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Quantitative mappings between symmetry
and topology in solids
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The study of spatial symmetries was accomplished during the last century and had greatly

improved our understanding of the properties of solids. Nowadays, the symmetry data of any

crystal can be readily extracted from standard first-principles calculation. On the other hand,

the topological data (topological invariants), the defining quantities of nontrivial topological

states, are in general considerably difficult to obtain, and this difficulty has critically slowed

down the search for topological materials. Here we provide explicit and exhaustive mappings

from symmetry data to topological data for arbitrary gapped band structure in the presence

of time-reversal symmetry and any one of the 230 space groups. The mappings are com-

pleted using the theoretical tools of layer construction and symmetry-based indicators. With

these results, finding topological invariants in any given gapped band structure reduces to a

simple search in the mapping tables provided.
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D istinct phases do not always differ from each other in their
symmetries as expected in the Ginzburg-Landau para-
digm. Two gapped phases having the same symmetry may

be distinguished by a set of global quantum numbers called
topological invariants1–8. These invariants are quantized num-
bers, whose types (integer, Boolean, and others) only depend on
the symmetry group and the dimension of the system9,10. The
invariants fully characterize topological properties that are
unchanged under arbitrary adiabatic tuning of the Hamiltonian
that preserves the relevant symmetry group. Materials having
non-zero topological invariants are loosely called topological
materials (whereas the technical term is symmetry protected
topological states11–13), a new kind of quantum matter that hosts
intriguing physical observables such as quantum anomaly on
their boundaries14–16, and are considered candidate materials for
new quantum devices17–21. Success in finding these materials
largely depends on the numerical evaluation (prediction) of
the topological invariants in a given candidate material.
However, even for electronic materials having weak electron
correlation, where the topological invariants are best understood
and expressed in terms of the wave functions of the valence
bands, these calculations still prove quite challenging. In fact,
numerically finding a new topological material has proved so
hard that a single success17,22–25 would have triggered enormous
interest26–32.

On the other hand, mathematicians and physicists have since
long developed, via the representation theory of space groups, a
complete toolkit for the study of the symmetry properties of
bands in solids33,34. Given any point in momentum space, each
energy level corresponds to an irreducible representation (irreps)
of the little group at that momentum, depending on the Blöch
wave functions at the level. Modern implementations of the
density functional theory output both the energy levels and their
Blöch wave functions for any given crystal momenta, such that
finding the irreps of all valence bands in a band structure (BS) is
now considered a solved problem that can be automated.

It has been eagerly hoped that quantitative relations exist
between the topological invariants and the irreps in the valence
bands at high-symmetry points in the Brillouin zone, i.e., the
symmetry data of valence bands. These relations, if existed, would
reduce the difficult task of finding the former to a routine cal-
culation of the latter. However, the examples are rare35–38. Fu-
Kane formula35 for topological insulators protected by time-
reversal symmetry (TI for short from now) is an exemplary one,
mapping the four topological Z2-invariants to inversion eigen-
values at eight high-symmetry points. This simple golden rule
considerably expedited the search for TI in all centrosymmetric
materials via first-principles numerics22. Nevertheless, for general
topological states in three dimensions protected by any one of the
230 space groups with and without time-reversal, or topological
crystalline insulators39 (TCIs), explicit formulae relating their
topological invariants to symmetry data have so far been missing.

Recently, a solid step along this direction is made in refs. 40–43,
where the authors systematically study the connectivity of bands
in a general gapped BS and identify the constraints on the sym-
metry data in the form of linear equations called the compatibility
equations. ref. 41 explicitly provides these relations for each space
group and observes that if a symmetry data satisfying all com-
patibility relations cannot decompose into elementary band
representations (sets of symmetry data of atomic insulators (AIs),
given in the same paper), the material must be topologically
nontrivial. ref. 40 shows that the symmetry data of any gapped BS
can be compressed into a set of up to four Zn¼2;3;4;6;8;12 numbers
called symmetry-based indicators (SIs) (see Methods section for a
brief review of SI). The set of SI is a lossless compression of
symmetry data as far as topological invariants are concerned: all

topological invariants that may be extracted from symmetry data
can be inferred from the corresponding SI. The theory presented
in ref. 40 does not, however, relate SI to the topological invariants,
the defining quantities of topological states: a BS having non-zero
SI is necessarily topological, but the type of the topology in terms
of invariants is unknown. The explicit expressions of the SI in
terms of symmetry data are also missing in ref. 40.

