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Effective classical correspondence of the Mott transition
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We derive an effective classical model to describe the Mott transition of the half-filled one-band Hubbard
model in the framework of the dynamical mean-field theory with hybridization expansion of the continuous
time quantum Monte Carlo. We find a simple two-body interaction of exponential form and reveal a classical
correspondence of the Mott transition driven by a logarithmically divergent interaction length. Our paper
provides an alternative angle to view the Mott physics and suggests a renewed possibility to extend the
application of the quantum-to-classical mapping in understanding condensed-matter physics.
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The Mott transition is arguably one of the most fundamen-
tal concepts of correlated electrons and has been extensively
investigated during the past decades [1–12]. In contrast to the
band insulator at integer filling, the Mott insulator occurs at
half integer filling due to strong on-site Coulomb interactions.
It is beyond the conventional band picture and provides a basis
for our understanding of many exotic properties in transition-
metal oxides including cuprates and manganese. In the frame-
work of the dynamical mean-field theory (DMFT), the Mott
transition is predicted to be a first-order transition with a
coexisting insulating and metallic regime below the critical
end point [7–16]. This has been confirmed experimentally in
transition-metal oxides, such as V2−xTixO3 [17] in which a
systematic analysis of the conductivity has revealed a scaling
behavior near the critical end point resembling that of the
liquid-gas transition [18]. It is, therefore, natural to ask if and
how the Mott system can be mapped to a classical liquid-gas
system.

The quantum-to-classical mapping has made important
contributions in the history of condensed-matter physics
[19–34]. The mapping is a generic property of quantum
statistical mechanics but often limited by a complex series
expansion of the partition function. We show that such a
situation may be improved with the help of a lately de-
veloped machine learning approach. The latter has led to
rapid progresses [35] in identifying phase transitions [36–42],
constructing many-body ground states [43–46], speeding up
quantum Monte Carlo simulations [47–50], and optimizing
tensor networks [51–53]. In this paper, we explore the pos-
sibility of using the machine learning technique to construct
a classical correspondence of the Mott system within the
DMFT framework. We find that the quantum model can be
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mapped to a classical molecular gas with an effective two-
body potential of an exponential form. The Mott transition is
then in correspondence with the classical liquid-gas transition
tuned by the range of the intermolecular interaction.

For simplicity, we discuss the Mott transition based on the
one-band Hubbard model at half-filling,

H = −t
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where t is the hopping integral and U is the on-site Coulomb
interaction. In the framework of DMFT, the lattice problem is
mapped to an impurity problem coupled with a self-consistent
bath as illustrated in the inset of Fig. 1. Below, we set t =
1 as the energy unit and consider for simplicity only the
paramagnetic phase and the Bethe lattice with a semicircular
density of states ρ0(ε) = 1

2πt

√
4t2 − ε2 [16]. Our conclusions

have been examined in some other lattices and found to be
qualitatively unchanged. We then solve the impurity model
using the continuous time quantum Monte Carlo method
with hybridization expansion (CT-HYB) [54,55]. The phase
diagram of the Bethe lattice is sketched in Fig. 1 where the
shadow area is the coexisting (hysteresis) region for the first-
order Mott transition below the CEP. Uc1 (Uc2) are the criti-
cal values of U for calculations starting from the insulating
(metallic) side, which may vary for different lattices, such as
the bipartite lattice. The electron densities of states in both
phases are also illustrated for comparison.

The partition function of the impurity model has the form

Z ∝
∞∑

k,k̃=0

∫ β

0

k∏
i=1

(dτidτ ′
i )

k̃∏
j=1

(d τ̃ jd τ̃ ′
j )ωlocωhyb, (2)

where ωloc = eU (Ltot/2−Otot ) and ωhyb = |det M−1(	)| are
the local and hybridization weights for the configuration
{Ck:τ1, τ

′
1; . . . ; τk, τ

′
k} and {Ck̃:τ̃1, τ̃

′
1; . . . ; τ̃k̃, τ̃

′
k̃
} of the two
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FIG. 1. A typical phase diagram of the half-filled one-band Hub-
bard model on the Bethe lattice. The point marks the critical end
point (CEP) of the first-order Mott transition. Uc1 and Uc2 are the
critical U at zero temperature from the insulating and metallic sides,
respectively. The shadow area is the coexisting (hysteresis) region
of the two phases. The inset shows the structure of the Bethe lattice
and its DMFT mapping to an impurity model coupled to a bath. The
densities of states of the two phases are also plotted for comparison.

spin channels. k and k̃ are their orders of expansion, respec-
tively. In CT-HYB as shown in Fig. 2, Ltot is the sum of
the lengths of all segments (solid line), and Otot accounts
for the overlap (shaded area) between segments of different
spins. M−1(	) is a (k + k̃) × (k + k̃) matrix of the hybridiza-
tion function 	 in imaginary time. With spin flip being
absent, the two spin channels are separated so that ωhyb =
ω

