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In some many-body systems, certain ground-state entanglement (Rényi) entropies increase even as the
correlation length decreases. This entanglement nonmonotonicity is a potential indicator of nonclassicality.
In this work, we demonstrate that such a phenomenon, known as lack of local convertibility, is due to the
edge-state (de)construction occurring in the system. To this end, we employ the example of the Ising chain,
displaying an order-disorder quantum phase transition. Employing both analytical and numerical methods,
we compute entanglement entropies for various system bipartitions ðAjBÞ and consider ground states with
and without Majorana edge states. We find that the thermal ground states, enjoying the Hamiltonian
symmetries, show lack of local convertibility if either A or B is smaller than, or of the order of, the
correlation length. In contrast, the ordered (symmetry-breaking) ground state is always locally convertible.
The edge-state behavior explains all these results and could disclose a paradigm to understand local
convertibility in other quantum phases of matter. The connection we establish between convertibility and
nonlocal, quantum correlations provides a clear criterion of which features a universal quantum simulator
should possess to outperform a classical machine.
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Quantum Physics, Quantum Information

I. INTRODUCTION

In 1982, Richard Feynman conjectured that a quantum
machine is necessary to predict the outcome of a general
quantum evolution and pioneered the notion of a universal
quantum simulator: a device capable of processing quan-
tum information that potentially supersedes any classical
computer in simulating quantum systems. This idea embra-
ces much of quantum information research and the

technologies stemming from it [1,2] and has attracted a
lot of efforts toward the realization of such a device.
However, quantifying to what extent a given quantum
system could outperform a classical simulator is problem-
atic [3]. How can we determine if a many-body system can
operate as an efficient quantum simulator? Towhat extent is
coherent manipulation the defining property of a quantum
algorithm?We address such a question quantitatively, using
the local convertibility of the quantum system hosting the
simulation, and we demonstrate that the (Majorana) edge
states establish genuinely quantum long-range correlations
that may provide an additional resource for a given
computational protocol.
While quantum complexity and quantum algorithm

theory have provided very general results on the computa-
tional power of abstract models [4–6], specific toy models
(often providing concrete and physically relevant physical
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models) afford instances that exhibit interesting behavior in
their own right (see, for instance, Refs. [7,8]). In the present
work, we follow the latter avenue. Notwithstanding that
quantum many-body systems provide a natural setting for
entanglement and other quantum superposition or interfer-
ence effects [9–15], it is poorly understood which one of
the quantum resources can indeed play as the added value
for the simulation [3,16–24]. On the other hand, an
important achievement has been the identification of the
role of short- and long-range entanglement, which have
also emerged as figures of merit for the different quantum
orders that can be established in extended systems [25].
Here, we refer to a specific notion of long-range

entanglement related to local operations and classical
communications (LOCC) [26]. Upon partitioning a
many-body spin system into two blocks A and B, we
consider the following question: Can the response of the
ground state jgi to an external perturbation be rendered
through LOCC restricted to A and B individually? If
affirmative, the ground state can be moved around within
a given quantum phase by LOCC. If negative, the adiabatic
evolution induced by the perturbation involves some
coherent quantum operation between system A and system
B. The figure of merit for such phenomena is the differ-
ential local convertibility (DLC) of bipartite states. DLC
was introduced in the context of majorization [27–29].
Quantitatively, DLC accounts for the response of the Rényi
entropy

Sα≐ 1

1 − α
log TrραA ð1Þ

to the changing of a control parameter h in the Hamiltonian.
Here, ρA ≐ TrBjgihgj is the reduced density matrix of the
block A and α is a free parameter that tunes different
entanglement measures [26]. For instance, while low α’s
weight more evenly all eigenvalues of ρA, higher values
of α enhance the role of the larger eigenvalues, which,
as we are going to show, are more sensitive to the edge-state
behavior.
DLC holds if and only if all the α entropies are

monotonous:

∂hSα ≥ 0; ∀ α ≥ 0 ð2Þ
or ∂hSα ≤ 0, ∀α ≥ 0 [30,31]. DLC was first employed in a
many-body problem by Cui et al. in Ref. [32]. An
important motivation behind Ref. [32] is the observation
that an adiabatic quantum algorithm [33] may exhibit
greater computational capabilities only in a given phase
that is not DLC. Here, by identifying a physical mechanism
responsible for lack of DLC, we argue that the computa-
tional power of a nonconvertible phase is actually much
bigger and that a quantum phase cannot be exploited as an
efficient (universal) quantum simulator [1] if it is locally
convertible.

We explain the phenomenology of local convertibility in
quantum phases supporting edge states (that is, excitations
localized at the boundaries of a many-body system)
[34,35]. We shall show that in phases with boundary states,
the operation of dividing the system into two partitions
reveals long-ranged correlations that cannot be resolved
within the partition. These correlations are the manifesta-
tion of the edge states created at the boundaries between
the subregions. These considerations are reflected by the
nontrivial behavior of the entanglement entropy: For some
(low) α’s, the Rényi entropies are sensitive to short-range
entanglement and increase when a quantum phase tran-
sition (QPT) is approached, but for other (large) α’s, the
entropies do the opposite. This finding implies that the
entanglement between edge states can decrease, even as
the correlation length increases.

II. THE QUANTUM ISING CHAIN

To show the effect of edge states on local convertibility, it
is desirable to have a model with three properties: (i) It
should support edge states, (ii) quasiparticle excitations
should be clearly identifiable, and (iii) there should be a
mechanism for destroying the edge states and observing the
different behavior. The one-dimensional transverse-field
Ising model fulfills these requirements [36,37]. It is defined
by the Hamiltonian

HI ¼ −
XN
j¼1

ðtσxjσxjþ1 þ hσzjÞ; ð3Þ

where σαj are Pauli matrices, t is a hopping amplitude
(which we can set to t ¼ 1), and h is the control parameter
for the external magnetic field. A quantum phase transition
for h ¼ t ¼ 1 happens in the thermodynamic limit of
N → ∞. This QPT’s signatures have recently been
observed experimentally [38]. We note that with an addi-
tional σzσz and by allowing a distribution of the couplings
on a sparse graph, the Hamiltonian (3) would result in a
quantumMerlin-Arthur (QMA) hard ground-state problem,
hence providing a universal quantum simulator [39]. It has
also been shown in Ref. [39] that with all off-diagonal
matrix elements in the standard basis being real and sharing
the same sign, the model falls in the class of so-called
stoquastic systems; see Refs. [39,40] for related topics.
The Hilbert space acted on by the Hamiltonian (3) can be

described in terms of eigenstates of the string operator
μxN ¼ Q

N
j¼1 σ

z
j, which generates theZ2 symmetry of Eq. (3).

For h > 1, the system is paramagnetic with hσxi ¼ 0. For
h < 1, the spectrum of the Ising model becomes doubly
degenerate.Aground state that is also an eigenstate ofμxN has
a vanishing order parameter hσxi ¼ 0. This ground state is
known as the “thermal ground state.” This state is also the
initial state employed in the 2SAT problem and in adiabatic
quantum computation protocols for finite N [33]. In the
thermodynamic limit (N → ∞), σx can acquire a nonzero
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expectation value. The symmetry will be broken sponta-
neously, and the ground state will be given by the (anti)
symmetric combination of the two eigenstates of μxN . For
h < 1, we consider both the ferromagnetic ground statewith
nonvanishing order parameter hσxi and the thermal one
enjoying the same Z2 symmetry as the Hamiltonian.
The quantum Ising model (3) can be mapped exactly,