This paper aims to complete the mapping between symmetry
data and topological invariants in systems with time-reversal
symmetry and significant spin–orbital coupling (the symplectic
Wigner–Dyson class or class AII in the Altland-Zirnbauer sys-
tem44). To achieve this, we first derive the explicit expression of
each SI in all space groups (Supplementary Tables 1–3) and then,
given any non-zero set of SI in every space group, we enumerate
all possible combinations of topological invariants that are
compatible with the SI (Supplementary Tables 4–8). These
invariants include: three weak topological invariants δw,i=1,2,3

8,
mirror Chern number Cm

23,45, glide plane (hourglass) invariant
δh24, rotation invariant δr21,46,47, the inversion invariant δi21,36,37,
a new Z2 topological invariant protected by screw rotations δs,
and finally a new Z2 topological invariant protected by S4-sym-
metry δS4 . The last two invariants are theoretically established in
Supplementary Note 1. In the main results, the strong time-
reversal invariant δt8 is assumed to vanish, so that the results are
restricted to TCI only, or states that can be adiabatically brought
to AIs in the absence of crystalline symmetries; the δt= 1 cases
are briefly discussed in the end of the Results section. The
exhaustive enumeration maps 478 sets of SI to 3133 linearly
independent combinations of topological invariants, as tabulated
in Supplementary Table 7. A guide for reading this table is offered
in Supplementary Note 7.

Results
An example showing the usage of our results. Before entering
into the derivation of the results, we use tin telluride (SnTe)
crystal having space group Fm!3m (#225) to illustrate how the
results should be used in Fig. 1. One should first compute the
symmetry data of the material, finding the numbers of appear-
ances for each irrep in the valence bands at the high-symmetry
momenta, namely, Γ, X, L, and W. This can be done in any
modern implementation of first-principles numerics and here we
use Vienna ab-initio simulation package48,49. From the symmetry
data obtained in the top of Fig. 1, we apply the formulae given in
Supplementary Tables 1 and 2 to find the SI, which in this case is
a single Z8 number, and we find z8= 4. After this, we can use
Supplementary Table 7 and find that z8= 4 corresponds to two
and only two possible sets of topological invariants shown on
the bottom of Fig. 1: it either has non-zero mirror Chern number
Cm(001)= 4 (mod 8) for the kz= 0 plane (and symmetry partners)
or has mirror Chern number Cm(110)= 2 (mod 8) for the kx+
ky= 0 plane (and symmetry partners). It is impossible, however,
to distinguish these two cases using symmetry data, but advanced
tools such as Wilson loops must be invoked. Further analysis
shows that the latter state appears in the real material23.

Layer construction as an general approach. A remarkable fea-
ture of all known TCIs is that any TCI can be adiabatically
(without gap closing) and symmetrically tuned into a simple
product state of decoupled, identical layers in real space, each of
which decorated with some two-dimensional (2D) topological
state21,50–54. This form of fixed-point wave function for a TCI is
called its layer construction (LC). An analogy to AIs can be drawn
to help understand the physical nature of LC in the following
aspects: although an AI is built from decoupled point-like atoms,
the building blocks of an LC are decoupled layers. Each atom in
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an AI is decorated with electrons occupying certain atomic
orbitals, whereas each layer is decorated with electrons forming a
2D topological state. The atomic orbitals of an atom in lattice
correspond to the irreducible representations of the little group at
that atomic position, whereas the possible topological states on a
layer also depends on the little group leaving the layer invariant.
In an LC, there are only two possible decorations: if the layer
coincides with some mirror plane of the space group the state for
decoration is a 2D mirror TCI with mirror Chern number Cm,
and if it does not coincide it is a 2D TI. We define elementary LC
(eLC) as an LC generated by a single layer in real space

