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Two-dimensional lattices provide the arena for many physics problems of essential importance, a scale
symmetry, which rarely exists as noticed by Galileo, in such lattices can help reveal the underlying physics.
Here we report the discovery and proof of directional scaling symmetry for high symmetry 2D lattices, i.e.,
the square lattice, the equilateral triangular lattice and thus the honeycomb lattice, with aid of the function
y 5 arcsin(sin(2pxn)), where the parameter x is either the platinum number m~2{

ffiffiffi
3
p

or the silver number
l~

ffiffiffi
2
p

{1, which are related to the 12-fold and 8-fold quasiperiodic structures, respectively. The directions
and scale factors for the symmetric scaling transformation are determined. The revealed scale symmetry
may have a bearing on various physical problems modeled on 2D lattices, and the function adopted here can
be used to generate quasiperiodic lattices with enumeration of lattice points. Our result is expected to
initiate the search of directional scaling symmetry in more complicated geometries.

T
he square lattice and the equilateral triangular lattice, thus also the honeycomb lattice, are high-symmetry
two-dimensional (2D) lattices. They play important roles in mathematics, physics, architectonics, arts and
many other fields. For 2D lattices, the uniform scaling of the space, i.e., simultaneous dilation or contraction

at two orthogonal directions with the same scale factors, will evidently preserve the character, or symmetry, of
their patterns. A natural and perhaps also meaningful question may be raised: Is there any directional scaling
symmetry for the high-symmetry 2D lattices that preserves the character of these lattices? Or in other words, is
there any scaling transformation along a particular direction that brings a square (equilateral triangular) lattice
into a square (equilateral triangular) lattice?

For the equilateral triangular lattice, if directional scaling is performed along any side of the unit triangle, i.e.,
along the ,10.-directions, in the crystallographic nomenclature, then the contraction at any rate will never
result in a triangular lattice. However, stretching along that direction with a scale factor c 5 3 results in a perfect
equilateral triangular lattice, and the side length of the unit triangle in the resulting lattice is

ffiffiffi
3
p

times larger
(Fig. 1). A particular feature should be noticed that the neighborhood relation of the lattice points has been
changed by this transformation. For example, in Fig. 1a the lattice points (0, 1, 2, 3) form two unit triangles, D013
and D023, but in the resulting lattice in Fig. 1b the two unit triangles formed by the corresponding lattice points
are D012 and D123. The scale factor c 5 3 is the sole possibility of directional scaling symmetry for stretching
along the side of the unit triangle in the case of equilateral triangular lattice. For scaling along the bisector line of a
unit triangle, the solely possible directional scaling symmetry is the contraction with a scale factor c 5 1/3, which
is in fact the inversed transformation of the one described above. This provides a trivial example of directional
scaling symmetry. In the case of square lattice, directions along the side or the diagonal of the unit square don’t
exhibit any scaling symmetry.

The lack of scaling symmetry along the most notable ,10.-directions in the square and equilateral triangular
lattices does not compulsively exclude the possibility of directional scaling symmetry along other directions.
Rather, we may even wish that such a directional scaling symmetry, if there is any, can be achievable in principle
with more scale factors. We see that if such a directional scaling symmetry can be proven to exist, and the
corresponding transformation can be formulated, this will evidently promote our understanding of the structural
properties of lattices, and provide helpful insight into problems involving lattices such as in statistical physics,
condensed matter physics, quantum theory, and even number theory, etc.

In the effort of investigating the 1D incommensurate systems such as specified by the function cos(2pqn)1–4,
where n is integer and the parameter q is an irrational number such as the golden ratio, and 2D quasiperiodic
structures5–8, we came across to the question whether there is any directional scaling symmetry for the square
lattice and the equilateral triangular lattice (hence also the honeycomb lattice). We found that the square lattice
exhibits directional scaling symmetry along a direction at 22.5u with respect to the side of a unit square, with the
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drag center of scaling transformation falling on the lattice point, and
the scale factor is (3{2

ffiffiffi
2
p

)k, k 5 1,2,3…. In the case of equilateral
triangular lattice, the directional scaling symmetry appears at the
direction at 15u with respect to any side of the unit triangle, with
the drag center of scaling transformation falling on the lattice point,
and the scaling factor is (7{4

ffiffiffi
3
p

)k, k 5 1, 2, 3…. A proof based on
the function y 5 arcsin(sin(2pxn)), where the parameter x is the
silver number9–11 or the platinum number11–13, which are respectively
related to the 8-fold and 12-fold quasiperiodic structures, is
presented.

