponding
Chern number C ¼ 1. (a) Energy spectrum: two edge states
(in red) cross the bulk energy gap. (b) Hybrid density �ðkx; nÞ
shifts by one unit cell in a 2� cycle. (c) The center of mass of the
hybrid density Eq. (3) jumps by one unit cell.
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As shown in Fig. 2(c), �nðkxÞ jumps by one unit cell (q ¼ 7
sites), analogous to the HWF shift in Chern insulators [21].

Having established a clear connection between the
hybrid density and Chern number, we now turn to a more
realistic case by adding a harmonic trapping potential of
the form

Htrap ¼ VT

X

m;n

½ðm� Lx=2Þ2 þ ðn� qLy=2Þ2�cym;ncm;n;

(4)

where LxðyÞ denotes the number of unit cells in the xðyÞ
direction. The system contains qLy rows and Lx columns.

The values of VT and the number of atoms N ¼ 300 are
chosen such that the atom cloud has a large insulating
region corresponding to 1=q filling at the trap center. We
now consider the cases p ¼ 1 and p ¼ 3, corresponding to
Chern numbers þ1 and �2, respectively.

There is no significant difference in the real space den-
sities of the two states, since the harmonic trap smears
out the edge states [13]. In contrast, the HTOF density
profiles allow one to directly read off the Chern numbers.
We calculate these HTOF images by first solving
the Schrödinger equation ðHlattice þHtrapÞc iðm; nÞ ¼
"ic iðm; nÞ and constructing HWFs by means of the
Fourier transform in the x direction:

c iðkx; nÞ ¼
XLx�1

m¼0

eikxmc iðm; nÞ: (5)

We then use these wave functions to construct the hybrid
particle density of the HTOF measurement:

�ðkx; nÞ ¼ 1

N

XN

i¼1

jc iðkx; nÞj2: (6)

HTOF images obtained in this way are shown in Fig. 3 and
clearly exhibit the topological charge pumping effect

despite the presence of a trap: The hybrid density shifts
byC unit cells along the y direction as kx changes from��
to �. Thus, the hybrid density is an accurate probe of
topological properties and allows one to directly measure
the Chern number.
To get deeper understanding, we consider the case of

vanishing transverse coupling Jy ¼ 0, corresponding to a

set of decoupled tight-binding chains with dispersions
�nðkxÞ ¼ �2Jx cosðkx � 2�np=qÞ. The position of the
band minimum shifts by 2�p=q from one chain to the
next, as shown in Fig. 4(a) for p ¼ 3. If an infinitesimal
coupling Jy is added, the 2D lattice is in the Chern insulat-

ing regime. Charge pumping can be inferred by tracing the
change in the position of the valence band minima for
weakly coupled chains: Connecting nearest neighbor
points in Fig. 4(a) reveals a shift by two unit cells
(jCj ¼ 2) in the course of a 2� change of momentum
[dashed red arrow in Fig. 4(a)]. This illustrates the geo-
metrical interpretation of the Diophantine equation [10], as
also discussed in Ref. [37] in a different context.
The above analysis allows for an alternative way

of describing the HTOF results presented in Figs. 3(a)
and 3(b). We introduce sublattice densities �aðkx; ~nÞ,
which correspond to the particle density on the ath site
of the ~nth unit cell. These sublattice densities, shown in
Fig. 4(b), shift along the y direction as kx changes, illus-
trating the motion of charge. The motion of charge can also
be tracked in the total sublattice density obtained by sum-
ming �aðkx; ~nÞ over the unit cells:

(a) (b)

FIG. 3 (color online). The HTOF images for the Hofstadter
lattice (Lx ¼ 70, Ly ¼ 10, N ¼ 300) in the presence of the

harmonic trap: (a) for p=q ¼ 1=7 with C ¼ 1 (VT ¼ 0:001)
and (b) for p=q ¼ 3=7 with C ¼ �2 (VT ¼ 0:001). Chern
numbers can be determined as the number of unit cells traversed
by the hybrid density in the course of a 2� cycle. Upward
(downward) direction of the shift corresponds to a positive
(negative) Chern number. The broadening of lines corresponds
to exponential localization of the peaks of the hybrid density.

(a) (b)

FIG. 4 (color online). (a) Valence band minima of decoupled
(Jy ¼ 0) 1D chains of the Hofstadter model with p=q ¼ 3=7.

Different colors correspond to different sublattice chains. Solid
gray arrows indicate the shift in the dispersion due to the phase
factors. Dashed red arrows connect nearest neighbor points and
illustrate charge pumping. (b) The sublattice densities �aðkx; ~nÞ
within a unit cell and the total sublattice density N aðkxÞ for
different values of a. The color scheme is the same as in the left
panel, and the model parameters are the same as in Fig. 3(b).
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N aðkxÞ ¼
XLy�1

~n¼0

�aðkx; ~nÞ: (7)

Thus, the topological nature of the state can also be seen in
the total sublattice density, which is potentially accessible
in a TOF experiment that can distinguish different sublat-
tices [3,38]. However, such an analysis is specific to the
Hofstadter model, while the HTOF measurement is gen-
erally applicable.

The square lattice considered so far is particularly sim-
ple, since a straightforward partition into 1D chains is
possible. HTOF measurement can also work for other
lattice geometries such as the honeycomb lattice, which
is topologically equivalent to the brick-wall lattice shown
in Fig. 5(a). Such a lattice was used to create Dirac points
in optical lattices [11]. This lattice is a potential candidate
for realizing the Haldane model [9], which is a canonical
example of a Chern insulator.

A partition of the brick-wall lattice into 1D chains, along
which the charge is pumped, is illustrated in Fig. 5(a) with
solid dark bonds. The chains consist of two sublattices
offset from each other in the x direction. Due to this offset,
the charge pumping is not directly visible in the HTOF
image unless one separately measures them for each sub-
lattice (for example, by using the superlattice technique of
Ref. [38]). As illustrated in Fig. 5(c), the center of mass of
the hybrid density along the zigzag 1D chain is indeed
shifted by one unit cell along the 1D chain, revealing the
Chern number C ¼ 1 of the Haldane model.

The HTOF technique can determine not only Chern
numbers, but also the Z2 topological invariant of
T -symmetric insulators [39]. In band theory this invariant
can be obtained by means of HWFs [40–42], once they
form T images of one another. The occupied single par-
ticle states of the insulator can always be split into two sets

of states (related by T symmetry) where each set has a
well-defined Chern number [43]. For a wide range of
models, such a splitting can be achieved by projecting
the occupied states onto particular spin directions
[44,45]. If the values of thus obtained spin Chern numbers
are odd, the system is in the Z2-insulating regime. In the
context of cold atoms, considering a minimal model with
only two occupied bands, a spin-projected HTOF measure-
ment of spin-resolved densities would serve as a direct
measurement of the spin Chern numbers and, hence, of the
Z2 invariant.
The proposed HTOF technique is not only practical,

providing exhaustive information about the topological
state of an optical lattice, but is also a conceptually novel
idea for using a cold atom lattice as a quantum simulator.
Hybrid density measurement as proposed here for cold
atom systems is not possible in condensed matter experi-
ments, and the HWFs are used only in computer simula-
tions. These experiments can thus access novel probes of
topological order and will give rise to further implementa-
tions of so far numerical experiments of condensed matter
in real experiments on cold atom systems.
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