ðmnl; dÞ $ rjðmb1 þ nb2 þ lb3Þ & r ¼ 2πdmod2πf g ð1Þ

Here (mnl) are the Miller indices, and bi’s the reciprocal lattice
vectors; generation here means we take all elements g∈G to
obtain the set of layers E(mnl; d)≡ {g(mnl; d)|g∈G} by acting g
on (mnl; d). Every LC is a superposition of a finite number of
eLCs and, thanks to the additive nature of all known topological
invariants, the topological invariants of any LC is the sum of the
invariants of all constituent eLCs.

For any space group, we exhaustively find all eLCs using the
method detailed in Supplementary Note 3. Although the
calculation of topological invariants is difficult for an arbitrary
BS, it is easy for an eLC, thanks to its simple structure. In fact, the
invariants only depend on how many times each symmetry
element is occupied (see Supplementary Note 1 for proof,
wherein the occupation for glide plane or screw axis is subtle). A
symmetry element is a manifold in real space, where each point is
invariant under some symmetry operation. It could be a discrete

point such as an inversion center or a center of S4 : (x, y, z) → (−y,
x, −z), a line such as a rotation axis, or a plane such as a mirror
plane. In this way, topological invariants for each eLC are
calculated and tabulated in Supplementary Tables 5 and 6. On the
other hand, the SI of an eLC are also easily calculated, detailed in
Supplementary Note 5 again due to the decoupled nature of the
layers. Matching the SI with invariants for each eLC, we hence
find the full mapping between SI and topological invariants for
TCI. For intuitive understanding, we also plot a set of figures
(Supplementary Figs. 1–8) showing the invariants, SI, and phase
transitions of eLCs.

From indicators to invariants. Here we take space group P!1 as
an example to show the mapping between indicators and invar-
iants and leave the general discussion in the Supplementary
Notes 1 and 5. The space group P!1 has non-orthogonal lattice
vectors ai=1,2,3 and inversion symmetry. Within a unit cell, there
are eight inversion centers at (x1, x2, x3)/2 in the basis of lattice
vectors (the red solid circles in Fig. 2), where xi= 0, 1. These
inversion centers are denoted by Vx1x2x3

≡ (x1, x2, x3)/2 mod 1. A
generic layer (mnl; d) is given by L= {r|(mb1+ nb2+ lb3) · r=
2πd mod 2π}, where d∈ [0, 1), and at least one of m, n, l is odd
(or they would have a common factor). If d ≠ 0, 12, we have d ≠−d
mod 1, then under inversion a generated plane L′= (mnl; 1−
d) ≠ L is a different plane symmetric to L about the origin. In that
case, the two planes L and L′ can adiabatically move towards each
other without breaking any symmetry until they coincide, a
process illustrated in Fig. 2a. The state decorated on L and L′ are
2D TIs, and due to the Z2-nature, when L and L′ coincide, the
resultant double layer becomes topologically trivial. The eLC
generated by (mnl; d ≠ 0, 12) is hence a trivial insulator. For d= 0,
1
2, L is invariant under inversion, and always passes four of the
eight inversion centers, that is, Vi’s that satisfy the equation mx1
+ nx2+ lx3= 2dmod 2. For examples, if (mnl; d)= (010; 0), then
V000,001,100,101 are on L (the left yellow plane in Fig. 2a). As each
layer is decorated with 2D TI, eLC(mnl; d) (d= 0, 1