although nonlocally, to a system of free spinless fermions
fcj; c†jg [36]. We remark that the mapping in Ref. [36]
preserves the entanglement between A and B [41,42] and
generates the Kitaev chain. As emphasized in Ref. [43], this
formulation highlights the presence of Majorana edge states
as emergent degrees of freedom. Majorana fermions are the
elusive particles (coinciding with their own antiparticles),
proposed by Ettore Majorana. Many research groups are
trying to find and manipulate them [34,35]. Each Dirac
fermion of the chain can be used to define two Majorana
fermions:

fð1Þj ≡
�Y
l<j

σzl

�
σxj ¼ c†j þ cj;

fð2Þj ≡
�Y
l<j

σzl

�
σyj ¼ iðc†j − cjÞ: ð4Þ

We represent this mapping pictorially in Fig. 1. In the
paramagnetic phase (h > 1), the Hamiltonian pairs pre-
dominantly Majoranas on the same site j. (This correlation
is drawn as a double line in the picture.) In the ferromag-
netic phase (h < 1), the dashed line connecting different
sites is dominant. In Kitaev’s approach, the double degen-
eracy of this phase emerges as the first and last Majoranas
are left unpaired and can be combined into a complex
fermion. (The occupancy or vacancy of this fermion costs

no energy.) We will see that the same picture applies when
the system is divided into two partitions: In the ferromag-
netic phase, this operation cuts the dominant link and leaves
unpaired Majorana edge states on each side of the cut.
This behavior is a key many-body feature that renders

phases supporting boundary states more “quantum” than
other systems. In fact, since any subsystem develops edge
states, in these phases, qubits of information are stored
nonlocally between the sites and we will see that this
property is mirrored by the nontrivial entanglement behav-
ior, yielding lack of local convertibility. Such phenomenol-
ogy must be a necessary ingredient of a machine aimed at
simulating a generic quantum system, and this observation
is the reason for which we believe nonlocal convertibility to
be a strong indicator of a higher computational power.

III. THE Z2-SYMMETRIC GROUND STATE

As explained in the Appendix, in the Ising chain, the 2L

states within a block of L consecutive sites can be
constructed in terms of individual quasiparticle excitations,
which can be either occupied or empty. These excitations
are, in general, delocalized, with a typical size set by the
correlation length. However, a Z2-symmetric state pos-
sesses one special excitation, with support lying at the
opposite edges of the block and formed by two Majorana
edge states [43]. When the block is extended to the whole
system (L ¼ N), the block excitations coincide with the
systems’ excitations, including the boundary states.
The entanglement between two subsystems A and B can

be extracted from the 2L eigenvalues �iνj of the corre-
lation matrix equation (A6) incorporating the correlations
of the excitations within the spin block. Here, L is the
number of lattice sites in A. The eigenvalues of the reduced
density matrix can then be constructed out of the νj’s, using
Eq. (A4) in the Appendix. The ν’s can be interpreted as sort
of occupation numbers, since they capture the overlaps
between each block quasiparticle excitation and the ground
state, according to Eq. (A3): νj ¼ 0 means that this block
excitation is half filled and half empty in the ground state,
while νj ¼ 1 indicates that the excitation is either com-
pletely occupied or not present at all.
In Fig. 2, we plot these eigenvalues νj as a function of the

magnetic field for L ¼ 2 and L ¼ 10. Notice that in both
cases, only one block excitation has a nontrivial behavior
while the other eigenvalues stay approximately constant
around unity in all phases. Significant deviations happen
only close to the QPT (as the correlation length diverges).
As discussed, the modes with νj ≃ 1 define bulk states. In
contrast, the nontrivial eigenvalue is close to 0 for h≃ 0
and rises rapidly toward 1 crossing the QPTat h ¼ 1: In the
ferromagnetic phase, it corresponds to a block excitation
that is neither occupied nor empty. By cutting the chain into
two subregions, we sever the dominant intersite correlation
and hence generate two unpaired Majorana edge states
(see Fig. 1). We notice, however, that as h increases, the

