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We propose a general framework for solving statistical mechanics of systems with finite size. The approach
extends the celebrated variational mean-field approaches using autoregressive neural networks, which support
direct sampling and exact calculation of normalized probability of configurations. It computes variational
free energy, estimates physical quantities such as entropy, magnetizations and correlations, and generates
uncorrelated samples all at once. Training of the network employs the policy gradient approach in
reinforcement learning, which unbiasedly estimates the gradient of variational parameters. We apply our
approach to several classic systems, including 2D Ising models, the Hopfield model, the Sherrington-
Kirkpatrick model, and the inverse Ising model, for demonstrating its advantages over existing variational
mean-field methods. Our approach sheds light on solving statistical physics problems using modern deep
generative neural networks.
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Consider a statistical physics model such as the cel-
ebrated Ising model, the joint probability of spins s ∈
f�1gN follows the Boltzmann distribution

pðsÞ ¼ e−βEðsÞ

Z
; ð1Þ

where β ¼ 1=T is the inverse temperature and Z is the
partition function. Given a problem instance, statistical
mechanics problems concern about how to estimate the free
energy F ¼ −ð1=βÞ lnZ of the instance, how to compute
macroscopic properties of the system such as magnetizations
and correlations, and how to sample from the Boltzmann
distribution efficiently. Solving these problems are not only
relevant to physics, but also find broad applications in fields
like Bayesian inference where the Boltzmann distribution
naturally acts as posterior distribution, and in combinatorial
optimizations where the task is equivalent to study zero
temperature phase of a spin-glass model.
When the system has finite size, computing exactly the free

energy belongs to the class of #P-hard problems, hence is in
general intractable. Therefore, usually one employs approxi-
mate algorithms such as variational approaches. The varia-
tional approach adopts an Ansatz for the joint distribution
qθðsÞ parametrized by variational parameters θ, and adjusts
them so that qθðsÞ is as close as possible to the Boltzmann
distribution pðsÞ. The closeness between two distributions is
measured by Kullback-Leibler (KL) divergence [1]

DKLðqθkpÞ ¼
X

s

qθðsÞ ln
�
qθðsÞ
pðsÞ

�
¼ βðFq − FÞ; ð2Þ

where

Fq ¼
1

β

X

s

qθðsÞ½βEðsÞ þ ln qθðsÞ� ð3Þ

is the variational free energy corresponding to distribution
qθðsÞ. Since the KL divergence is non-negative, minimizing
the KL divergence is equivalent to minimizing the variational
free energy Fq, an upper bound to the true free energy F.
One of the most popular variational approaches, namely

the variational mean-field method, assumes a factorized
variational distribution qθðsÞ ¼

Q
iqiðsiÞ, where qiðsiÞ is

the marginal probability of the ith spin. In such para-
metrization, the variational free energy Fq can be expressed
as an analytical function of parameters qiðsiÞ, as well as its
derivative with respect to qiðsiÞ. By setting the derivatives
to zero, one obtains a set of iterative equations, known as
the naïve mean-field (NMF) equations. Despite its sim-
plicity, NMF has been used in various applications in
statistical physics, statistical inference, and machine learn-
ing [2,3]. Although NMF gives an upper bound to the
physical free energy F, typically it is not accurate, since it
completely ignores the correlation between variables. Other
approaches, which essentially adopt different variational
Ansätze for qθðsÞ, have been developed to give better
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estimate (although not always an upper bound) of the free
energy. These Ansätze, including Bethe approximation
[4,5], Thouless-Anderson-Palmer equations [6], and
Kikuchi loop expansions [7], form a family of mean-field
approximations [2].
However, on systems with strong interactions and on a

factor graph with loops of different lengths (such as lattices),
mean-field approximations usually give very limited perfor-
mance. The major difficulty for the mean-field methods in
this case is to give a powerful, yet tractable variation form of
joint distribution qθðsÞ. In this Letter, we generalize the
existing variational mean-field methods to a much more
powerful and general framework using autoregressive neural
networks.
Variational autoregressive networks.—The recently