2) is the
familiar weak TI having weak invariants

δw;1 ¼ mmod2 δw;2 ¼ nmod2 δw;3 ¼ lmod2 ð2Þ

Now we turn to the inversion invariant δi, which is a strong
invariant robust against all inversion preserving perturbations.
Let us consider a perturbation that doubles the periodicity in the
(mnl)-direction, whereas preserving the inversion center at origin.
After the doubling, four of the eight inversion centers satisfying
mx1+ nx2+ lx3= 1 mod 2 are no longer inversion centers, so
that the plane (mnl, 12) after the doubling no longer passes through
any inversion center, and the generated eLC by (mnl, 1

2) can be
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Fig. 1 A demonstration of the diagnosis for tin telluride of space group
Fm!3m (#225) using our results. The table on the top shows the symmetry
data obtained in the first-principles calculation (details given in text), where
the numbers of appearance of each irrep in the valence bands are listed for
each high-symmetry point in the face-centered-cubic Brillouin zone. From
the data one finds the SI z8= 4 using Supplementary Tables 1 and 2, and
then by searching for this indicator in Supplementary Table 7, two possible
sets of topological invariants are found, listed at the bottom left and bottom
right, respectively. The yellow planes in the Brillouin zone are where the
mirror Chern numbers Cm(001) and Cm(110) are defined. Indices in the
parentheses in subscript represent the directions of the corresponding
symmetry elements. The real material has been shown in ref. 23 to have the
topological invariants listed on the bottom right

a bx3

x1

x3

x1

x2 x2

Fig. 2 Layer constructions for space group P!1 (#2). a The yellow planes are
(010; 0) and (010; 1

2) respectively, and the two green planes are (010; d)
and (010; 1− d) with d≠ 0, 1

2. The arrows mean that the two green planes
can move towards each other without breaking inversion. b After doubling
the unit cell along x2-direction, the open dots are no longer inversion
centers as they were, whereas the solid dots remain. Again the arrows
mean that two green planes can move towards each other without breaking
the inversion symmetry, after unit cell doubling
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trivialized after the doubling by pairwise annihilating with its
inversion partner. Therefore, eLC(mnl, 12) can be trivialized, while
keeping the inversion symmetry about the origin, thus having
δi= 0. In Fig. 2b, we take (mnl)= (010) as an example and
doubled the unit cell. We see that the four inversion centers
marked by empty circles are not inversion centers in the new cell
and the blue plane at (010; 12) in the original cell becomes (010; 14)
in the new cell. The two blue planes can move and meet each
other at the yellow plane, denoted by (010;12) in the new cell. The
eLC generated by (mnl; 0)-plane, however, passes all eight
inversion centers in the enlarged unit cell and cannot be
trivialized without breaking inversion (yellow planes in Fig. 2b),
so that the inversion invariant δi= 1.

After finding the invariants for all possible eLCs, we turn to the
SI for each eLC. The SI group of P1 takes the form
Z2 ´Z2 ´Z2 ´Z4, wherein the first three are the weak TI
indicators z2w,i=1,2,3 and the last one is the z4 indicator. The
calculation method is briefly described in Supplementary Note 5
and here we only give the results. For eLC(mnl; 0) and eLC(mnl; 12),
their values are found to be (mmod 2, nmod 2, lmod 2, 2) and (m
mod 2, n mod 2, l mod 2, 0), respectively. For this space group, the
mapping from SI set to topological invariants is therefore one-to-
one: z2w,i= δw,i and z4= 2δi.

Convention dependence of topological invariants. A subtle but
important remark is due at this point. There are always eight
inversion centers in a unit cell in the presence of inversion
symmetry, and when translation symmetry is broken, only one,
two, or four of them remain. In the definition of inversion
invariant δi, one of the eight is chosen as the inversion center that
remains upon translation breaking. In the above example, when
the unit cell is doubled, the origin was chosen as the center that
remains, but if we chose V010= (12, 0, 0), which is a completely
valid choice, the four open circles in Fig. 2b are still inversion
centers but the solid circles are not after the doubling. In that
case, we would find that eLC(mnl, 12) has δi= 1 but eLC(mnl, 0)
has δi= 0. The inversion invariant δi hence depends on the
convention which one of the eight inversion centers in the unit
cell is chosen in the definition of δi. However, when we super-
impose the two eLCs into an LC that passes all eight inversion
centers in a unit cell, the value of δi is independent of the choice
of the inversion center, as all eight are occupied in this LC. We
emphasize that only if this is the case can we hope to observe the
physical properties, such as the characteristic boundary states
associated with the bulk invariant δi21, because physical obser-
vables should not depend on the conventions.