↑
hyb(Ck )ω↓

hyb(Ck̃ ). We have chosen CT-HYB rather than the
interaction expansion (CT-INT) as the impurity solver [48].
In CT-INT, each configuration {Ck:τ1, . . . , τk} corresponds to
a collection of interaction vertices, which can be mapped

FIG. 2. Mapping between the CT-HYB configuration and the
classical configuration of charged particles. For CT-HYB, the full
and empty circles at the imaginary times τi (τ̃i ) and τ ′

i (τ̃ ′
i ) represent

the creation and annihilation operators of spin up (down), respec-
tively. The shaded areas indicate the overlap between the segments
(the solid lines) of two spin channels. In the classic model, the circles
represent charged particles on a unit circle at x+

i = τi/β, x−
i =

τ ′
i /β, x̃+

i = τ̃i/β, and x̃−
i = τ̃ ′

i /β.

to only one type of classical particles and, thus, require
three-body interactions to prevent the collapse of classical
simulations [48]. By contrast, CT-HYB contains both creation
and annihilation operators, which may be regarded as charged
particles in the classical model and allow us to consider only
the two-body interaction.

We first focus on the hybridization part ωhyb. The local
part ωloc is given by the total length of all segments and
their overlaps as shown in Fig. 2. Its logarithm can be di-
rectly expressed as a linear function of the coordinates (xi)
of the classical particles and, hence, has already a classical
form, whereas ωhyb is more complicated and can only adopt
a simple form through the mapping. Because of the spin
symmetry, the two spin channels follow the same probability
distribution function. We will only discuss one spin channel
and later consider their combination through ωloc. As shown
in Fig. 2, if we regard the creation (annihilation) operators
at the imaginary time τi (τ ′

i ) as a positive (negative) charge
qi = + (−), the CT-HYB configurations are mapped to an
ensemble of charged particles. Since the CT-HYB configura-
tion is defined on a periodic imaginary time space with length
β (the inverse temperature) following the standard theory
of quantum statistics, it is possible to restrict the classical
particles on a unit circle with the classical coordinates: x+

i =
τi/β, x−

i = τ ′
i /β, x̃+

i = τ̃i/β, and x̃−
i = τ̃ ′

i /β. The question
is if a classical model may be constructed to reproduce the
quantum weight of each configuration.

For this, we first make the simplest assumption of two-
body interactions and propose an energy function,

Eeff (Ck ) = −1

2

∑
i,qi ; j,q j

′
Vqiq j

(
x

qj

j − xqi
i

) + μeff k + E0, (3)

where Vqiq j (x
qj

j − xqi
i ) is the two-body potential depending on

the charges and distance of two different classical particles,
E0 is a constant background energy, and μeff is an effective
chemical potential of the classical model coupled to the
number k of charged pairs, which should not be confused
with the usual chemical potential of the Hubbard model.

∑′

indicates that the self-interaction is excluded in the sum. To
determine the exact form of the potential function, we use the
Legendre expansion Vqiq j (x) = ∑

l=0 V l
qiq j

Pl (2x − 1), where
0 � x � 1 and Pl (x) is the lth-order Legendre polynomial.
The classical model is then fully determined by the parameters
V l

qiq j
(up to a sufficiently large cutoff of l) and μeff , which

can be trained with linear regression by requiring −Eeff (Ck ) to
match ln ωσ

hyb(Ck ) for all tested CT-HYB configurations. We
have collected 250 000 samples for each set of parameters. A
single CT-HYB sample is picked up every 100 update steps
during an additional iteration after the DMFT convergence.
We then take the logarithmic weights as the regressing tar-
get and apply the ridge regression with L2 regularization of
the strength α = 10−3 to prevent overfitting. The machine
learning approach minimizes the penalized residual sum of
squares ‖Xω − y‖2

2 + α‖ω‖2
2 with the coefficients vector ω,

the input configuration-dependent matrix X , and the target
value y. In our calculations, ω = (V 0

qq′ , . . . ,V lm−1
qq′ , μeff , E0)T

is the coefficient vector for the lth order Legendre polynomial
cut off at lm = 30. X is a N0 × (4lm + 2) matrix determined by
the energy function, N0 = 250 000 is the size of the training
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FIG. 3. Construction of the classical model for CT-HYB config-
urations. (a) Comparison of the logarithmic weight of test samples
and the linear regression results. (b) Comparison of the logarithmic
hybridization weight and the effective classical energy −Eeff . Each
point represents a test sample, and the dotted line is a guide to the
eye. (c) The derived Legendre coefficients V l

qiq j
for the two-body

interactions. (d) The two-body interactions Vqiq j (x) as functions of
the distance x on the unit circle. The parameters are U = 3 and
β = 30.

samples, and y is a vector that contains the logarithmic weight
of each sample configuration.