FIG. 1. Top: The Ising chain is mapped into a system of
Majorana fermions by doubling the lattice sites. Center and
bottom: A schematic of the quasiparticle excitations in the two
phases and the effect of bipartitioning the system; for small h,
edge states form at the opposite boundaries of subsystem A. The
property of local convertibility depends on the correlations
between such edge states.
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occupation number of this edge excitation increases,
indicating edge-state recombination.
Having discussed the behavior of the eigenvalues νj’s

and the role of the boundary states, it is straightforward to
analyze the Rényi entropy and address the issue of differ-
ential local convertibility. It is interesting to concentrate on
the two extreme limits: L ¼ 2 and L → ∞.
The two occupation numbers ν� for L ¼ 2 are shown in

the left panel of Fig. 2, and the resulting four eigenvalues
of the reduced density matrix, according to Eq. (A4), are
plotted in the left panel of Fig. 3. While in locally
convertible phases the largest eigenvalue(s) decrease
approaching the QPT, indicating an increase of the entan-
glement, here we see that the edge-state recombination
results in a growing larger eigenvalue. The right panel of
Fig. 3 presents the sign of the entanglement entropy
derivative, to be considered in relation with Eq. (2). We
see that in the paramagnetic phase, the Rényi entropy
always decreases. Instead, in the doubly degenerate phase,
the entropy derivative vanishes at some value of α and
changes sign, indicating that local (differential) converti-
bility is lost in this phase (as already observed numerically
for smallN and largerL in Ref. [32]). It is important to notice
here that these results imply that any operation acting on two
sites alone effectively creates edge states at the boundary of
the sites and hence projects the system onto these states,
losing part of the coherence in the original state.

For the L → ∞ limit, we can take advantage of the
results of Refs. [44–46], where the full spectrum (eigen-
values and multiplicities) of the reduced density matrix and
the Rényi entropies were calculated analytically. Figure 4
shows a plot of the first few eigenvalues of ρA and a plot
of the entropy derivative as a function of α for h ¼ 0.6
and h ¼ 0.9. We see that the largest eigenvalue (doubly
degenerate in the ferromagnetic phase) decreases monoto-
nously toward the QPT while smaller eigenvalues are
allowed to grow, yielding a monotonous increase of all
the Rényi entropies. It is thus clear that local convertibility
is restored in the infinite L limit.
We check these results numerically for systems up to

N ¼ 200 and with different partitions. We consider differ-
ent block sizes and move the blocks within the chain.
The qualitative picture does not change significantly as one
varies ðAjBÞ, but the location of the curve where the
entropy derivative vanishes transitions in the ðh; αÞ plane.
It tends toward the phase-transition line h ¼ 1 as the block
sizes grow bigger, confirming our expectation on the role of
the boundary excitations. Namely, we see that as long as the
edge states from different boundaries do not overlap, their
occupation number stays constant and vanishing. It starts
increasing only once the correlation length grows compa-
rable to one of the block sizes, indicating the recombination
of the edge states and a decrease in the entanglement
contribution from the edge states.

IV. SYMMETRY-BROKEN GROUND STATE

To further confirm our interpretation on the role of
boundary modes, in the ordered phase h < 1, we also
consider the ferromagnetic ground state for which hσxi ≠ 0.
Since this state does not support well-defined Majorana
edge states, we expect a restoration of local convertibility.
We numerically calculate the Rényi entropy of this
symmetry-broken ground state. Namely, we add a very
small perturbation ϵðσx1 þ σxNÞ to the Hamiltonian (3) and
apply the variational matrix-product state routine to obtain
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FIG. 2. Plot of the occupation number νj obtained from the
correlation matrix (A6) as a function of h for L ¼ 2 (left) and
L ¼ 10 (right). For L ¼ 2, the explicit form of the eigenvalues ν�
is given in Eq. (A8). Notice that only one of the ν’s exhibits
nontrivial behavior: It corresponds to the boundary state, which is
only partially contained in the subregion.
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FIG. 3. Left: Plot of the four eigenvalues of ρA for L ¼ 2, as a
function of h. The solid lines depict analytical results, while the
crosses show the numerical results with N ¼ 200. (Notice the
different scales in the vertical axis between the top and bottom
panels.) Right: Contour plot of the sign of the derivative with
respect to h of the Rényi entropy for different values of h and α.