developed neural networks give us ideal methods for
parameterizing variational distribution qθðsÞ with a strong
representational power. The key ingredient of employing
them to solve statistical mechanics problem is to design
neural networks such that the variational free energy
[Eq. (3)] is efficiently computable. The method we adopted
here is named autoregressive networks, where the joint
probability of all variables is expressed as product of
conditional probabilities [8–11]

qθðsÞ ¼
YN

i¼1

qθðsijs1;…; si−1Þ; ð4Þ

and the factors are parametrized as neural networks. We
denote using Eq. (4) as an Ansatz for the variational
calculation and Eq. (3) as a variational autoregressive
networks (VAN) approach for statistical mechanics.
The simplest autoregressive network is depicted in

Fig. 1(a), which is known as the fully visible sigmoid
belief network [9]. The input of the network is a configu-
ration s ∈ f�1gN with a predetermined order, and the
output ŝi ¼ σðPj<iWijsjÞ has the same dimension as the
input. We see that the network is parametrized by a
triangular matrix W, which ensures that ŝi is independent
with sj when j ≥ i. This is named as autoregressive
property in machine learning literatures. The sigmoid
activation function σð·Þ ranges in (0,1), so we can expect
that ŝi represents a probability with proper normalization.
Namely, ŝi ¼ qðsi ¼ þ1js<iÞ, which means the condi-
tional probability of si being þ1, given the configuration
of spins in front of it, s<i, in the predetermined order
of variables. Thus, given a configuration s as the input to
the network, the joint distribution of the input variables
can be expressed as the product of conditional proba-
bilities, and each factor is a Bernoulli distribution
qðsijs<iÞ ¼ ŝiδsi;þ1 þ ð1 − ŝiÞδsi;−1.
There have been many discussions in the machine

learning community on how to make the autoregressive
network deeper and more expressive, and how to increase

the generalization power by sharing weights [10–14].
Using the simplest one-layer network as building blocks,
we can design more complex and expressive networks,
while preserving the autoregressive property. For example,
we can add more layers of hidden variables to the network,
as shown in Fig. 1(b).
When the system has structures, e.g., lying on a 2D

lattice, a classic network architecture designed specifically
for it is the convolutional network [8], which respects the
locality and the translational symmetry of the system. To
ensure the autoregressive property, one can put a mask on
the convolution kernel, so that the weights are not zero only
for half of the kernel, and ŝi is independent of sj with j < i
in the predetermined order. The receptive field of the
masked convolution through multiple layers is shown in
Fig. 1(c). This kind of structured autoregressive networks is
known as PixelCNN [15], which has achieved state-of-the-art
results in modeling and generating natural images. In
additional, by using the dilated convolutions the autore-
gressive WaveNet [16] can capture long-range correlations in
audio signals, and has achieved remarkable performance in
real-world speech synthesis.
The autoregressive networks are one of the leading

generative models that find wide applications under the
general purpose of density estimations [15–17]. A key
difference between our work and those machine learning
applications is that for density estimation one trains the
network from the training data using maximum likelihood
estimation, i.e., minimizing the KL divergence between
empirical training data distribution pdataðsÞ and the net-
work, DKLðpdatakqθÞ. Whereas in our variational free

(a) (b)

(c)

FIG. 1. Autoregressive networks with different architectures for
variational free energy calculation. The spin configuration s is the
input to the network, ŝ is the output of the network, and h denotes
hidden layer. The loss function Fq is given by Eq. (3) and Eq. (4).
The colored sites denote the receptive field of a site in ŝ. (a) The
network has only one layer, which is densely connected, while
the autoregressive property hold. (b) The network has a hidden
layer. (c) The network has masked convolution layers on 2D
lattice. Only connections in a convolution kernel are shown for
clarity.
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energy calculation, the goal is to reduce the reversed KL
divergence DKLðqθkpÞ. Therefore, we train the network
using data produced by itself. The only input of our
calculation is the energy function of the statistical mechan-
ics problem, and no training data from the target Boltzmann
distribution is assumed.
The variational free energy in Eq. (3) can be regarded as a

scalar loss function over the parameters θ of the autore-
gressive network of Eq. (4). A nice feature of autoregressive
networks is that one can draw independent samples effi-
ciently by sampling each variable in the predetermined order.
Moreover, one has direct access to the normalized proba-
bility qθðsÞ of any given sample. Exploiting these properties,
one can replace the summation over all possible configu-
rations weighted by qθðsÞ by samplings from the network,
and evaluate the entropy and energy terms respectively in
Eq. (3). Thanks to the direct-sampling ability, the estimated
variational free energy provides an exact upper bound to the
true free energy of the model.
The gradient of the variational free energy with respect

to network parameters reads [18]