Moreover, similarly, as detailed in Supplementary Note 2, the
rotation (screw) invariant δr= 1 (δs= 1) is convention-
independent if and only if each rotation (screw) axis in unit
cell is occupied by the LC for n/2 mod n times, where n= 2, 4, 6
is the order of the rotation (screw) axis. For the S4 invariant δS4 =
1 or the hourglass invariant δh= 1 to be convention-independent,
the LC should occupy each S4 center or glide plane for an odd
number of times. Invariants that are convention-independent are
marked blue in Supplementary Tables 7 and 8.

The one-to-many nature of the mapping. In the example of
space group P!1, the mappings between indicators and topological
invariants are one-to-one. However, this is in fact the only space
group where mappings are bijective. By definition, different sets
of indicators must correspond to different sets of invariants, but
multiple sets of invariants may correspond to the same set of
indicators, i.e., the mapping from indicators to invariants is one-
to-many.

To understand the one-to-many nature of the mapping more
concretely, we look at the specific group P2/m, containing two
mirror planes, four C2-axes and eight inversion centers in each
unit cell, all marked in Fig. 3a. Now we consider two different LCs
illustrated in Fig. 3b, c: in Fig. 3b for LC1, two horizontal planes,
each decorated with a 2D TI, occupy all four C2-axes and all eight
inversion centers, and in Fig. 3c for LC2, two vertical planes, each
decorated with a mirror Chern insulator with Cm= 1, occupy the
two mirror planes and the eight inversion centers.

As all inversion centers are occupied in LC1 and LC2, in both
cases we have δi= 1. LC1 occupies all four C2-rotation axes, once
each, thus having nontrivial rotation invariant δr= 1, whereas
LC2 does not occupy any of the rotation axes, having δr= 0. On
the other hand, LC2 occupies the two mirror planes, each with 2D
TCI having Cm= 1. According to the calculation in Method
section LC2 has mirror Chern numbers Cm= 2 at kz= 0 plane
and Cm= 0 at kz= π plane; LC1, not occupying any mirror plane,
has vanishing mirror Chern number. LC1 and LC2 are therefore
topologically distinct states.

Now we turn to the SI of LC1 and LC2. For space group P2/m,
the SI have the same group structure Z2 ´Z2 ´Z2 ´Z4 as that of
its subgroup P!1. In this case, the value of each indicator remains
the same as we break the symmetry down to P!1. Viewed as LC in
P!1, both LC1 and LC2 are the superpositions of eLC(mnl, 0)
and eLC(mnl, 12), thus having, by the additivity of SI, z2w,i= 0 and
z4= 2.
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Fig. 3 Two layer constructions for space group P2/m, sharing the same set
of SI of (0002). a All symmetry elements of the space group in one unit
cell, including eight inversion centers (red solid circles), four rotation axes
(red solid lines), and two mirror planes (shaded planes). b, c LC1 and LC2
defined in the text, respectively. They have distinct topological invariants
but identical indicators. d 3D Blöch wave functions in LC2 as superpositions
of 2D Blöch wave functions with coefficients eik2x2 . Here we use red and
blue loops to represent the 2D wave functions having mirror eigenvalues i
and −i, respectively, wherein i wave functions have Chern number 1 and −i
wave functions have Chern number −1. For A-eLC the 3D Blöch wave
functions at k2= 0 and k2= π have the same mirror eigenvalues, leading to
identical mirror Chern numbers at k2= 0 and k2= π. Although for B-eLC
the Blöch wave functions at k2= 0 and k2= π have opposite mirror
eigenvalues, leading to opposite mirror Chern numbers at k2= 0 and k2= π.
e The two mirror-invariant planes (gray planes) in Brillouin zone
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The failure in distinguishing LC1 and LC2 by indicators reveals
a general ambiguity in the diagnosis of mirror Chern numbers.
We can add additional even number (2p) of A-eLC and even
number (2q) of B-eLC to LC1 such that the composite state has
the same SI and δr with LC1 but non-zero mirror Chern numbers
Cm,0= 2p+ 2q, Cm,π= 2p− 2q. On the other hand, we can also
add these additional eLCs to LC2 to get a state having the same SI
with LC2 but different mirror Chern numbers Cm,0= 2+ 2p+
2q, Cm,π= 2p− 2q. The proof here can be generalized to any
space group having mirror planes and perpendicular rotation
axes, providing that the order of the rotation is even. In all these
space groups, as shown in Supplementary Table 7, the TCIs
having invariants δr= 1 and Cm,0− Cm,π= 0 mod 2n and the
TCIs having δr= 0 and Cm,0− Cm,π= n mod 2n have the same
SI, here n is the order of the rotation axis. The two possible sets of
invariants shown in Fig. 1, wherein one is Cm(001)= 4 mod 8,
δr(001)= 0 and the other is Cm(001)= 0 mod 8, δr(001)= 1, are the
examples for n= 4.