FIG. 4. Left: Plot of the first few eigenvalues of ρA, for an
infinite size block, as a function of h. The eigenvalues’ multi-
plicities are not shown. (For instance, the highest eigenvalue is
doubly degenerate for h < 1 and unique for h > 1; see Ref. [44].)
Right: Plot of the derivative of the Rényi entropy with respect to
the magnetic field h, as a function of α, for two different values of
h in the ferromagnetic region.
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the ground state [47]. In this work, the convergence
tolerance is 10−6. Figure 5 shows the plots of the sign
of the entropy derivative for two possible partitions (small
and large A blocks), and it validates our expectation that
both phases are locally convertible. We consider several
partitioning choices, and the results are not distinguishable
from those in Fig. 5.
In conclusion, we see that for h > 1, the disordered

ground state is always locally convertible. In the ordered
phase, the ferromagnetic ground state, i.e., with broken
symmetry, is also locally convertible for any chosen parti-
tion. For the thermal ground state, however, the convertibility
depends on the interplay between the size of the partitions
ðAjBÞ and the correlation length of the system. This
phenomenon is a manifestation of edge-state recombination.
These entangled pairs lie on opposite boundaries of the
partition (see Fig. 1) but with a finite support intruding in the
bulk about the order of the correlation length. For sufficiently
large block size, the entanglement between boundary states
does not depend on the correlation length and remains
constant throughout the phase. However, as this length
increases approaching a QPT, the edge states effectively
grow closer. If either of the subregions A or B is sufficiently
small, the tails of these states can overlap and we see their
occupation number increasing and their entanglement
decreasing, yielding lack of local convertibility.

V. CONCLUSIONS AND DISCUSSIONS

We considered a specific notion of long-range entangle-
ment, defined as the lack of differential local convertibility
for a bipartite system ðBjAjBÞ. In phases where differential
local convertibility holds, the response of the ground state
to an external perturbation can be rendered by local means
(in A and B), and hence, such phases offer more restricted
computational capability under adiabatic perturbation.
By identifying a mechanism that breaks differential local
convertibility, we discussed the role of edge states in
determining quantitatively whether the adiabatic perturba-
tion of a quantum many-body system can supersede a
protocol limited to LOCC operations between A and B.
In the class of models we considered, we found that

destroying edge states (for instance, by breaking the
symmetry of the Hamiltonian) yields locally convertible

quantum phases. In contrast, in quantum phases with edge
states, the convertibility depends on the interplay between
the sizes of the partitions and on the correlation length of
the system. Approaching the QPT, at some point, the
correlation length grows to be comparable with one of
the block sizes and the boundary states start recombining:
From this point forward, their contribution to the entangle-
ment starts decreasing. For sufficiently large α’s, the Rényi
entropies are dominated by the edge-state behavior and
they decrease toward a QPT. At the same time, low-α
entropies still increase as usual because more states are
required to construct the reduced density matrix in the
Schmidt decomposition [26]. This combined behavior
leads to a breakdown of local convertibility. To summarize,
the entanglement of bulk states increases toward a QPT
while that of edge states does the opposite. Since classical
manipulations can never increase entanglement, this con-
trasting behavior signals the existence of genuine quantum
character in these states. We remark that in LOCC, “local”
means that the manipulations are restricted within each
region of the bipartition and thus can still involve entan-
gling operations, while in physical applications, locality
has a much stricter meaning. For this reason, we believe
that our observation that the edge-state recombination
scheme works already for the smallest partitions L ¼ 2
(Fig. 3) has an important implication: The construction of
quantum circuits already in terms of two-qubit gates
generates a long-range coherence (between the Majorana
fermions at the edges of the block) that, if incorporated,
may provide an added value for the computation in the
quantum phase. The two quantum phases possess qualita-
tively different computational capabilities: Indeed, it was
shown in Ref. [48] that to connect them, one needs a
quantum circuit whose depth scales at least linearly with
the system’s size; in contrast, different ground states within
the same quantum phase can be connected with a depth
sublinear in N [48,49]. As a step forward in this scenario,
we identify in the local convertibility the “bit” providing
the qualitative difference in resources between the two
quantum phases.
Because of the fundamental relation between quantum