β∇θFq ¼ Es∼qθðsÞf½βEðsÞ þ ln qθðsÞ�∇θ ln qθðsÞg: ð5Þ

We perform the stochastic gradient descent optimization
on the parameters θ. Furthermore, we employ the control
variates method of Ref. [24] to reduce the variance in the
gradient estimator [18]. In the context of reinforcement
learning [25], qθðsÞ is a stochastic policy which produces
instances of s, and the term in the square bracket of Eq. (3)
is the reward signal. Thus, learning according to Eq. (5)
amounts to the policy gradient algorithm. We note that the
variational studies of quantum states [26] employ a similar
gradient estimator. However, the variational autoregressive
networks enjoy unbiased estimate of the gradient using
efficient direct sampling instead of relying on the correlated
Markov chains.
To the best of our knowledge, the variational framework

using deep autoregressive networks for statistical mechan-
ics has not been explored before. Our method can be seen
as an extension to the variational mean-field methods with a
more expressive variational Ansatz. Its representational
power comes from recently developed deep neural net-
works with guarantee of universal expressive power [8].
Rather than a specific model, we consider our approach as
a general framework, analogous to existing frameworks
such as Markov chain Monte Carlo (MCMC), mean-field
methods, and tensor networks [27,28]. When compared
with existing frameworks, the features of VAN are these:
giving an upper bound to the true free energy; efficiently
generating independent samples without needing Markov
chains, which is ideal for parallelization (on GPUs); and
computing physical observables, such as the energy and
correlations, using a sufficiently large amount of samples
without any autocorrelations.

Numerical experiments.—To demonstrate the ability of
VAN in terms of accuracy of the variational free energy and
estimated physical quantities, we perform experiments on
Ising models. The energy of the configuration s is given by
EðsÞ ¼ −

P
ðijÞJijsisj, with ðijÞ denoting pair of connec-

tions. With different choices of the coupling matrix J,
we cover systems on different topologies: 2D square and
triangular lattices, and fully connected systems. We also
cover systems with different behaviors: ferromagnetic,
antiferromagnetic, glassy, and as associative memory.
We first apply our approach to the ferromagnetic Ising

model on 2D square lattice with periodic boundary con-
dition, which admits an exact solution [29]. We have tested
two types of network architectures, the 2D convolution
(conv) and densely connected (dense), respectively,
to verify that taking into account the lattice structure
is beneficial. More details on the implementation are
discussed in the Supplemental Material [18].
The free energy given by VAN, compared with NMF and

Bethe approximations, is shown in Fig. 2(a). The figure
shows that VAN significantly outperforms the two tradi-
tional methods. The maximum relative error is around the
critical point, where the system develops long range
correlations. Also, the network architecture with convolu-
tion layers performs significantly better than dense con-
nection, since it respects the two-dimensional nature of the
lattice, which is particularly beneficial when the correlation
is short ranged. However, around criticality, they exhibits
similar performance.
Then, we apply our approach to the frustrated antiferro-

magnetic Ising model on 2D triangular lattice with a
periodic boundary condition. Figure 2(b) shows the entropy
per site versus inverse temperature β for various lattice
sizes. Reaching a finite entropy density indicates that the
system processes an exponentially large number of degen-
erate ground states. Extrapolation of β → ∞ shows that
VAN correctly captures the exponentially large number of
ground states. In comparison, describing such feature has

(a) (b)