Results
Directional scaling symmetry in equilateral triangular lattice. The
plot of the function y 5 sinn, where the argument n is non-negative
integer (the discussion below is also valid for negative integer, but it is
not of concern here), is essentially different from that for y 5 sinx,
where x is real. This fact has been noticed and extensively studied by
Strang14,15 and Richert16. In studying the 1D incommensurate
structures, we found that the function y 5 sin(2pmn), where
m~2{

ffiffiffi
3
p

is the platinum number which is related to the
dodecagonal quasiperiodic structure8,11–13, reveals an interesting
picture as illustrated in Fig. 2a. In the boundary regions defined by
y 5 61, the graph seems folding together, reminding us of Escher’s
paintings based on the concept of Poincaré disc. In the central region,
however, the graph seems to display locally 12-fold rotational
symmetry. This is quite reasonable since m~2{

ffiffiffi
3
p

is the platinum
number. If instead of y 5 sin(2pmn) we draw the function y 5

arcsin(sin(2pmn)), we see that the whole domain bounded by y 5

6p/2 is globally isometric, and the plot displays locally 12-fold
rotational symmetry (in a not very strict sense), see Fig. 2b.

Interestingly, the plot of the function y 5 arcsin(sin(2pmn)) in
Fig. 2b can be taken as a Moiré pattern17,18, i.e., as superposition of
two identical simpler lattices (see Fig. S1). In fact, the function y 5

arcsin(sin(2pmn))itself can be divided into two branches

arcsin(sin(2pmn))~

2p(nm{m), m{
1
4

� �
ƒnmƒ mz

1
4

� �
;

{2p(nm{m{
1
2
), mz

1
4

� �
vnmv mz

3
4

� �
:

8>>><
>>>:

, ð1Þ

where both m, n are non-negative integer, and if nm 2 [nm] g [0,
3/4], m 5 [nm]; if nm 2 [nm] 2 1 g [21/4, 0], then m 5 [nm] 1 1.
Here [x] denotes the truncation of the positive real number x. In the
following the first branch in eq.(1) is referred to as the ascending

branch, as points generated by this branch fall on the ascending part
of the graph for y 5 arcsin(sinx)) (see Fig. S2), and the second branch
is accordingly referred to as the descending branch. The plot of only
the ascending branch results in Fig. 3a (for comparison of the two
branches, see Fig. S1). From Fig. 3a we can readily find that the plot of
the ascending branch constitutes an oblique 2D lattice. So does the
plot of the descending branch. In fact, with a proper ratio of the
longitudinal scale to the transverse scale the unit triangle in Fig. 3a
can be made to have roughly three equal sides, thus the lattice is
approximately an equilateral triangular lattice (to be further dis-
cussed below).

If we compress Fig. 3a along the horizontal axis in a continuous
way, the approximate equilateral triangle lattice will at first be dis-
torted, and then, when the scale factor comes to a proper value
(,7{4

ffiffiffi
3
p

), the shape of the lattice will again recover, as illustrated
in Fig. 3b. This scenario can be repeated infinitely. More importantly,
after each contraction, the unit triangle in the lattice can be brought
closer to a rigorously equilateral triangle, in the sense that the side
lengths suffer from a less relative deviation. And it can be proven that
in the extreme case when the ratio of longitudinal scale to transverse
scale approaches vanishingly small, the unit triangle turns into a
rigorously equilateral triangle (see detailed proof in supplementary
information). Notice that the transformation changes the neighbor-
hood relation that, for instance, in Fig. 3a the two unit triangles
anchored to the point n 5 0 are D0-4-15 and D0-11-15, whereas
after the transformation, the two unit triangles anchored to the point
n 5 0 are D0-15-56, and D0-41-56 (Fig. 3b).

Thus this manipulation leads us to the discovery that there exists
directional scaling symmetry for the equilateral triangular lattice,
which is a scaling transformation, setting the drag point on an arbit-
rary lattice point, along the direction at 15u with respect to the side of
the unit triangle, and the scale factor is 7{4

ffiffiffi
3
p

. The ratio of side
lengths involved in this transformation is 2{

ffiffiffi
3
p

. Such a scaling
transformation can be performed repeatedly. This directional scaling
symmetry for equilateral triangular lattice specified above can be
easily checked (see detailed proof in supplementary information).

