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Topological one-way fiber of second Chern number
Ling Lu 1,2, Haozhe Gao1,3 & Zhong Wang 4,5

One-way waveguides have been discovered as topological edge states in two-dimensional

(2D) photonic crystals. Here, we design one-way fiber modes in a 3D magnetic Weyl pho-

tonic crystal realizable at microwave frequencies. We first obtain a 3D Chern crystal with a

non-zero first Chern number by annihilating the Weyl points through supercell modulation.

When the modulation becomes helixes, one-way modes develop along the winding axis, with

the number of modes determined by the spatial frequency of the helix. These single-

polarization single-mode and multi-mode one-way fibers, having nearly identical group and

phase velocities, are topologically-protected by the second Chern number in the 4D para-

meter space of the 3D wavevectors plus the winding angle of the helix. This work suggests a

unique way to utilize high-dimensional topological physics using topological defects.

https://doi.org/10.1038/s41467-018-07817-3 OPEN

1 Institute of Physics, Chinese Academy of Sciences/Beijing National Laboratory for Condensed Matter Physics, Beijing 100190, China. 2 Songshan Lake
Materials Laboratory, Dongguan, Guangdong 523808, China. 3 University of Chinese Academy of Sciences, Beijing 100049, China. 4 Institute for Advanced
Study, Tsinghua University, Beijing 100084, China. 5 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China. Correspondence and
requests for materials should be addressed to L.L. (email: linglu@iphy.ac.cn) or to Z.W. (email: wangzhongemail@tsinghua.edu.cn)

NATURE COMMUNICATIONS |          (2018) 9:5384 | https://doi.org/10.1038/s41467-018-07817-3 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-8781-5979
http://orcid.org/0000-0002-8781-5979
http://orcid.org/0000-0002-8781-5979
http://orcid.org/0000-0002-8781-5979
http://orcid.org/0000-0002-8781-5979
http://orcid.org/0000-0001-6254-6138
http://orcid.org/0000-0001-6254-6138
http://orcid.org/0000-0001-6254-6138
http://orcid.org/0000-0001-6254-6138
http://orcid.org/0000-0001-6254-6138
mailto:linglu@iphy.ac.cn
mailto:wangzhongemail@tsinghua.edu.cn
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Topological photonics1–4 started with the realization of one-
way edge waveguides5–9 as the analog of chiral edge states
of the two-dimensional (2D) Chern insulator (or the 2D

quantum Hall effect [QHE]), where the number and direction of
1D edge modes are determined by the 2D bulk topological
invariant: the first Chern number (C1). Three-dimensional
(3D) bands of nonzero C1 have also been realized in Weyl
photonic crystals10, opening doors to 3D topological phases for
photons11,12.

Here, we show that, by annihilating a single pair of Weyl points
with helix modulations, light can be guided unidirectionally in the
core of 3D photonic crystal fibers (Fig. 1), where the number and
direction of one-way modes equal the magnitude and sign of the
second Chern number (C2)—the topological invariant of complex
vector bundles on 4D manifolds. This novel approach to create
the line-defect states in the 3D topological bandgap provides a
definitive way to obtain arbitrary mode number (C2=−∞
to +∞) in the one-way fibers by varying the helix frequencies.
Furthermore, all the modal dispersions have almost identical
group and phase velocities, superior for multimode operations.
The same phenomena can be realized in other Weyl systems13–17
with time-reversal symmetry breaking.

Results
Single Weyl dipole. Our starting point is a photonic crystal
containing two Weyl points18, which were found in the double
gyroid (DG) made of magnetic materials. The DG is a minimal
surface that can be approximated by the iso-surface of a single
triply periodic function: f(x, y, z)= sin(2πx/a)sin(4πy/a)cos
(2πz/a)+ sin(2πy/a)sin(4πz/a)cos(2πx/a)+ sin(2πz/a)sin(4πx/a)
cos(2πy/a). This definition, although having a different form,
yields almost identical geometry and band structure to those of
the DG defined in ref. 18 by two separate trigonometric functions
(one for each gyroid). In Fig. 2a, two cubic cells of the DG are
shown, where f(x, y, z) > f0= 0.4 is filled with gyroelectric mate-
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magnetic permeability. The rest of the volume is air. In this
structure, there exists only two Weyl points (a single “Weyl
dipole”) separated by about half of the Brillouin zone along z
direction, as plotted in Fig. 2b. This means that an infinitesimal
supercell modulation of the crystal (in z with a period of 2a) can
superimpose the two Weyl points on top of each other to form a
3D Dirac point between four bands11 (Fig. 2b), which opens a gap
under a finite modulation/coupling strength (Fig. 2d). The fact
that a bandgap does not close under small perturbations ensures

the robustness of this approach: certain mismatch between the
Weyl-point separation and the wavevector of the modulation can
be tolerated.

