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In this Letter we address the issue of how synthetic spin-orbit (SO) coupling can strongly affect
three-body physics in ultracold atomic gases. We consider a system which consists of three fermionic
atoms, including two spinless heavy atoms and one spin-1=2 light atom subjected to an isotropic SO
coupling. We find that SO coupling can induce universal three-body bound states with a negative s-wave
scattering length at a smaller mass ratio, where no trimer bound state can exist if in the absence of SO
coupling. The energies of these trimers are independent of the high-energy cutoff, and therefore they are
universal ones. Moreover, the resulting atom-dimer resonance can be effectively controlled by SO coupling
strength. Our results can be applied to systems like a 6Li and 40K mixture.
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“Universal phenomenon” refers to observations
independent of short-range or high energy details, which
is one of the most beautiful and charming parts of physics.
Universal physics not only emerges in interacting
many-body systems but also exists in quantum mechanical
few-body problems. A cold atom system, because of its
diluteness, is an ideal platform to investigate various
intriguing phenomena of few-body systems. For instance,
an Efimov trimer with a universal scaling factor [1,2] has
been extensively studied experimentally [3–10]. Another
type of trimer whose energy is universal has also been
predicted by Kartavtsev and Malykh [11].
On the other hand, thanks to fast experimental develop-

ments [12–22], synthetic spin-orbit (SO) coupling has
recently emerged as one of the most exciting research
directions in cold atom physics [23]. Among the many
profound effects of SO coupling, one distinct factor is that
certain types of SO coupling can dramatically change the
two-body physics. For instance, with Rashba-type SO
coupling, because the low-energy density of state is
enhanced to a finite constant, any small attractive inter-
action between atoms can support a two-body bound state
in three dimensions, and the binding energy increases with
the strength of SO coupling [24]. Consequently, this two-
body result dramatically changes many-body physics in the
scenario of BEC-BCS crossover for spin-1=2 fermions
[25–27], where the superfluidity is greatly enhanced by SO
coupling even in the far BCS side [25].
The dramatic effect of SO coupling in two-body problem

and its profound consequence naturally raises the question
of whether a similar significant manifestation also exists in
a three-body problem. However, so far three-body prob-
lems with SO coupling have not been studied in cold atom
content, though historically there have been some related
studies in investigating the nucleus [28–30]. In this work

we study a three-fermion problem which consists of two
heavy fermionic α atoms with mass M and one light
fermionic β atom with mass m, and the α and β atom
interact via a zero-range s-wave interaction in the vicinity
of the two-body scattering resonances. The α atom is
spinless and the β atom is spin-1=2. As the first attempt to
demonstrate rich physics of SO coupling in the few-body
cold atom system, we consider a simple case where only the
β atom is subjected to an isotropic SO coupling [31,32].
This is realistic for a cold atom system, since synthetic SO
coupling for atoms is induced by atom-light (or atom-
magnetic field) interaction which can be selectively applied
to certain species. For instance, we can consider a mixture
of two-component 6Li with single component 40K, and the
(pseudo)-spin of 6Li is coupled to its momentum [33].
Indeed, we find that SO coupling leads to intriguing new

physics in this three-body system. The most significant
finding is that when M=m ≳ 5.92 (satisfied by 6Li and 40K
mixture), SO coupling can induce a universal trimer state
whose energy is independent of the short-range parameter.
Such trimers can exist at the negative scattering length
side—a regime where the universal trimer can never exist in
the absence of SO coupling. Moreover, the locations of
three-body resonances are tunable by the strength of the SO
coupling. This result reveals a unique manifestation of SO
coupling in dilute quantum gases and also adds a new
control knob to the three-body system. Potentially it can
also shed light on the few-body system of a nucleus where
SO coupling is inevitable.
Before proceeding, we shall first briefly review the

known results for such an α-α-β system without SO
coupling. Two types of trimer states have been found.
First, when M=m > 13.6, the Efimov trimer emerges
in both sides nearby the resonance. The energy of
the Efimov trimer is not universal since it depends on
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the high-energy cutoff known as the three-body param-
eter, while the energies of two successive trimers obey a
universal scaling behavior [1]. Second, when 8.17 <
M=m < 13.6, there exists another type of trimer named
the “Kartavtsev-Malykh” trimer, whose energy is uni-
versal (i.e., independent of any high-energy cutoff) [11].
Since the s-wave scattering length a is the only length
scale, the trimer energy has to simply scale with the two-
body binding energy. Thus, such a universal trimer
appears only for positive a when a two-body bound
state exists. Because of the antisymmetrization of the two
α atoms, both types of trimer states have a total orbital
angular momentum L ¼ 1.
Model.—Our system is described by the Hamiltonian