Figure 3 gives the typical results for the Bethe lattice with
the Coulomb interaction U = 3 and the inverse temperature
β = 30. As shown in Figs. 3(a) and 3(b), we obtain an
excellent agreement between the effective energy function
and the calculated logarithmic weight. The proposed classi-
cal model, indeed, captures the quantum distribution of the
original Hubbard Hamiltonian. The deviation of the energy
fit can be measured using σ = N−1 ∑

i(yi,fit − yi )2, where
N is the size of the test samples and set to 500 in our
calculations. We find that σ has the value of about 0.01
and shows no peculiar (singular) change over the whole
phase diagram. The Legendre coefficients V l

qiq j
are plotted

in Fig. 3(c). The rapid decay of their magnitude for large l
confirms the validity of the expansion, even at the critical end
point. Figure 3(d) compares the derived two-body interactions
Vqiq j (x) as functions of distance. The plot reveals a number
of interesting symmetries in Vqiq j , which may be rationalized
as follows. First, for a classical model, one typically expects
Vqiq j (x) = Vqj qi (x) = Vqj qi (1 − x) between any two particles
on the unit circle. Second, inserting a segment whose length
approaches zero should not change the total energy. In the
quantum Monte Carlo simulations, this operation does not
generate a new configuration and is, therefore, typically not
considered. However, in the classical model, this corresponds
to the situation of adding a pair of particles of opposite
charges at the same location, whose interactions with any third
particle should always cancel. The latter implies a generic
rule of the classical interactions between charged particles,
namely, V++ = V−− = −V−+ = −V+− = −qiq jV (x). Third,

FIG. 4. (a) Exponential fit of the effective potential for different
values of U and β, showing excellent agreement in all three regimes.
(b) The fitting values of V0 and ξ in the classical model after
DMFT convergence with gradually increasing (�) or decreasing
(�) U .

it immediately follows from the above constraints that the
interaction V (x) must be symmetric with respect to x = 1/2,
namely, V (x) = V (1 − x) for 0 � x � 1.

The functional form of V (x), thus, provides key informa-
tion on the classical particle system. Quite unexpectedly as
shown in Fig. 4(a), we find that it can be well fitted with an
exponential function for all parameter regimes of U and β

regardless of the metallic or insulating phases,

V (x) = V0e− min{x,1−x}/ξ + V1, (4)

where V0 and V1 are both constants and ξ reflects an effective
range of the two-body interaction. This suggests that the
simple form captures the essential physics of the hybridization
function. Since we are dealing with the self-consistent bath
coupled to the impurity, the exponential decay seems to
imply that the lattice effect is to screen the local correlation
on a finite length (or imaginary time) scale ξ . It will be
interesting to see if such a form may still be valid in more
general cases, such as away from half-filling or with multi-
ple orbitals. Our analyses seem independent of these details
as long as the model does not contain any spin or orbital
mixing.

The above potential can be further simplified by removing
the constant term V1. Since the charged particles always
appear pairwise in CT-HYB configurations, the overall effect
of V1 on the total energy is nothing but a term −V1k, which
can be absorbed by redefining (μeff − V1) → μeff in Eq. (3).
Moreover, imagining that we insert again N segments of
almost zero length, the variation of the total energy should
also be zero, namely, δEeff = −V0N + μeff N = 0. This re-
quires μeff = V0, which was first found unexpectedly in all our
fittings. We have, thus, only two parameters in the effective
model, and the total energy function adopts a very simple
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approximate form

Eeff (Ck ) − E0 = V0

2

∑
i,qi ; j,q j

qiq je
−δq j qi /ξ , (5)

where the k term is absorbed as a self-interaction for i = j
and qi = q j and the distance between two charged particles is
defined as δq j qi = min{|xqj

j − xqi
i |, 1 − |xqj

j − xqi
i |}, including

self-interaction. This energy function incorporates faithfully
the major effect of the lattice correlations on the local impurity
model in the DMFT iterations. For examination, we have
inserted it back into the Monte Carlo simulations after the pa-
rameters were determined with a small set of training samples,
the results agree well with the pure quantum simulations.

Thus, all information on the Mott transition is squeezed
into the interaction potential V0 and its effective range ξ in the
classical model. To study how these two parameters behave
across the Mott transition, we plot in Fig. 4(b) their variations
as a function of U for β = 10, 20, and 50, which are above,
near, and below the Mott critical end point, respectively. The
results were obtained by gradually increasing U from U = 0
on the metallic side to U = 8 on the insulating side and then
annealing back to the metallic state. For each U , we took the
input from the converged solution of previous U at the same β.
As expected, we see a jump and a clear hysteresis at β = 50
in both parameters due to the first-order nature of the Mott
transition. For β = 10 above the Mott critical end point, the
jump turns into a smooth crossover, and both parameters vary
continuously with U .