Indicators for time-reversal topological insulators. In the SI
group of each space group, except #174 and #187–190, there is
one special indicator of Z2;4;8;12-type, denoted by zt, marked red
in Supplementary Tables 2 and 3. When this special indicator is
odd, the system is the well-known three-dimensional (3D) time-
reversal topological insulator40 (TI for short). The essential dif-
ference between a TI and a TCI is that the former only requires
time-reversal symmetry, such that it remains nontrivial even
when all crystalline symmetries are broken. TI does not have LCs,
so that the method we use does not apply to SI having zt∈ odd.
To construct states having zt∈ odd, we first notice that TI is
consistent with all space groups, such that for each space group,
we have at least one state that is a TI. Then we can superimpose
this TI with all existing LCs obtained, and generate gapped states
for all non-zero combinations of SI with zt∈ odd (but with five
exceptions discussed in Discussion section).

Regarding zt∈ odd, we comment that the value of zt generally
has a convention dependence on the overall signs in the definition
of inversion and the rotation operators. For example, in space
group P!1, the defining properties of the symmetry operators are
P̂2 = 1, T̂2 =−1 and ½P̂; T̂(= 0. It is easy to check that the overall
sign in front of P̂ can be freely chosen without violating any of the
above relations. In other words, without external references, it is
unknown a priori if, e.g., an s-orbital should be assigned with
positive or negative parity. Upon redefining P̂ ! ) P̂, a state
having z4= 1 goes to z4= 3 and vice versa. In similar ways, it is
proved in Supplementary Note 4 that states having the
Z8-indicator z8= 1, 3, 5, 7 differ only by convention and so do
the states have Z12-indicator z12= 1, 5, 7, 11. In these cases, the
convention refers to the overall sign in front of inversion operator
and the sign in front of the rotation operator. It is difficult to
distinguish these states from each other experimentally. However,
here we emphasize that the SI z4= 1, 3 (so do the SI z8= 1, 3, 5, 7
and z12= 1, 5, 7, 11) have a relevant difference under a fixed
convention, which can be detected by the anomalous boundary
between the two phases. For example, suppose we have a
spherical sample of z4= 3 phase and fill the space outside the
sphere with z4= 1 phase, then as long as the geometry keeps
inversion symmetry, the boundary state on the spherical surface
should be identical with the boundary state between z4= 2 and
z4= 0 phases, which is known as one-dimensional helical mode
(see Supplementary Note 1 for details). This is because we can
deduct a background of z4= 1 phase both inside and outside the
sphere without changing the boundary state.