3D Chern crystal. We create a double-cell periodic modulation
along z to annihilate the Weyl points and obtain the 3D Chern
crystal, the photonic analog of the 3D Chern insulator (or the 3D
QHE)19–21. (So far, experimental realization of 3D Chern insu-
lators is only limited to quasi-2D systems22). This modulation can
be implemented in various system parameters, such as volume
fraction, refractive index, magnetization, or structural distortion.
In this work, we modulate the volume fraction of the DG by
modifying the DG equations as follows: f(x, y, z) > f0+ Δf cos
(πz/a), in which Δf= 0.07. The modulated DG is shown in Fig. 2c
and its band structure is plotted in Fig. 2d.

A 3D Chern crystal is characterized by three first Chern
numbers C1 ¼ Cx

1 ;C
y
1;C

z
1

� �
defined on the x̂, ŷ, and ẑ momentum

planes. For example, Cz
1 is defined as

Cz
1 � Cz

1 kzð Þ ¼ 1
2π

Z
d2kTr F xy

h i
: ð1Þ

Because the bulk spectrum is gapped, Cz
1 cannot change as a

function of kz. When there are N bulk bands below the bandgap,
F xy is an N ×N matrix, whose elements are

F αβ
xy ¼ ∂xAαβ

y � ∂yAαβ
x þ i½Ax;Ay�αβ, in which α, β= 1, 2, ⋯,

N. The Berry connection Aαβ
i ðkÞ ¼ �i uαðkÞh j ∂∂ki u

βðkÞ�� �
, where

Topological bandgap

a Two-way (single-mode) waveguide
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b 2D edge state c 3D core state (this work)

Fig. 1 Conceptual sketch of the one-way (half-mode) waveguides in 2D and
3D. a Single-mode two-way waveguide. b One-way waveguide at the edge
of a 2D topological bandgap material, across which the forward and
backward modes are spatially separated. c One-way fiber at the core of a
3D topological bandgap material. The backward mode is spatially
separated, from the forward core mode, at the outer surface of the fiber
cladding
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Fig. 2 3D Chern crystal from magnetic Weyl crystals. a Two cubic unit cells
of the DG photonic crystal magnetized along z. b The band structure of a
cubic cell shows two Weyl points, which fold into one 3D Dirac point in the
Brillouin zone of the supercell. c The DG photonic crystal whose volume
fraction (blue–red colored) is periodically modulated along z. d The band
structure of the 3D Chern crystal whose topological gap frequencies are
highlighted in green. λ0 is the vacuum wavelength
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uαðβÞ
�� �

are the periodic part of the Bloch wavefunctions (see ref. 1

for an introduction). Note that the trace of the commutator
Tr½Ax;Ay� always vanishes for the first Chern class.

The topological invariants of our plainly modulated DG is
C1= (0, 0, 1). This can be understood from the original Weyl
photonic crystal where Cz

1 ¼ 1 for half of its Brillouin zone, as
illustrated in Fig. 2b. By folding the Brillouin zone to half of its
original size, the Chern numbers in different regions add up.

The 3D Chern crystal is a weak topological phase whose weak
topological invariants are defined in a lower dimension, as
compared with a strong topological phase with a strong
topological invariant. It is theoretically known that a lattice
dislocation in a weak topological phase creates a 1D topological
defect mode23. Unfortunately, in our case, a dislocation induces
significant lattice distortion that generates many additional non-
topological modes in the bandgap.

Fortunately, we propose and demonstrate below that, for a 3D
Chern crystal constructed from Weyl crystals, a new approach is
available: a smooth helical modulation generates a one-way mode
at the core of the helix. The advantage of the helical-modulation
approach, compared with the lattice-dislocation approach, is the
intactness of the lattice that prevents the generation of non-
topological modes in the bandgap. We outline a physical
interpretation as follows, and the rigorous calculations are
presented in the Methods section. A supercell modulation
couples two Weyl points of opposite chiralities, forming a gapped
3D Dirac point with a mass term that is complex-valued. (A 3D
Dirac point consists of two Weyl points of opposite chiralities.)
Then a helical modulation amounts to a nonzero winding
number for the phase of the Dirac mass around the helical axis. It
was indicated, in previous theoretical models, that such a
topological perturbation can generate topological defect modes
in both 2D24–26 and 3D systems27–30.