By the way, the equilateral triangular lattice is the superposition of
a honeycomb lattice and a

ffiffiffi
3
p

times larger equilateral triangular
lattice. Taking the lattice in Fig. 3a as an equilateral triangular lattice,
the index in the plot helps to specify the points to be removed so as to
obtain a honeycomb lattice from the parent triangular lattice (The
rules of doing this are clarified in the supplementary information).
Obviously, the honeycomb lattice has also directional scaling sym-
metry, and the scale factor and the ratio of side lengths for hexagons
before and after the transformation are 7{4

ffiffiffi
3
p

and 2{
ffiffiffi
3
p

, respect-
ively. The drag point is set on the center of an arbitrary unit hexagon,
and the direction is at 15u with respect to the side of the hexagon.
More interestingly, when a honeycomb lattice is obtained after scal-
ing along that particular direction, the center of the unit hexagon
remains the center of the unit hexagon in the resulting lattice. The
honeycomb lattice and the equilateral triangular lattice share the
same directional scaling symmetry may arise from the fact that hon-
eycomb lattice is dual (reciprocal) to the equilateral triangular lattice.

Directional scaling symmetry in square lattice. With the silver
number l~

ffiffiffi
2
p

{1, which is related to the octagonal quasiperio-
dical structure7,9–11, we obtain an interesting plot of the function
y 5 sin(2pln) (Fig. 4a) in analog to Fig. 2a. Going one step
further, we draw the plot of the function y 5 arcsin(sin(2pln)),
which is globally isometric, and displays locally 8-fold rotational
symmetry (in a not very strict sense), see Fig. 4b.

Again, the plot in Fig. 4b can be taken as a Moiré pattern formed by
the superposition of two identical simpler lattices (see Fig. S3).
Accordingly, the function y 5 arcsin(sin(2pln)) can be separated
into two branches

Figure 1 | A trivial example of directional scaling symmetry for
equilateral triangular lattice, which is achieved along any side of a unit
triangle with a scale factor c 5 3. (a) The original lattice; (b) the

transformation result of (a) along the connection line between points 0 and

3.
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arcsin(sin(2pln))~

2p(nl{m), m{
1
4

� �
ƒnlƒ mz

1
4

� �
;

{2p(nl{m{
1
2
), mz

1
4

� �
vnlv mz

3
4

� �
:

8>>><
>>>:

ð2Þ

Where m, n are non-negative integers, and if nl 2 [nl] g [0, 3/4],
then m 5 [nl]; if nl 2 [nl] 2 1 g [21/4, 0], then m 5 [nl] 1 1. As
above, the first branch is referred to as the ascending branch of the
function, and the second branch is referred as the descending branch.
Thus the plot of y 5 arcsin(sin(2pln)) can be taken as the Moiré

Figure 2 | Plots of the sinusoidal function y 5 sin(2pmn) (a) and the arcsine function y 5 arcsin(sin(2pmn)) (b), where m~2{
ffiffiffi
3
p

, and the argument n
is non-negative integer.

Figure 3 | (a) Plot of the ascending branch of the function y 5 arcsin(sin(2pmn)), where m~2{
ffiffiffi
3
p

, and n is non-negative integer; (b) The result of

scaling along the horizontal axis with a scale factor of ,7{4
ffiffiffi
3
p

. Points are indexed with the corresponding argument n.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 6193 | DOI: 10.1038/srep06193 3



pattern formed by the overlapping plots for its ascending branch and
descending branch (Fig. S3).

The ascending branch of the function y 5 arcsin(sin(2pln))is
plotted in Fig. 5a (For comparison of the two branches, see Fig.
S3). One can easily check that the points in Fig. 5a form a square
lattice, in an approximate sense, when a proper ratio of longitudinal
scale to transverse scale is chosen (see detailed proof in supplement-
ary information).

If Fig. 5a is compressed along the horizontal axis, the shape of the
approximate square unit will at first be distorted, then, when the scale
factor comes to a value ,3{2

ffiffiffi
2
p

, the shape of the lattice will be
recovered, as illustrated in Fig. 5b. This operation can be performed
repeatedly. After each contraction, the approximate unit square gets
closer to a rigorous square (see detailed proof in supplementary
information). It can be proven that the approximate unit square turns
into a rigorous square when the ratio of longitudinal scale to trans-
verse scale becomes vanishing small (see detailed proof in supplement-
ary information). Notice that the neighborhood relation of points in
the lattice has been changed by contraction. For example, the unit
square, anchored to the original point 0, is (%0-5-12-17) in Fig. 5a,
but after the contraction it is the square %0-12-29-41, see Fig. 5b.
Moreover, the unit square is also rotated by 45u by the transformation.