The space groups #174, #187, #189, and #188, #190, where one
cannot diagnose TI from SI, have the SI groups Z3 ´Z3 and Z3,

respectively, and the corresponding SI z3m,0 and z3m,π are the mirror
Chern numbers (mod 3) in the k3= 0 and k3= π planes. In #188
and #190 z3m,π is trivialized by nonsymmorphic symmetry and thus
the corresponding SI groups reduce to Z3. In these space groups,
the TI invariant is the parity of Cm,0−Cm,π

23 whereas SI have
ambiguity for the parities of mirror Chern numbers; thus, TI can
never be diagnosed from SI. For example, z3m,0= 1, z3m,π= 0 can
correspond to Cm,0= 1, Cm,π= 0 (a TI), or Cm,0=−2, Cm,π= 0
(not a TI).

Discussion
A byproduct of this study is a complete set of TCIs that can be
layer-constructed in all 230 space groups (Supplementary
Tables 5–8), even including groups not having SI. The abundance
of the states thus obtained naturally suggests the question: are all
TCI states exhausted in these layer constructions? We regret to
answer it in the negative: LC cannot give us the weak topological
insulator states in five space groups, namely #48, #86, #134, #201,
and #224. In any one of the five, there is a weak indicator z2w, but
all layer-constructed states have z2w= 0. A common character of
these space groups is that they have three perpendicular glide
planes {m001|12

1
20} m010j120

1
2

! "
{m100|012

1
2} such that any single layer

having weak index z2w,i= 1 would be doubled along the i-th
direction and so the generated eLC has vanishing weak index.
Explicit (non-LC) tight-binding models for the z2w= 1 states are
given in Supplementary Note 6, completing the proof that for any
non-zero SI there is at least one corresponding gapped topological
state. These corner cases are somewhat surprising as weak TI have
so far been considered most akin to stacking of decoupled 2D TI.

Finally, we comment that all LCs can be used to build 3D
symmetry protected topological states of bosons and fermions
protected by space group G plus a local group GL. To do this one
only needs to decorate each layer with a 2D SPT protected by GL
instead of the 2D TI.

Towards the completion of the work, we have been aware of a
similar study55. To our knowledge, the results, when overlapping,
are consistent with each other.

Methods
A short review of SIs. For each momentum in the Brillouin zone, there is an
associate subgroup, called the little group, of the space group G, under the action of
which the momentum is invariant up to a reciprocal lattice vector. A point is a
high-symmetry point, denoted Kj, if its little group is greater than the little group of
any point in the neighborhood. A fundamental theorem is that each band at
momentum Ki or multiplet of degenerate bands corresponds to an irreducible
representation of the little group at Ki. The symmetry data of a BS is defined as the

an integer vector n, each element of which, n ξ
Kj

i

# $
, is the number of appearance of

the i-th irreducible representation in the valence bands at the j-th high-symmetry
momentum Kj, where i= 1, ..., rj labels the irreducible representations of the little
group at Kj. One could further define the addition of two symmetry data as the
addition of each entry, which corresponds to, physically, the superposition of two
BSs.

For a gapped BS, the elements of its symmetry data cannot take arbitrary
integers and there are constraints on the symmetry data known compatibility
relations40,41,43. For example, gapped-ness requires that the occupation numbers at

each Ki be the same, i.e.,
P

i n ξ
Kj

i

# $
= const. All compatibility relations are linear

equations so that the symmetry data satisfying all these relations again form a
smaller linear space, termed the BS space, denoted {BS}.

On the other hand, we consider the symmetry data of AIs. In AIs, the bands are
generated by decoupled atomic orbitals placed at certain Wyckoff positions in the
unit cell. By this definition, one finds that the symmetry data of AIs also form a
linear space, denoted {AI} (also called the space of band representations41).
Obviously a symmetry data n∈ {AI} satisfies all compatibility relations, so {AI} ⊆
{BS}. One then naturally considers the quotient space XBS= {BS}/{AI}. XBS is
always a finite group generated by several Zn¼2;3;4;6;8;12

40. Each generator of XBS is
called an SI.

The following properties of indicators should be mentioned: any two gapped
BSs having different sets of SI must be topologically distinct, and any two different
symmetry data having the same set of SI only differ from each other by the
symmetry data of an AI.
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In ref. 40, the authors calculate the group structure of the indicators for all
230 space groups. However, it does not give explicit formulae for the generators. In
order for application, we derive all these formulae in Supplementary Note 4.