One-way fiber modes. Now comes the crucial step in our design
of topological one-way fibers. Instead of the plain modulation
(Fig. 2c), we create a helical modulation by filling the volume
satisfying the inequality

f ðx; y; zÞ> f0 þ Δf cosðπz=aþ wθÞ: ð2Þ

The modulation now winds as a function of the angle θ [arctan
(x, y)] in the x− y plane, whose spatial frequency is controlled by
the signed integer w. The sign and magnitude of w determines the
direction and number of the one-way modes on the winding axes.
This is illustrated in the upper panels of Fig. 3 for w=+1, +2,
+3, corresponding to single, double, and triple helix one-way
fibers.

The band structures of the one-way fibers are shown in
Fig. 3f, i, l. They were calculated using MIT Photonic Bands on a
11a × 11a × 2a cubic supercell. The spectra exhibit one-way
modes within the bulk bandgap. The fields of the topological
fiber modes are localized around the helix cores (Fig. 3g, j, m),
and the localization length is minimized at the mid-gap
frequencies. In general, the higher-order mode profiles are more
extended in the real space. For the multimode fields of w=+2,
+3, instead of the mid-gap frequencies, we plot the mode profiles
close to the band-edge frequencies. Because multimode disper-
sions are almost degenerate at the middle of the bandgap (Fig. 3i,
l), it is difficult to resolve their intrinsic mode patterns from their
linear superpositions.

In Fig. 3f, i, l, all one-way-fiber dispersions (green lines) have
very similar phase and group velocities. In the multimode cases,
their dispersions are almost degenerate at the mid-gap frequen-
cies. This is due to the fact that these defect modes originated

from the same Weyl bulk bands, so they all share the same
Brillouin-zone location and group velocities as those of the
original Weyl cones. This behavior is different from that of the
multimode one-way edge waveguides in 2D9, where the edge
modal dispersions have different phase or group velocities. This
can be attributed to the fact that the edge environment, of sharp
terminations, is distinct from the environment of the 2D bulk
lattice. While, here, there are no sharp interfaces in the 3D one-
way fibers. This unique feature, of multiple fiber modes having
almost identical dispersions, ensures that multimode signals
propagate at the same speed for both energy and phase.

Time-domain simulations. To visualize and confirm our pre-
diction made by spectral dispersions, we simulate the wave
dynamics of the one-way fiber (w=+1) in the real space in
Fig. 4. Due to the huge computation domain, the finite-difference
time-domain (FDTD) method is adopted for its nice scaling with
the computation size. We use the commercial software East-
Wave31 for its capability in handling nonreciprocal materials.

In Fig. 4, we compare the one-way fiber to a regular fiber
having a core diameter of 2a with a dielectric constant of 16 in air.
In both cases, the computation domain is 20a × 20a × 26.5a, in
(x, y, z) directions, and the mesh resolution is a/30. The perfectly
matched layers (PMLs) are used at all six boundary planes. A
dipole source polarized in z direction was placed at the position
(0.1, 0.2, 5.5)a to excite the fiber mode. A metallic ball of diameter
1.5a is placed at (0, 0, 14.5)a to test the robustness of the mode.
Obviously, the one-way mode perfectly circumvents the metal
sphere without any scattering losses, while the regular fiber mode
backscatters. We also note that fiber bends, disrupting the 3D
bandgap of cladding, can cause photon loss.

Second Chern number. It is natural to ask for a topological
invariant for the one-way fibers. With the simplest helix mod-
ulation of the form of Eq. (2), it is intuitive to guess that w is the
topological invariant, since the number and direction of the one-
way modes match the magnitude and sign of w. However, this
observation does not work if we consider the modulation of the
general form as f x; y; zð Þ> f0 þ

P
w hw cos πz=aþ wθð Þ, where hw

are real-valued constants.
For a lattice dislocation in a 3D Chern crystal, it is known32

that the number of chiral modes is given by C1 · b, where the
dimensionless Burgers vector (b) represents the magnitude and
direction of the lattice distortion. However, this approach cannot
be applied to our system due to the lack of a unique “Burgers
vector” other than that in the simplest case (as of Eq. (2)).