Thus this manipulation leads us to the discovery that directional
scaling symmetry exists for the square lattice, which is along the
direction at 22.5u with respect to any side of a unit square, and the
scaling factor is 3{2

ffiffiffi
2
p

. The ratio of the side lengths of the unit
squares before and after transformation is

ffiffiffi
2
p

{1 (see detailed proof
in supplementary information).

Thus by using the arcsine functions y 5 arcsin(sin(2pxn)), where
the parameter x is either the platinum number m~2{

ffiffiffi
3
p

or the
silver number l~

ffiffiffi
2
p

{1, we found and proved the existence of
directional scaling symmetry for the equilateral triangular lattice
(thus also the honeycomb lattice), and the square lattice. With the
drag center set on a lattice point, in the case of equilateral triangular
lattice, the direction of scaling symmetry is at 15u with regard to the
side of the unit triangle, and the scale factor is 7{4

ffiffiffi
3
p

, while in the
case of square lattice, the direction of scaling symmetry is at 22.5u
with regard to the side of the unit square triangle, and the scale factor
is 3{2

ffiffiffi
2
p

. In both cases the directional scaling transformation can
be performed repeatedly.

Discussion
With the existence proof of directional scaling symmetry for the
square lattice and equilateral triangular lattice, an immediate ques-
tion will be raised: Are there more possibilities of scaling symmetry
for these high-symmetry 2D lattices? Also it reminds us of the pos-
sible existence of directional scaling symmetry for 3D cubic and
rhombic lattices. To both questions we will bet on a positive answer.

The method of proof involves applying trigonometric functions
with the silver ratio and the platinum ratio in argument, and
approaching a property of the rigorously symmetrical lattices from
approximate ones, is new and inspiring. To the least, such a function
can be used to generate quasiperiodic lattices with enumerable lattice
points, which is very helpful for the calculation of the diffraction
pattern and energy bands for quasicrystals. It is of particular import-
ance when the enumeration of the eigenfunctions for the

Figure 4 | Plots of the sinusoidal function y 5 sin(2pln) (a) and the arcsine function y 5 arcsin(sin(2pln)) (b), where l~
ffiffiffi
2
p

{1, and the argument n is
non-negative integer.

www.nature.com/scientificreports
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Hamiltonian operator is of concern as in the study of topological
insulator, and the current work may help the search of topological
insulators in quasicrystals19.

With the current work we want to call attention to the directional
scaling symmetry for the equilateral triangular lattice and square
lattice, and the related silver ratio and platinum ratio, which are
expected to have some impact on the various physics problems,
particularly in statistical physics, condensed matter physics,
quantum field theory, etc., modeled on high-symmetry 2D lattices.
The scaling symmetry of a lattice will be incorporated into the
Hamiltonian for a quantum model defined on it, which in turn will
determine the feature of ground energy degeneracy-a pivotal concept
for the discussion of quantum critical phenomenon. Remarkably, the
golden ratio Q~(

ffiffiffi
5
p

z1)=2, the peer of the silver ratio and the plat-
inum ratio here concerned, has been found lying beneath many
fundamental physical problems, and usually in unexpected places.
For instance, the lowest two masses of the bound states, m1 and m2, in
the 1D Ising model realized in CoNb2O6 crystal, have the ratio m1/m2

5 Q, as predicted by E8 Lie group20. The critical fugacity for the hard-
hexagon model is found to be zc 5 Q5 21, while the maximum of
Hardy’s probability, a quantity referring to the Hardy’s test of
Bell’s inequality, for quantum system of arbitrary finite dimension
is pHardy 5 1/Q5 22. Such observations have not yet been well under-
stood. It is anticipated by analogy that the silver ratio and the plat-
inum ratio may also be found relevant in the physical problems
defined on such lattices, e.g., J1-J2 XY model, triangular Ising anti-
ferromagnet, etc. As in the case of the golden ratio, the discovery may
demand years of meticulous research, and will be made only in a
serendipitous fashion.
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Figure 5 | (a) Plot of the ascending branch of the function y 5 arcsin(sin(2pln)), where l~
ffiffiffi
2
p

{1, and n is non-negative integer; (b) The result of

scaling along the horizontal axis with scale factor ,3{2
ffiffiffi
2
p

. Points are indexed with the corresponding argument n.
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