Ĥ ¼ Ĥ0 þ Û,

Ĥ0 ¼
p1

2

2M
þ p2

2

2M
þ ðp3 − λσ̂Þ2

2m
; (1)

Û ¼ ½gδðr1 − r3Þ þ gδðr2 − r3Þ�I; (2)

in which p1;2ðr1;2Þ refers to the momentum (position) of
two α atoms, and p3ðr3Þ is for the β atom. σ̂ is the spin of
the β atom, which couples to its momentum via a three-
dimensional isotropic SO coupling λp · σ̂ where p ¼
ðpx; py; pzÞ and σ̂ ¼ ðσx; σy; σzÞ. Without loss of general-
ity, we take λ > 0. Proposals for realizing such a SO
coupling have been presented in Refs. [31,32]. The
s-wave contact interaction Û only takes place between
the β atom and α atom, and the interaction strength is
assumed to be independent of the spin-index of the β
atom, where I in Û denotes the identity operator acting
on the spin space of the β atom. g is related to a by the
renormalization equation

1

g
¼ Mm

2πðM þmÞa − 1

Ω

X

k

2Mm
ðM þmÞk2 ; (3)

where Ω is the volume. It has been shown that this relation
will not be changed by SO coupling, as long as 1=λ is
much larger than the range of interatomic potential
[35–37].
To address the three-body bound state, we should first

solve the two-body problem with one α and one β atom to
determine the atom-dimer threshold, which can be carried
out quite straightforwardly with the Lippman-Schwinger
equation [38]. Although our case differs from previous
studies of the two-body problem with SO coupling
[24,31,32,35–37,39–42] where both two atoms are sub-
jected to SO coupling, the results are quite similar to
previous cases with Rashba or three-dimensional isotropic
SO coupling, i.e., for any mass ratio M=m and for all a, a
two-body bound state with zero center-of-mass momentum
exists [24,25,31,35]. The physical reason is also attributed
to the enhancement of the density of state of the β atom,
which diverges at the threshold scattering energy.

For the same three-body system without SO coupling,
the total orbital angular momentum L is a good quantum
number and most previous calculations focus on the lowest
bound states in the L ¼ 1 channel. After introducing spin
degrees of freedom for the β atom, these bound states are
always sixfold degenerate. In the presence of SO coupling,
these states would split into two channels with a different
total angular momentum J ¼ Lþ S. They are two states
with J ¼ 1=2 and four states with J ¼ 3=2.
Solving the three-body problem.—Generally, we assume

the three-body wave function (with total momentumK0) as

jΨi ¼
X

p;q;σ

Ψσðq;K0 − p;p − qÞα̂†qα̂†K0−pβ̂
†
σ;p−qj0i; (4)

where α̂† and β̂† are creation operators for the α atom
and β atom, respectively, and σ ¼ ↑, ↓ is the spin index of
the β atom. Introducing an auxiliary function fσðpÞ ¼
g
P

qΨσðq;K0 − p;p − qÞ, we can reach the following
integral equation for fσðqÞ:

fσðkÞ ¼ g
X

p;σ0
Gσσ0 ðE;p;K0 − k;k − pÞ

× ½fσ0 ðkÞ − fσ0 ðK0 − pÞ�; (5)

where

Gσσ0 ðE;k1;k2;k3Þ

¼
�
k1;k2;k3; σ

����
1

E −H0

����k1;k2;k3; σ
0
�

is the Green’s function in momentum space [43–45]. The
nonzero solution of Eq. (5) determines the energy of the
trimer states, E ¼ E3. To get physical solutions for E3,
the renormalization equation (3) can be used to eliminate
the ultraviolet divergence of

P
pGσσ in Eq. (5) [38].