circuits and Hamiltonian satisfiability problems [5,6],
we believe that our results are relevant in the framework
of the theory of quantum complexity classes [4,50–52].
Indeed, universal quantum computers encompass
Hamiltonian models within the QMA complete complexity
class. Notwithstanding, the quantum Ising model we
considered in the present article is believed to be QMA
complete only if it is suitably generalized [39,40,53]; our
results indicate that the edge states should survive in these
more general models, and their convertibility properties
will be investigated in the future. It is also interesting to
understand whether these more general models can be
reached adiabatically starting from the quantum Ising
chain, without crossing a QPT.

FIG. 5. Numeric results of differential local convertibility
for the ferromagnetic (symmetry broken). Left: A partition
200 ¼ 2j198. Right: 200 ¼ 50j100j50.
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Incidentally, we comment that a similar lack of differ-
ential local convertibility has been observed recently in
topologically ordered systems [54,55]. In Ref. [54], in
particular, it was demonstrated how the phase with
nontrivial edge states, the Haldane phase, is indeed not
locally convertible; given the role of the Haldane order in
systems of cold atoms with dipolar interaction, this
observation opens the avenue toward experimental verifi-
cations of the convertibility protocols. Indeed, topological
systems are characterized by a form of long-range entan-
glement, as a finite-depth quantum circuit can disentangle
the system only at short range [49,56]. Compared to this
definition, we remark that local convertibility seems to
detect a form of long-range entanglement, even while
working on relatively small systems. We believe further
research is called for, to understand the exact relation
between local convertibility and the form of long-range
entanglement, as defined in Ref. [49].
To conclude, the universal quantum simulator, as envi-

sioned by Feynman [1], was thought for simulating all
quantum interactions, hence superseding in efficiency any
classical algorithm. Our theory shows that edge states
provide phases that are not locally convertible, and this
result indicates that a quantum simulator should show similar
nonconvertibility. In this respect, it is not accidental that
protected edge states play a crucial role in quantum compu-
tation (although it is clear that the existence of edge states
is only a necessary condition for a system to be viable as a
universal quantum simulator) [57]. This observation should
direct further efforts toward the identification of workable
quantum simulators and could open a way for a next
generation of specifically designed quantum algorithms.
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APPENDIX METHODS

1. The Rényi entropies

An advantage of working with a quadratic theory such
as the Ising chain is that many-body states can be
constructed exactly out of individual quasiparticle excita-
tions. The latter can be found as the linear combination of
the fermionic operators fcj; c†jg in Eq. (4), which diago-
nalize the Hamiltonian. Doing so, we define a new set of
operators f~cj; ~c†jg so that the ground state jgi is annihilated
by all ~cj. Additionally, one can excite quasiparticles by
progressively applying all possible combinations of ~c†j ,
yielding a total of 2N states in the Hilbert space.
To calculate the entanglement between the subregions A

and B, we employ the Schmidt decomposition of the
ground state

jgi ¼
X
l

ffiffiffiffi
λl

p
jψ ðAÞ

l ijψ ðBÞ
l i; ðA1Þ

where jψ ðA;BÞ
l i span the Hilbert space of blocks A and B,

respectively [26]. We are after the eigenvalues λl, which can
be found, for instance, as

λl ¼ hgjψ ðAÞ
l ihψ ðAÞ

l jgi; ðA2Þ
where a trace over the B degrees of freedom is implicit.
Similarly to what is done for the entire system, the states

jψ ðAÞ
l i can be constructed in terms of individual excitations.