We show that the formal topological invariant of our one-way
fibers is the second Chern number (C2), the strong topological
invariant in our system. Note that, far away from the axis of the
helix, the Bloch Hamiltonian smoothly varies with θ and is a
smooth function of the four variables (kx, ky, kz, θ). Since (kx, ky,
kz, θ) span a four-dimensional parameter space with periodic
boundary conditions (a 4D torus), the second Chern number32,33

can be defined:

C2 ¼
1
4π2

Z
d3kdθTr F xyF zθ þ F yzF xθ þ F zxF yθ

h i
: ð3Þ

Similar to the definitions in Eq. (1),
F αβ

ij ¼ ∂iAαβ
j � ∂jAαβ

i þ i½Ai;Aj�αβ, in which α, β are the
band indices. The non-Abelian Berry potential
Aαβ

i ðk; θÞ ¼ �i uαðk; θÞh j ∂
∂ki

uβðk; θÞ�� �
, where uαðβÞ

�� �
are the

eigenfunctions and ki runs through kx, ky, kz, θ. It is notable
that this definition of C2 involves three variables (kx,y,z) in the
reciprocal space and one variable (θ) in the real space, in contrary
to the four momentum variables in the 4D QHE33–40.
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Consequently, the Berry curvature F iθ is even while F ij is odd
under time reversal, where i or j represents one of x, y, and z.
Although in 4D QHE, C2 can be nonzero without breaking time-
reversal symmetry, nonzero C2 requires time-reversal breaking in
our system, which is consistent with the one-way phenomena.

In the Methods section, we carry out the explicit calculations of
C2, which is consistent with our numerical findings in Fig. 3. The
topological protection by the second Chern number indicates that
the physical origin of the one-way fiber modes is fundamentally
different from that of the edge modes of the 2D Chern crystals5,6

(2D Chern insulator or 2D QHE), whose topology is captured by
the first Chern number. We note that, although in our system
both the weak indices (C1) and the strong index (C2) are nonzero,
it is possible to construct a one-way fiber design with zero C1 and
nonzero C2. For example, when the separation between the two
Weyl points shrinks to zero (forming a 3D Dirac point), one can
apply only angular (θ) modulations to obtain a one-way fiber of
nonzero C2 but zero C1.

Discussion
Experimentally, one-way fibers can be constructed using gyro-
magnetic materials6,9,41 at microwave frequencies. For higher
frequencies, there lacks magnetic materials with high Verdet
constants and low loss. Nevertheless, we discuss the potential
relevant technologies below. Toward optical frequencies, there is
progress on magnetic fibers42,43 and gyroelectric materials44,45.
The opt-acoustic coupling46 in fibers provides another possibility
for breaking time-reversal symmetry. A DG fiber can either
be made by drawing a 3D-printed preform or potentially by
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Fig. 3 Single and multimode fibers in helically modulated magnetic DGs. a The DG structure without modulation is shown in a 3 × 3 × 2 cubic cell and its
projected Weyl band structure is shown in b. c The DG structure of a plain modulation (w=0), and its projected gapped band structure is shown in d. e The
single helix DG structure (w=+1), whose helix center supports one one-way fiber mode. The fiber dispersion and mode profile are shown in f, g. h The double
helix DG structure (w=+2), whose helix center supports two one-way fiber modes. The fiber dispersions and mode profiles are shown in i, j. k The triple helix
DG structure (w=+3), whose helix center supports three one-way fiber modes. The fiber dispersions and mode profiles are shown in l, m

a Regular fiber

b One-way fiber

Fig. 4 Comparison of a regular fiber and the one-way fiber. a A regular two-
way fiber mode with strong backscattering off the metallic ball (refer to
Supplementary Movie 1). b The one-way fiber mode (w=+1) has no
backscattering (refer to Supplementary Movie 2). The magnetic gyroid
photonic-crystal structure is plotted in gray. One-quarter of the fiber
volume was removed to expose the electric field of the fiber mode excited
by the continuous point source placed at the green circle
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self-assembly47,48 during the drawing process. Three-dimensional
direct writing49 and interference lithography50 can also be
adopted. Finally, the chiral modulation can be created by spin-
ning the fiber during drawing, as demonstrated in the chiral
fibers51,52.