FIG. 2. (a) Free energy per site and its relative error of
ferromagnetic Ising model on 16 × 16 square lattice with periodic
boundary condition. (b) Entropy per site of antiferromagnetic
Ising model on triangular lattices of various sizes L with periodic
boundary condition. The exact result (dashed line) at T ¼ 0 and
L → ∞ is S=N ¼ 0.323 066 [30,31]. The curves for L ¼ 8, 14,
16 are almost overlapped.
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been challenging to conventional MCMC and mean-field
approaches.
Next, to demonstrate the ability of capturing multiple

states at low temperature, we consider the Hopfield
model [32], where N spins are connected to each other.
The couplings composed of P random patterns,
Jij ¼ ð1=NÞPP

μ¼1 ξ
μ
i ξ

μ
j , with fξμg ∈ f�1gN denoting a

random pattern. At a low temperature with P small, the
system has a retrieval phase where all P patterns are
remembered by the system; hence there are P pure states
in the system [33,34]. The experiments are carried out on a
Hopfield network with N ¼ 100 spins and P ¼ 2 orthogo-
nal random patterns. At low temperature the energy
(probability) landscape contains four modes, corresponding
to two stored patterns and their mirrors (due to Z2

symmetry). As opposed to models defined on lattices,
there is no topology structure to apply convolution, so we
use a simplest VAN with only one layer and NðN − 1Þ=2
parameters. We start training our network at β ¼ 0.3 and
slowly anneal the temperature to β ¼ 1.5. At each temper-
ature, we sample configurations from the trained VAN, and
show their log probability in Fig. 3.
The figure shows that at high temperature with β ¼ 0.3,

samplings are not correlated with the two stored patterns,
and the system is in the paramagnetic state. The log
probability landscape is quite flat, as the Gibbs measure
is dominated by entropy. When β is increased to 1.5, four
peaks of probability emerge and dominate over other
configurations. These four peaks touch coordinates [1, 0],
[0, 1], ½−1; 0�, and ½0;−1� in the X-Y plane, which
correspond exactly to the two patterns and their mirrors.
This is an evidence that our approach avoids collapsing into
a single mode, and gives samplings capturing the features
of the whole landscape, despite that those modes are
separated by high barriers.
Compared with the landscape of Hopfield model in the

retrieval phase which exhibits several local minima in the
energy and probability landscape, models in the spin glass

phase are considerably more complex [35], because they
have an infinite number of pure states, in the picture of
replica symmetry breaking [36]. Here we apply our method
to the classic Sherrington-Kirkpatrick (SK) model [37],
where N spins are connected to each other by couplings Jij
drawn from Gaussian distribution with variance 1=N. So
far the tensor network approaches do not apply to this
model because of long range interactions and the disorder,
which causes negative Z issue [38]. On the thermodynamic
limit with N → ∞ where the free energy concentrates to its
mean value averaged over disorder, using for example
replica method and cavity method, and replica symmetry
breaking, i.e., the Parisi formula [36]. On a single instance
of SK model, the algorithm version of the cavity method,
belief propagation, or Thouless-Anderson-Paler [6] equa-
tions apply as message passing algorithms. On large
systems in the replica symmetry phase, the message
passing algorithms converge and the obtained Bethe free
energy is a good approximation, but in the replica sym-
metry breaking phase they fail to converge. Also notice that
even in the replica symmetry phase, Bethe free energy is
not an upper bound to the true free energy.
As a proof of concept, we use a small system size

N ¼ 20, so we can enumerate all 2N configurations,
compute the exact value of free energy, then evaluate the
performance of our approach. Again, we use a simple VAN
with only one layer.
In Fig. 4(a) we show the free energy obtained from VAN,

compared with NMF and Bethe approximations. The free
energy from VAN is much better than NMF and Bethe, and
even indistinguishable to the exact value. This is quite
remarkable considering that VAN adopts only NðN − 1Þ=2
parameters, which is even smaller than that used in the
belief propagation, NðN − 1Þ. We also checked that our
approach not only gives a good estimate on free energy, it
also obtains accurate energy, entropy, magnetizations, and
correlations.
The ability of solving ordinary statistical mechanics

problems also gives us the ability to solve inverse statistical
mechanics problems. A prototype problem is the inverse

