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A granular clock is observed in a vertically vibrated compartmentalized granular gas composed of two
types of grains with the same size. The dynamics of the clock is studied in terms of an unstable
evaporation or condensation model for the granular gas. In this model, the temperatures of the two types of
grains are considered to be different, and they are functions of the composition of the gas. Oscillations in
the system are driven by the asymmetric collisions properties between the two types of grains. Both our
experiments and model show that the transition of the system from a homogeneous state to an oscillatory
state is via a Hopf bifurcation.
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At first sight, granular gases [1–3] share many similari-
ties with their molecular counterparts. However, for com-
partmentalized systems, phenomena which are impossible
for equilibrium molecular gases such as Maxwell’s demon
[4] or clustering [5] can occur in granular gases. These
phenomena are possible because differences in granular
temperatures [6] can be stably sustained between the com-
partments. Recently, an even more intriguing phenomenon
known as the granular clock [7,8] has been reported. For
the clock, the clustering of the grains between the compart-
ments becomes periodic (Fig. 1) when the monodisperse
gas is replaced by a bidisperse one.

The mechanism of granular clocks is still unclear. One
possible origin is the Brazil nut effect (BNE) or the reverse
BNE (RBNE) when there is vertical segregation [7,8].
Since the clustering in monodisperse gas is driven by the
difference in temperatures between the compartments, it is
plausible that the oscillation in temperatures in a bidisperse
system is also a driving force. For a bidisperse system, it is
still not clear if there is only one single temperature [9] for
the whole system or if the two types of grains have their
own temperatures [10,11]. Intuitively, the scenario of a
single temperature in a bidisperse gas would not lead to
clustering oscillation because it is similar to the case of
monodisperse gas. We are then left with the possibility of
dual temperatures in the system. Presumably, the clock is
driven by the oscillations of the dual temperatures.

In this Letter, we report results of an experiment de-
signed to remove the effect of BNE in a compartmentalized
system by using a bidisperse system with grains of the
same size. We find that a granular clock can still be
produced. Our results can be understood by a model de-
veloped to understand the mechanism of the granular clock
in terms of dual temperatures. No BNE or RBNE assump-
tions are needed. Therefore, even grains of the same size in
a bidisperse system can produce granular oscillations.

Predictions of our model are verified by experiments.
Both our experiments and model show that the transition
from a homogeneous state to an oscillatory state in such a
system is via a Hopf bifurcation.

Our experimental setup consisted of a rectangular glass
container 2.6 cm wide and 5.4 cm long with a height of
13.3 cm, divided into two equal compartments by an
aluminum barrier 0.2 cm thick and with a height (h) of
1.5 cm from the bottom. Steel balls (SBs) and glass beads
(GBs) of the same size, 0.5 mm in radius, are used. In the
experiments, the total number of grains is fixed at 960,

FIG. 1 (color online). The phase diagram for the homogenous
(HS), oscillatory (OS), and segregated (SS) states. See the
captions of Figs. 3 and 4 for the uncertainties in vc and vf.
Also shown are the photographs of the configurations of the
system with glass beads being darker (red) and steel balls being
lighter (silver). Snapshots (a)–(e) are taken during one cycle of
the clock. Note that f � 60 Hz and the period of the clock
(Fig. 4) can range from tens to hundreds of seconds.
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while the ratio �0 � NGB=NSB varies from 1:1 to 7:1,
where NGB and NSB are the number of glass beads and
steel balls, respectively. Vertical sinusoidal vibrations with
frequency f and amplitude a are applied to the container
to create granular gases with a shaking velocity v with
v � 2�af.

Results of the experiments are summarized as a phase
diagram in terms of v and �0 as shown in Fig. 1. Similar to
the findings of Ref. [8], three states [homogenous (HS),
oscillatory (OS), and segregated (SS)] in the distribution of
grains can be observed. These phases are separated by two
transition velocities vf and vc which are functions of �0.
Experiments with different sets of a and f have shown that
the boundaries of these three regimes are sensitive only to
the combination of af / v. For a fixed value of �0, as the v
is being lowered, the system is first in HS when v > vc and
then turns into OS when vc > v > vf. The system be-
comes segregated when v is lowered below vf. The fea-
tures of the transition points vc and vf are that the
amplitude of the oscillations (�) increases with (vc � v)
while the period of the oscillation (�) decreases with (v�
vf). Note that � is close to saturation around vf, and it is
impossible to determine � close to vc because of strong
fluctuations in the system. Obviously a new type of granu-
lar clock is produced without the BNE or RBNE as shown
in the snapshots for the OS in Fig. 1.

Let us first consider a two-compartment system which is
made up of a right compartment (RC) and a left compart-
ment (LC). Hereafter, quantities in the LC and RC will be
denoted by the L and R subscripts, respectively. If the
granular clock experiments were performed with molecu-
lar gases, one would have needed to change the tempera-
tures (T) of the two compartments in a periodic manner
externally. For example, a molecular gas can be made to
evaporate from LC and condense into RC if TL is raised
higher than TR and vice versa. We show below that this
periodic temperature change can be generated endoge-
nously by an instability in the dynamics of a bidisperse
granular gas.