Mirror Chern number of LC. Below we explicitly calculate the mirror Chern
numbers of LC1 and LC2 in Fig. 2. As shown in Fig. 3e, in BZ of space group P2/m
there are two mirror-invariant planes, i.e., the k2= 0 and k2= π planes; thus, we
have two mirror Chern numbers Cm,0 and Cm,π. We assume there are only two
occupied bands in the vertical 2D TCIs in LC2 and denote the corresponding Blöch
wave functions as ϕ ± i k2D; x2ð Þ

%% &
. Here, ±i represent the mirror eigenvalues, where i

is the imaginary unit, k2D= (k1, k3) is the 2D momentum, and x2 is the position
along a2 where the 2D TCIs are attached. We also assume that the wave functions
with the mirror eigenvalue i (−i) give a Chern number 1 (−1) such that the 2D
mirror Chern number Cm= 1. Under the mirror operation M̂ the 2D Blöch wave
function ϕ± i k2D; x2ð Þ

%% &
first get a mirror eigenvalue ±i and then move to the

mirror position −x2

M̂ ϕ± i k2D; x2ð Þ
%% &

¼ ± i ϕ± i k2D; ) x2ð Þ
%% &

ð3Þ

To calculate the mirror Chern numbers of LC2, we divide it into two subsystems:
the eLC generated from A layer and the eLC generated from B layer (Fig. 3c). As
the total mirror Chern numbers are the sum of mirror Chern numbers of the two
subsystems, we need only to analyse the two subsystems, respectively. The 3D
Blöch wave functions of A- and B-eLCs can be constructed as

ψA
± iðkÞ

%% &
¼

X

x2¼0; ± 1&&&
eik2x2 ϕ ± i k2D; x2ð Þ

%% &
ð4Þ

ψB
± iðkÞ

%% &
¼

X

x2¼± 1
2; ±

3
2&&&

eik2x2 ϕ± i k2D; x2ð Þ
%% &

ð5Þ

Due to Eq. (3), it is direct to show that ψA
i k1; 0; k3ð Þ

%% &
and ψA

i k1; π; k3ð Þ
%% &

, both
of which are superpositions of ϕi k2D; x2ð Þ

%% &
and thus have the Chern number 1,

have the same mirror eigenvalue i (Fig. 3d). Thus, for A-eLC m the mirror Chern
numbers at k2= 0 and k2= π are all 1. On the other hand, ψB

i k1; 0; k3ð Þ
%% &

and
ψB
i k1; π; k3ð Þ

%% &
, again both of which have the Chern number 1, have mirror

eigenvalues i and −i, respectively (Fig. 3d). Thus, for B-eLC the mirror Chern
numbers at k2= 0 and k2= π are 1 and −1, respectively. Therefore, the total mirror
Chern numbers in momentum space are Cm,0= 2 and Cm,π= 0 for LC2. It should
be noticed that the values of Cm,0 and Cm,π do not depend on the two band
assumption we take: as long as the 2D TCI has Cm= 1, the results remain the same.
On the other hand, the mirror Chern numbers of LC1 should be zero for both k2=
0 and k2= π by the following argument. Without breaking mirror symmetry, each
vertical plane can bend symmetrically towards the mirror plane until the two halves
coincide on mirror-invariant planes in real space, due to the Z2-nature of each half,
the folded plane is topologically equivalent to a trivial insulator. As LC1 can be
smoothly trivialized without breaking mirror symmetry, it must have vanishing
mirror Chern numbers.

Data availability
The data and code that support the findings of this study are available from the corre-
sponding author upon reasonable request.
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