The proposal of one-way fibers enriches the prospects of device
applications for the Weyl materials and topological photonics. It
also brings a new playground for the realization of higher-
dimensional topological physics53,54. Topological fibers could also
inspire new directions, design principles for novel fibers55–57.

Methods
Effective 3D Dirac Hamiltonian. In the main text, we have presented our design
of the one-way fiber and the results of band-structure calculations. To gain a simple
analytical understanding of the one-way modes, we outline below an effective
Hamiltonian description, using the low-energy Dirac Hamiltonian. The picture can
be summarized as follows. In terms of the effective Dirac Hamiltonian, the mod-
ulation corresponds to the presence of a Dirac mass. The helix modulation
introduces a topologically nontrivial configuration of the Dirac mass (nonzero
winding number of the phase of Dirac mass), which creates topologically one-way
defect modes.

In the absence of modulations, the double-gyroid crystal hosts two Weyl points
with opposite chirality, either of which is described by a 2 × 2 effective Weyl
Hamiltonian. We can combine them as a 4 × 4 block-diagonal Dirac Hamiltonan:
HD=−iv(σx∂x+ σy∂y+ σz∂z)τz where σi,τi (i= x, y, z) are Pauli matrices, v is the
group velocity (for simplicity, we take isotropic group velocities with v > 0). As we
have seen in the main text, a modulation with periodicity 2a in the z direction gaps
out the Weyl points. In the effective Dirac-Hamiltonian description, the frequency
gap is due to the Dirac mass terms. There are only two possible Dirac mass terms:
m1τx and m2τy, both of which anti-commute with the σiτz terms in HD. It is
thus expected that the modulation amounts to the presence of these Dirac mass
terms in the low-energy effective Hamiltonian. In general, both m1 and m2 can be
nonzero, and the mass term can be rewritten as m1τx+m2τy=mτ++m*τ−, with
τ±≡ (τx ± iτy)/2 and m≡m1− im2. The full effective Hamiltonian, with the effect
of modulation included as the Dirac mass, can be written as

Heff ¼ �iv σx∂x þ σy∂y þ σz∂z

� �
τz þmτþ þm�τ�; ð4Þ

from which we can readily see that a frequency gap 2|m| is generated by the Dirac
mass terms.

In this effective Hamiltonian, the chirality flipping terms containing τ± couple
the states near the two Weyl points; therefore, they should come from the
modulation. Suppose that the modulation can be modeled in the effective potential
VðrÞ ¼ VQ exp þiQ � rð Þ þ Vy

Qexp �iQ � rð Þ þ � � �, where Q= (0, 0, π/a) is the
wavevector that couples the two Weyl points. We can see that exp(±iQ · r) → τ± is
valid near the Weyl points, and we have m= VQ, in other words, the complex-
valued Dirac mass is simply the Q-component of the perturbation.

Now, we show that the displacement of modulation (d) amounts to the phase
change of the Dirac mass (m). If we displace the modulation by a distance d, then
the perturbation becomes V(r+ d), which can be expanded as V(r+ d)
= VQexp iQ � ðrþ dÞ½ � þ Vy

Qexp �iQ � ðrþ dÞ½ � þ � � �, thus we can see that the
displacement causes VQ →VQ exp(iQ · d), or equivalently, m →m exp(iQ · d). For
the helix-shape modulation along the axis r= 0, as described in the main text, the
displacement d is a function of θ such that Q · d= wθ. Here, we use the cylindrical
coordinates (x, y, z)≡ (rcosθ, rsinθ, z). Therefore, we have a nonzero winding of the
phase of Dirac mass around the axis, namely, m(θ)=m0 exp(iwθ), in which m0≡
m(θ= 0). The overall phase of m0 can be changed by rotating the coordinate
systems around the r= 0 axis, thus we are free to take m0 to be real-valued and
positive.

Analytic solutions of one-way modes. For the effective 3D Dirac Hamiltonian
with a nonzero winding of the phase of Dirac mass (with winding number w),
which is a consequence of the helix perturbation, we shall show that there exist |w|
topological one-way modes. We can rewrite Eq. (4) in the cylindrical coordinates as

Heff ¼
vkz ; �ive�iθ ∂

∂r � i
r
∂
∂θ

� �
; m0e

iwθ; 0

�iveiθ ∂
∂r þ i

r
∂
∂θ

� �
; �vkz 0; m0e

iwθ

m0e
�iwθ; 0; �vkz ; ive�iθ ∂

∂r � i
r
∂
∂θ

� �
;