For a monodisperse granular gas, there is a single granu-
lar temperature for the system which is approximately T /
�uN�

2, with N being the number of grains and u is some
characteristic velocity which is related to the shaking
velocity (v) of the system [4]. The approximation of a
single height-independent temperature has been shown to
be rather satisfactory by molecular dynamics simulations
[4,5]. T is inversely proportional to N2 because most of the
dissipation of the system comes from the collisions of the
grains among themselves, and higher density means more
collisions and therefore a lower T. When v is large, one
would expect that the grains are free to move between LC
and RC. Therefore, the grains are distributed equally
(NR � NL � N=2) in LC and RC with TR � TL.
However, when v is lowered to a point that most of the
grains in RC and LC cannot be exchanged, the system
can be unstable. Consider a fluctuation of �N in the

number of grains in the RC, i.e., NR � N=2� �N, NL �
N=2� �N. In this case, TL will be higher than TR, and
more grains will jump from LC to RC than those from RC
to LC. During this process, TL is raised further by the
evaporation of grains and vice versa for the condensation
in RC. Therefore this process is unstable, and it will not
stop until the difference in grain number between the two
compartments is so large that the smaller probability for
grains to jump from RC to LC is compensated by a large
number of NR. This is the scenario in Ref. [4].

Next, consider the temperature in a bidisperse granular
gas in a single compartment with a total number of N �
NA � NB grains and a number ratio �0 � NA=NB between
the two types of grains A and B. Although a single T is
sometimes assigned for such a system [5], we argue that TA
and TB are in general different. For such a system, there are
three types of binary collisions: namely, AA, AB, and BB.
The most important one here is the AB collision which is
the source of energy exchange between the two types of
grains. Let us further assume that during AB collisions, B is
slowed down by Awhile A is accelerated by B. That is, A is
getting kinetic energy from B. For such a system, TA and
TB will be a function of �0. For example, TA will be higher
when �0 is smaller and vice versa for TB. In other words,
the temperature of B grains is lowered by the presence of A
while the presence of B grains increases the temperature of
A grains. Therefore, when � changes, the temperatures for
a particular kind of grain will also be changed.

For such a bidisperse gas in a two-compartment system,
relevant parameters are NA � NAL � NAR, NB �
NBL � NBR, �L �

NAL
NBL

, and �R �
NAR
NBR

. For high v, we
will have NAL=NA � NBL=NB �

1
2 (i.e., �L � �R � �0),

TAL � TAR, and TBL � TBR with TB < TA. When the
strength of shaking is lowered, we can always get to a
point at which only type A grains are free to exchange
between the two compartments. When this happens, the
system will be similar to that of a single type of A. In such a
case, our arguments about clustering will be applicable.
That is, there will be an unstable evaporation and conden-
sation of A. However, the situation here is more compli-
cated because there will be changes in �L and �R during
this process.

When grains A evaporate from RC and condense into
LC, both TAL and TBL are lowered while those in RC will
be raised. When enough of grains A are evaporated from
RC, the TBR will be raised, and it can be so high that grains
B start to evaporate from RC and condense in LC, too.
Since this is an unstable situation, once it happens, more of
grains B will jump from RC to LC. However, when grains
B start to jump from RC to LC, TAL starts to rise, too. When
enough B has jumped from RC to LC, TAL will be so high
that grains A start to jump from LC back to RC. Again, this
is an unstable situation which will lead most of grain A to
jump from LC to RC. That is, there is an oscillation in
grains A. Similar arguments will show that there will also
be oscillations in grains B, too.

PRL 100, 068001 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
15 FEBRUARY 2008

068001-2



Let us denote the masses and radii of grains A and B by
mA;mB and rA; rB, respectively, the restitution coefficients
of AA, BB, and AB collisions by eA, eB, and eAB, respec-
tively, and the bottom area of the compartment by �. With
these notations, we have TAL � �

vA
DANAL

�2 and TBL �

� vB
DBNBL

�2, where DA � 4
����

�
p

r2
A�1� e

2
A�=� [12] and simi-

larly for DB. The two velocities vA and vB are related to v
as vA � v=p��� and vB � v=q��� for some general func-
tions p and q, where @p=@NBL < 0 and @q=@NAL > 0. The
requirements on @p=@NBL and @q=@NAL are used to imple-
ment our assumption that the temperature of grains A is
raised by the presence of B, while the presence of grains A
lowers the temperature of grains B. It can be shown [13]
theoretically that the situation of grains A gaining energy
due to A-B collisions occurs when eABmB > mA. With this
formulation, there are two equations for the balance of the
fluxes of A and B between RC and LC as

 

1

KA
_NAL � �

N2
AL

vA��L�
e�aA�N

2
AL=v

2
A��L��

�
�NA � NAL�

2

vA��R�
e�aA��NA�NAL�

2=v2
A��R��

1

KB
_NBL � �

N2
BL

vB��L�
e�aB�N

2
BL=v

2
B��L��

�
�NB � NBL�2

vB��R�
e�aB��NB�NBL�

2=v2
B��R��;