However, in general, solving the coupled three-
dimensional integral equation is highly nontrivial.
Nevertheless, great simplification can be obtained in the
subspace with K0 ¼ 0. As shown in the Supplemental
Material [38], for a quantum state labeled by ðJ; JzÞ ¼ ðjþ
1=2; mþ 1=2Þ (where j and m are integers), fσðkÞ satisfies

f↑ðkÞ ¼ C0
↑f0ðkÞYm

j ðΩkÞ þ C1
↑f1ðkÞYm

jþ1ðΩkÞ;
f↓ðkÞ ¼ C0

↓f0ðkÞYmþ1
j ðΩkÞ þ C1

↓f1ðkÞYmþ1
jþ1 ðΩkÞ; (6)

where k ¼ jkj is the magnitude of k and f0, f1 are func-
tions that only depend on k, C0

σ , C1
σ are Clebsch-Gordan

coefficients,

Cδ
σ ¼

�
jþ δ; m − σ;

1

2
; σjjþ 1

2
; mþ 1

2

�
; (7)

with δ ¼ 0,1 and σ ¼ � 1
2
. After substituting Eq. (6) into

Eq. (5), Eq. (5) is reduced to two coupled one-dimensional
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integral equations, whose explicit forms are given in the
Supplemental Material [38] and can be solved numerically
to determine the trimer energy E3.
Results.—With SO coupling, the energies of the J ¼ 1=2

channel and J ¼ 3=2 channel will split, and we find that
in most regions of interest, the J ¼ 1=2 channel has a
higher energy than that of the J ¼ 3=2 channel. In the
following we will summarize the results for the ground
state J ¼ 3=2 channel, while the results for J ¼ 1=2 will be
presented elsewhere [46].
(1) When 5.92≲M=m < 8.17, there is no trimer state if

there is no SO coupling. We find that with SO coupling, a
trimer state will be induced in the vicinity of two-body
resonance. It emerges from the atom-dimer threshold at
a < 0 side and then merges into the atom-dimer threshold
at the a > 0 side, as shown in Fig. 1(a). The energy of such
a trimer state is independent of any high energy cutoff; thus,
similar to the universal “Kartavtsev-Malykh” trimer, the
ratio between trimer energy (E3) and atom-dimer threshold
energy (Eth) γ ¼ E3=jEthj is a universal function of 1=λa, as
plotted in Fig. 2(a). γ < −1 means that the trimer energy is
below the atom-dimer threshold.
(2) When 8.17 < M=m < 13:6, there exists at least one

universal “Kartavtsev-Malykh” trimer at the positive a side if
there is no SO coupling. We find that with SO coupling, the
lowest trimer starts to appear at the a < 0 side. This trimer
energy is also universal. The ratio γ plotted in Fig. 2(a)

shows that γ < −1 from a certain point with negative a and
saturates to a constant (the same value as predicted by
Kartavtsev andMalykh for the case without SO coupling) for
large 1=λa. When 12.9≲M=m < 13.6, an second trimer
emerges at a > 0 side.
(3) When M=m > 13.6, the system enters the nonuni-

versal regime with trimer energies sensitively depending on
the short-range parameter [47]. Without SO coupling, there
are an infinite number of Efimov trimers whose spectra
exhibit a discrete scaling property [2]. When the strength of
SO coupling increases, the binding energies of these
trimers decrease, and finally these trimers merge into an
atom-dimer continuum and disappear one after the other. In
addition, because SO coupling introduces an additional
length scale, these trimers no longer obey the discrete
scaling symmetry even at resonance [46].
With the results above, a “phase diagram” for the J ¼

3=2 trimer is constructed in terms of dimensionless
interaction parameter 1=λa and mass ratio μ ¼ M=m, as
shown in Fig. 2(b), where μc1 (μc2) is the critical mass ratio
for the emergence of the first (second) universal trimer. It is
interesting to note that μc1 is a nonmonotonic function of
1=λa, which reaches its minimum when 1=λa is close
to zero.