0; m0e
�iwθ ; iveiθ ∂

∂r þ i
r
∂
∂θ

� �
vkz

2
66664

3
77775:

ð5Þ

where we have taken advantage of the translational symmetry in the z direction by
replacing −i∂z by kz. For notational simplicity, we shall keep implicit the common
factor exp(ikzz) in the eigenfunction. For a reason that will become clear shortly,
we look for eigenfunctions of the form of ψ= [ψ1, 0, 0, ψ4]T. The eigenvalues are

E= vkz, and the eigenfunctions satisfy

�iveiθ ∂
∂r þ i

r
∂
∂θ

� �
ψ1 þm0e

iwθψ4 ¼ 0;

m0e
�iwθψ1 þ ive�iθ ∂

∂r � i
r
∂
∂θ

� �
ψ4 ¼ 0:

ð6Þ

It is not difficult to observe that the second equation is equivalent to the first one if
we take ψ4 ¼ ±ψ�

1. Let us focus on the ψ4 ¼ þψ�
1 case first. With this condition,

the above two equations are reduced to a single equation

�iveiθ
∂

∂r
þ i
r
∂

∂θ

� 	
ψ1 þm0e

iwθψ�
1 ¼ 0 ð7Þ

For the w=+1 case, the common exp(iθ) factors can be eliminated; thus, the
equation becomes especially simple, and the solution can be found analytically as

ψw¼þ1

�� � ¼

eiπ=4

0

0

e�iπ=4

0
BBB@

1
CCCAe�

m0
v r : ð8Þ

For an arbitrary integer w ≥+1, by analysis analogous to ref. 24, we can show that
there exist w localized modes. In fact, we can take the following ansatz for Eq. (7):

ψðlÞ
1 ¼ eiπ=4 ule

ilθ þ vle
iðw�1�lÞθ

h i
; ð9Þ

with an integer parameter l, whose acceptable values are to be determined. We first
notice that when l= (w− 1)/2, eilθ and ei(w−1−l)θ are actually equal, and the vl term
is redundant. Let us first focus on the cases l ≠ (w− 1)/2. The special case l= (w−
1)/2, with eilθ= ei(w−1−l)θ, will be discussed separately later.

According to Eq. (7), the coefficient functions ul,vl have to satisfy

v ∂
∂r � l

r

� �
ul þm0vl ¼ 0

v ∂
∂r � w�1�l

r

� �
vl þm0ul ¼ 0:

ð10Þ

The asymptotic behaviors of ul, vl in the r→ 0 limit can be found as (I) ul : rl, vl ~ rl+1 or
(II) ul : rw−l, vl : rw−l−1. On the other hand, the asymptotic behaviors in the r→∞ limit
are (a) ul ! exp � m0

v r
� �

; vl ! exp � m0
v r

� �
or (b) ul ! exp m0

v r
� �

; vl ! exp m0
v r

� �
,

only the first of which is normalizable in the r→∞ regime. A normalizable solution
must have behavior (a) in the r→∞ limit, which is generally a superposition of (I) and
(II) in the r→ 0 regime. Therefore, the normalizability of the solution in the r→ 0 limit
requires that both (I) and (II) are normalizable, which leads to the constraint

0 � l � w� 1: ð11Þ

Thus, we have proved that, leaving out the special case l ≠ (w− 1)/2 undetermined,
there exists one normalizable solution for every integer l= 0, 1, 2, ⋯, w− 1.
However, the solutions with l > (w− 1)/2 are redundant, because the solutions for l
and l′ with l+ l′= w−1 are actually the same one, as can be appreciated from Eq.
(9). Therefore, the total number of solutions with ψ4 ¼ þψ�

1 is the number of a
nonnegative integer smaller than (w− 1)/2, which is [w/2] (here, “[⋯]” denotes the
floor function, mapping a real number to the largest previous integer), excluding a
possible solution with l= (w− 1)/2.

Now we consider the other choice: ψ4 ¼ �ψ�
1. By calculations similar to the

case ψ4 ¼ ψ�
1, we can obtain equations similar to Eq. (7), except that the “+” sign

before m0 is replaced by “−”. We adopt the same ansatz as given in Eq. (9), and
follows the steps below Eq. (9), solving the case l ≠ (w− 1)/2 first. It is found that
the number of solutions is [w/2].