(1)

where aA � ghD2
A (aB is similarly defined) with g being

the acceleration due to gravity and h is the height of the
wall separating LC and RC; KA (KB) are constants that
depend on the properties of A (B). Note that the forms of
the above equations are similar to those used in Refs. [7,8].
However, the physical meanings of the above equations are
different from those of Refs. [7,8]. Here the dynamical
variables are the number of grains A and grains B in one of
the compartments, whereas those of Refs. [7,8] are the
fractions of grains A and B in one of the compartments.
For grains of a single type [4], the fraction completely
determines the properties of the system. But for a binary
mixture, one also needs � to specify the effects of one type
of grain on the other.

Obviously, NAL � NA=2 and NBL � NB=2 is a fixed
point, but it will be stable only when v is large. When v
is smaller than a threshold vc, it will become unstable and
turn into a limit cycle. To be specific, we use reasonable
functional forms p��� � 1

2 �2�
1

1��� and q � 2p (form I)
for actual calculations. Note that vA � vwhen �! 1 and
vB � v when �! 0 as expected. Furthermore, it can be
shown that [14] the fixed point loses its stability at vc
via a supercritical Hopf bifurcation giving rise to a stable
limit cycle. We have also checked that the same behavior
holds for other reasonable forms such as p��� �
1� 1

2 e
��=�0 , q��� � 1� �=�0 (form II), and p��� � 1�

1
2 e
����=�0�

2=2�, q��� � 1� ��=�0�
2 (form III).

Figure 2 shows the null clines of Eq. (1) for different
values of v together with the trajectory of an arbitrary
initial point. In Fig. 2, we have chosen the values of aA
and aB in Eq. (1) such that vc is close to unity for a system
with KA � KB � 1, N � 2000, and �0 � 2. Note that the
difference in aA and aB can originate from either the
difference in the restitution coefficients or in their radii.
It can be seen that the fixed point �NA2 ;

NB
2 � [Fig. 2(a)] turns

into a limit cycle when v is lowered [Fig. 2(b)]. As v is
further reduced, both the amplitude (�) and period (�) of
the limit cycle increases [Fig. 2(c)]. When � is large
enough, new stable fixed points are created [Fig. 2(d)].
The main difference between our model and that of Ref. [8]
is that in Ref. [8] BNE is needed while only asymmetry in
collision properties is needed here, be it mass or size.

In the experiments, it can be observed that the SB is
giving energy to the GB during collisions and therefore the
GB is playing the role of grains A. To compare the model
with the experimental results quantitatively, we examine �
and � of the oscillation close to the fixed points vc and vf.
In the experiments, � is measured by a stopwatch and � is
measured by counting the number of steel SBs in a com-
partment by stopping the experiment when the SBs are
seen to be least populated in one of the compartments.
Figure 3 is the measured dependence of � on v� vc
together with a fit of the form �	 �vc � v�1=2. It can be
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FIG. 2 (color online). Simulated phase trajectories as a func-
tion of shaking velocity v showing the three different states of
the systems. (a) Stable fixed point for the homogeneous state at
NAL=NA � NBL=NB � 1=2 with v � 1:01, (b) the oscillatory
state as a limit cycle when v � 0:99, (c) the amplitude � of the
limit cycle increases when v is further lowered to 0.97, and
(d) finally another fixed point is reached where there is a stable
segregation of grains with v � 0:927.
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seen that our data are consistent with a supercritical Hopf
bifurcation only for small vc � v. Presumably, this is due
to the fact that linear stability analysis will fail when vc �
v is large. Figure 4 shows both the �v� vf� dependence of
� obtained from experiments and from our model from
Eq. (1) (inset). It can be seen that all of the data can be put
in the form �	 �v� vf��� with� ’ 1 for the experiments
and different values of � for different forms of p and q.

This last finding suggests that our flux model gives a good
quantitative description of the physics of the system only
close to the unstable point, independent of the forms of p
and q used. However, detailed dynamics of the system will
be needed to determine the value of �.

It is clear that our model captures the essential features
of the clock phenomenon. In fact, our argument can be
applied even to the heaping phenomenon [15]. For such a
case, in the language of our model, grains from the ma-
jority parts of the compartment are evaporated and then
condensed at one of the corners of the compartment to
form the heap. There will be large temperature differences
between the grains in the heap and those outside the heap.
Finally, it is known that the RBNE can also be driven by
density differences [16]. However, our system is a dilute
gas; the effects considered in Ref. [16] are probably not
applicable.
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FIG. 3 (color online). Variation of oscillation amplitude � as a
function of distance away from the critical velocity (vc � v) for
various �0. The solid line is a fit of the data to the form �	
�vc � v�

1=2 for small vc � v with vc being adjusted within 20%
of the experimental observation to give the best fit. Uncertainties
of the data are smaller than the size of the symbols.
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Uncertainties of the data are smaller than the size of the symbols.
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