However, these excitations differ from those of the whole
chain, as they are contained inside the block. If A consists
of L consecutive sites, these block excitations fdj; d†jg are
the linear combinations of the c operators within the block
that diagonalize the correlation matrix constructed out of all
their two-point correlation functions, as shown below. Each

state jψ ðAÞ
l i of this 2L-dimensional Hilbert space can thus be

characterized by the occupation number 0 or 1 of each
block excitation. Moreover, the eigenvalues νj of the
aforementioned correlation matrix provide us with the
expectation values

hgjdjd†j jgi ¼
1þ νj

2
; hgjd†jdjjgi ¼

1 − νj
2

; ðA3Þ

with all other correlations being 0. Note that νj ≃ 1

indicates that dj annihilates the vacuum jgi. It follows that
certain quasiparticle excitations of the Hamiltonian are
completely contained within the block, since djjgi ¼ 0

implies that dj is just a superposition of ~cj ’s. Since dj is
defined just within the block, it follows that these ~cj’s are
also contained in the block. Conversely, smaller values of
νj are related to excitations lying only partially within a

subregion. In turn, djd
†
j acts on the ground state as a

projection operator that selects the component with 0
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occupation number for the lth block excitation while d†jdj
projects it onto an occupied lth excitation. Hence, Eq. (A2)
can be written as the expectation value of a string of
operators of this type. Using Eq. (A3) as the building
blocks of these correlators, we have

fλlg ¼
YL
j¼1

�
1� νj

2

�
; ðA4Þ

with all the possible combinations of plus or minus signs,
corresponding to the occupation or unoccupation of the
different block excitations.
Finally, the Rényi entropies read [41,42]

SαðρAÞ¼
1

1−α

XL
j¼1

log

��
1þνj
2

�
α

þ
�
1−νj
2

�
α
�
: ðA5Þ

2. The correlation matrix

The Rényi entropies are accessed through the eigenval-
ues of the reduced density matrix of a block of L
consecutive spins for the thermal ground state [41,42].
Such eigenvalues can be obtained from the diagonaliza-

tion of the 2L × 2L correlation matrix: hfðaÞk fðbÞj i ¼
δj;kδa;b þ iðBLÞða;bÞðj;kÞ , with

BL ≡

0
BBBBBBB@

Π0 Π1 … ΠL−1

Π−1 Π0
..
.

..

. . .
. ..

.

Π1−L … … Π0

1
CCCCCCCA
; ðA6Þ

where j, k specifies the entry

Πj−k ≡
�

0 gj−k
−gk−j 0

�
;

which is itself a 2 × 2 matrix whose a, b entries are
defined as

gj ≡ 1

2π

Z
2π

0

cos θ − hþ i sin θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcos θ − hÞ2 þ sin2θ

p eijθdθ: ðA7Þ

The antisymmetric matrix B can be brought into a
block-diagonal form by an SOð2LÞ rotation, with each
block of the form

~Πj ¼ νj

�
0 1

−1 0

�
:

This rotation defines a new set of Majorana fermions ~fðaÞj

with only pairwise correlations. This rotated-operator basis
can be used to introduce a new set of complex operators:

dj ¼ ð ~fð1Þj þ i ~fð2Þj Þ=2 (and its Hermitian conjugate). The
matrix (A6) contains all information to completely solve

the model. By taking L ¼ N, i.e., extending the correlation
matrix to the whole system, the dmodes coincide with the ~c
operators one would obtain from the diagonalization of the
Hamiltonian (3).
For L ¼ 2, the two eigenvalues of the correlation matrix

are easily found to be

ν� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
g1 − g−1

2

�
2

þ g20

s
� g1 þ g−1

2
; ðA8Þ

which allows for a complete analytical study of the
entanglement entropy and its derivative (see Fig. 3).
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