FIG. 1 (color online). Schematic of the atom-dimer threshold
(green dashed line) and trimer energy in the presence of SO
coupling for 6.5 < M=m < 8.17 (a), 8.17 < M=m < 12.9 (b),
12.9 < M=m < 13.6 (c) and 13.6 < M=m (d). Red solid line in
(a)–(c) represents the universal trimer with lowest energy. Blue
dashed-dotted line in (c) represents the second universal trimer,
and yellow dotted lines in (d) represent Efimov trimers. This is a
schematic plot in order to highlight main features. The actual
numbers are shown in Fig. 2.
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FIG. 2 (color online). (a) The ratio between the J ¼ 3=2 trimer
energy E3 and atom-dimer threshold energy jEthj, γ ¼ E3=jEthj,
as a function of 1=λa for different mass ratiosM=m labeled in the
curve. (b) The “phase diagram” for J ¼ 3=2 trimer in terms of
1=λa and mass ratio μ ¼ M=m.
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In Fig. 3, we show that the trimer energy is indeed
universal when M=m < 13.6. At resonance, if the trimer
energy is universal, 1=λ becomes the only length scale in
the problem and the trimer energy has to scale with
ℏ2λ2=M. We introduce a high-momentum cutoff Λ for
the atom-dimer motion, or equivalently, to the argument of
the fσ function in Eq. (5). This scaling behavior is shown in
Fig. 3(a). In Fig. 3(b), we plot the lowest trimer energy at
resonance as a function of mass ratio, with two different
high-energy cutoffs Λ. It clearly shows that for M=m <
13.6 the energy is independent of the cutoff while it is
not for M=m > 13.6. The scenario of how universal
“Kartavtsev-Malykh” trimers cross over to the Efimov
trimer is similar to what has been discussed in Ref. [48]
for the case without SO coupling.
Among the above results 1–3, 1 and 2 are the most

significant ones. It means that SO coupling favors trimer
formation; i.e., universal trimer can now exist for a smaller
mass ratio and also at the a < 0 side. Another way to view
it is that, once M=m≳ 5.92, the trimer state can always be
induced by increasing the strength of SO coupling, even for
the system at weak interaction regime.
We attribute the reason that SO coupling favors trimer

formation to the lifting of the ground state degeneracy. If
there is no SO coupling, all the bound states are highly
degenerate, while SO coupling mixes different orbital
angular momentum channels, which breaks such degen-
eracy and lowers the ground-state energy according to the
second perturbation theory. For example, in Fig. 4, we
show a case with M=m > 8.17 at a > 0 side. The dashed
line represents the energy of the “Kartavtsev-Malykh”
trimer without SO coupling, where J ¼ 3=2 and J ¼
1=2 states are degenerate. With SO coupling, it is found
that the splitting between J ¼ 3=2 and J ¼ 1=2 increases
the energy of the J ¼ 1=2 trimer but lowers the energy of
J ¼ 3=2 trimers. Consequently, the J ¼ 3=2 trimers can
exist for a smaller mass ratio and also at the a < 0 side.
Furthermore, because the mixing of different orbital angu-
lar momentum channels is an intrinsic effect of SO
coupling, we anticipate that our results qualitatively hold
for a general type of SO coupling.

We would also like to point out a phenomenological
analogy between two-body physics and three-body phys-
ics. Without SO coupling, both the two-body bound state
and three-body universal trimer only exist in the region
with positive as, while with SO coupling, they both extend
to the negative as side. In this sense, the few-body physics
in the two-body sector and three-body sector are modified
by SO coupling in a similar way.
Final remark.—Our results can potentially influence

many-body physics. When the trimer energies touch the
atom-dimer threshold, it will lead to an atom-dimer
resonance where the atom-dimer scattering length will
change dramatically. Without SO coupling, usually the
resonance position of the Efimov trimer is controlled by the
three-body parameter 1=Λa, which is not tunable for a
given mixture. While with SO coupling, the resonance
position of the universal trimer is controlled by 1=λa, which
can be tuned quite flexibly by the SO coupling strength λ.
Thus, this introduces a new way to manipulate a strongly
interacting quantum many-body system.
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