FIG. 3. Log probability of sampled configurations from VAN
trained for a Hopfield model with N ¼ 100 spins, and P ¼ 2
orthogonal patterns. The sampled configurations are projected
onto the two-dimensional space spanned by the two patterns. X
axis (O1) and Y axis (O2) are the overlap (inner product,
normalized to ½−1; 1�) between each sampled configuration
and the two patterns, respectively. (a) β ¼ 0.3, and the system
is in the paramagnetic phase. (b) β ¼ 1.5, and the system is in the
retrieval phase. Note the different scales in the color bars.
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FIG. 4. (a) Free energy of SK model with N ¼ 20 spins. The
inset shows relative errors to exact values in a larger β regime.
Bethe converges only when β ≤ 1.5. (b) The reconstruction error
in the inverse Ising problem. The underlying model is an SK
model with N ¼ 20 spins. VAN uses a network with two layers (a
hidden layer and an output layer).
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Ising problem, which asks us to reconstruct the couplings
of an Ising (spin glass) model, given the correlations [18].
It is well known that the Ising model is the maximum
entropy model given the first and the second moments, so
the couplings are uniquely determined by the correlations.
The problem has been studied for a long time especially in
the field of statistical mechanics [39], mainly using mean-
field based methods.
The adaptation of our method for the inverse problem is

straightforward by repeating the following two steps, until
the correlations given by VAN are close enough to the
given correlations of the underlying model: (1) train a VAN
according to the Ising model with an existing Jij by
minimizing the variational free energy; (2) compute corre-
lations via direct sampling from the VAN, then update Jij to
minimize the difference between the two sets of correla-
tions. We use our approach to reconstruct an SKmodel with
N ¼ 20 spins, and the given correlations are computed
exactly by enumerating all 2N configurations. The VAN
uses two layers with 2000 parameters. The results are
shown in Fig. 4(b). Our method works much better than the
popular mean-field methods of naïve mean-field [40,41],
Sessak-Monasson small-correlation expansions [42], and
those based on a Bethe approximation [43,44], especially in
the glassy phase with β > 1.
Outlooks.—In the present Letter, we have focused on

binary spins. However, it is straightforward to generalize
the approach to Potts models and models with continuous
variables. We also notice that, for continuous variables and
with a regular structure, a flow-based model together with a
renormalization group has been proposed for the variational
free energy minimization problem [45]. For systems
defined on a 2D lattice, we have shown how to adopt
convolutions for respecting the 2D structure of the under-
lying factor graph [15]. This strategy can be extended
straightforwardly to systems on 3D lattices using 3D
convolutions, and to graphical models on an arbitrary
factor graph using, e.g., graph convolution networks [46]
with proper filters.
We anticipate that our method will find immediate

applications in a broad range of disciplines. For example,
it can be applied directly to statistical inference problems,
where the Boltzmann distribution in statistical mechanics
becomes the posterior distribution of Bayesian inference
[47]. Another example of application would be the com-
binatorial optimizations and constraint satisfaction prob-
lems, in which finding the optimal configurations and
solutions correspond to finding ground states of spin
glasses, and counting the number of solutions corresponds
to computing entropy at zero temperature.
So far our approach is rather a proof of concept of a

promising variational framework on statistical physics
problems. Building on the current work, an interesting
direction for future work would be even more deeply
incorporating successful physics and machine learning

concepts (such as a renormalization group and dilated
convolution) into the network architecture design, e.g., the
WaveNet [16]. This would allow us to scale to much larger
problem size, or even to the thermodynamic limit.
The main limitation of our method is that the variational

free energy calculation relies on sampling of the model;
hence it is slower than canonical variational mean-field
message passing algorithms, which compute variational
free energy directly using model parameters. We also notice
that the sampling process can be sped up by caching
intermediate activations in the sampling procedure as
explored in Refs. [48,49]. Or, one may use alternative
model such as inverse autoregressive flow [50], which
supports parallel sampling.
A pytorch implementation of our model and algorithms

is available at Ref. [51].
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