Finally, we study the special case l= (w− 1)/2 (this case needs consideration
only when w is odd; for w even, this option is automatically absent). Given this
value of l, the second term in Eq. (9) becomes redundant, thus we can take

ψðlÞ
1 ¼ eiπ=4ule

ilθ : ð12Þ

Under the choice ψ4 ¼ ±ψ�
1, we obtain the single differential equation

v
∂

∂r
� l
r

� 	
ul ±m0ul ¼ 0: ð13Þ

For the choice “+” of the “±”, Eq. (13) has a single normalizable solution with
asymptotic behaviors ul → rl in the r → 0 limit and ul ! exp � m0

v r
� �

in the r →∞
limit. For the choice “−” of the “±”, Eq. (13) leads to ul ! exp m0

v r
� �

in the r →∞
limit, which is apparently not normalizable. Therefore, there exists a single
normalizable localized mode, in the ψ4 ¼ þψ�

1 sector, for the special case l= (w−
1)/2. We also note that, if we take m0 < 0 instead of m0 > 0, the normalizable
solution would be present in the ψ4 ¼ �ψ�

1 sector but absent in the ψ4 ¼ þψ�
1

sector, thus the total number of solution is the same.
Let us summarize the above calculations as follows. When w is odd,

the total number of normalizable solutions is 2[w/2]+ 1= w; when w is even,
the total number of normalizable solutions is 2[w/2]= w. Therefore, the
total number of topological modes is always w, irrespective of the parity (odd/even)
of w. Furthermore, our calculation shows that the eigenvalues take the simple
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form

E kzð Þ ¼ þvkz ; ð14Þ

Thus, all these w modes propagate along the +z direction, with the same velocity v.
Finally, let us discuss the one-way modes for the integer w < 0. A solution of the

form of ψ= [ψ1, 0, 0, ψ4]T does not exist in this case, because the condition given in
Eq. (11) can never be satisfied. On the other hand, solutions of the form of ψ= [0,
ψ2, ψ3, 0]T can be found. In fact, we can follow the steps above and obtain the
equations

�ive�iθ ∂
∂r � i

r
∂
∂θ

� �
ψ2 þm0e

iwθψ3 ¼ 0;

m0e
�iwθψ2 þ iveiθ ∂

∂r þ i
r
∂
∂θ

� �
ψ3 ¼ 0;

ð15Þ

whose complex conjugations are

�iveiθ ∂
∂r þ i

r
∂
∂θ

� �
ψ2 þm0e

ijwjθ �ψ3

� � ¼ 0;

m0e
�ijwjθψ2 þ ive�iθ ∂

∂r � i
r
∂
∂θ

� � �ψ3

� � ¼ 0:
ð16Þ

We can see that Eq. (16) is the same as Eq. (6) except that ψ2 and −ψ3 take the
place of ψ1 and ψ4, respectively. Now, our previous analysis for Eq. (6) with w ≥+ 1
immediately tells us that the number of one-way modes for w < 0 is |w|. Because the
solutions for w < 0 take the form of ψ= [0, ψ2, ψ3, 0]T, the dispersion is E(kz)=
−vkz, thus all the one-way modes propagate in the −z direction.

Calculation of the second Chern number C2. The effective Hamiltonian Eq. (4)
takes the form of

Heff ¼
X5
a¼1

daΓ
a; ð17Þ

where the Dirac matrices Γa= σaτz (a= 1, 2, 3), Γ4= τx, Γ5= τy, the coefficient
functions da= vka (a= 1, 2, 3), d4= Re(m), d5=−Im(m). A straightforward
calculation of C2, as in ref. 33, leads to

C2 ¼ 3
8π2

R
dθd3kϵabcded̂a

∂d̂b
∂kx

∂d̂c
∂ky

∂d̂d
∂kz

∂d̂e
∂θ

¼ 1
2π

R 2π
0 dθ d argðmðθÞÞ½ �

dθ ;
ð18Þ

where d̂a ¼ da=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP5

b¼1 d
2
b

q
. With the Dirac mass m=m0 exp(iwθ), we have

C2 ¼ w: ð19Þ

For a general modulation that combines several different spatial frequencies,
namely, mðθÞ ¼ P

w mwexpðiwθÞ, Eq. (18) is not amenable to further
simplification in the generic cases. However, we have C2= w0 in the cases that
jmw0

j>P
w≠w0

jmwj, in other words, C2 is determined by the dominant modulation.

Data availability
All relevant data are available from the authors on request.
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