The overall variation of V0 with respect to the original
parameters U and β is summarized in Fig. 5(a). Surprisingly,
we see V0 only undergoes a rapid change of roughly the factor
of 3 across the transition and otherwise varies only slightly
with U and β. This is reminiscent of the volume change in the
classical liquid-gas transition. V0, thus, plays a passive role in
the phase transition of the classical model. Interestingly, as
shown in Fig. 5(b), the particle number 〈k〉 as a function of β

changes its slope across the transition, which is roughly 0.3 in
the metallic state but decreases to 0.1 in the insulating state,
just the opposite of that of V0. In addition, the pair density
〈k〉/β has a linear relationship with the double occupancy 〈D〉
around the critical U (see the inset). Thus, the variation of 〈k〉,
indeed, reflects the situation of local electron occupations and
contains some information of the Mott transition.

It is, therefore, speculated that ξ is the primary driving
force for the phase transition. Figure 6(a) plots the parameter
flow in the V0-ξ space for both increasing and decreasing U
at β = 50. Although V0 changes only slightly in each phase,
we see ξ varies greatly until a sudden transition is triggered.
Since ξ represents the effective range of the two-body interac-
tion, the transition is, therefore, controlled by the scattering
length between two charged particles. As a matter of fact,
as shown in Fig. 6(b), we find a logarithmic dependence
ξ ∼ ± ln |1 − U/Uc| from either side of the phase diagram.
This indicates that the effective interaction becomes progres-
sively short or long range approaching the Mott transition.
From the metallic side, the potential turns gradually local as
U → Uc2, and the particles become asymptotically free before
they expand into the gas state; whereas starting from the
insulating side, ξ becomes gradually divergent as U → Uc1,

FIG. 5. (a) Variations of V0 as functions of β and U , showing
a rapid change across the Mott transition and a slight change in
the other parameter regime. The arrows indicate the direction of
decreasing (the solid line) or increasing (the dashed line) U for
DMFT calculations. The dotted lines mark the region of numerical
hysteresis of the first-order transition. (b) The pair number 〈k〉 as
a function of the inverse temperature β for different values of U ,
showing the slope change across the Mott transition. The inset
compares the calculated pair density 〈k〉/β and the double occupancy
〈D〉 for increasing U .

and the particles get more and more correlated until they
eventually condense into a liquid. It is, thus, conceivable that
the Mott metal-to-insulator transition corresponds roughly to
a classical liquid-to-gas transition controlled by the single
parameter ξ . It is well known that a one-dimensional classical
system with short-range interactions may not have a positive
temperature phase transition [56]. A well-known example is
the one-dimensional Ising model with the nearest-neighbor
interaction [57]. However, a phase transition can occur once
long-range interactions are introduced [58].

The classical correspondence provides, to some extent, an
alternative angle to view the spin and charge dynamics of
the Mott physics. One should combine the two spin channels
through the local weight ωloc into a single circle. Since U
is large, all the segments are intended to cover together
the whole circle to reduce the Coulomb energy. Thus, each
charged particle is roughly bound to a nearby particle of
opposite spin and charge. Then, the CT-HYB configurations
are reduced to a single circle, and the corresponding classical
model turns into a gas of diatomic molecules with an ad-
ditional intramolecular potential Vm(x) ∝ ∑

i,qi
|xqi

i↑ − x−qi

i↓ |.
The charge and spin fluctuations correspond to the internal
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FIG. 6. (a) Illustration of the parameter flow on the V0-ξ space
with increasing (the circle) or decreasing (the square) U at β =
50, showing almost constant V0 and an instablity with varying ξ .
(b) Logarithmic fit (the solid lines) of the effective length ξ from both
sides of the Mott transition for β = 50. Uc2 and Uc1 are the critical
values of U from the metallic and insulating sides, respectively.

and global configurations of the molecular gas, respectively.
We should note that, despite the good agreement of the
energy function, the classical model should, by no means, be
viewed as an exact representation of the quantum model. It
might not be able to reproduce certain subtle properties of
the original model, in particular, the long-time dynamics in
the very vicinity of the critical end point. Nevertheless, its

simple and explicit form may still capture some truth of the
underlying physics. Considering that the classical mapping
of the Kondo problem has led to the idea of the poor man’s
scaling [22], it will be interesting to see if future work might
reveal some deeper structure of the Mott transition based
on the derived classical correspondence here. For numerical
studies, our energy function may be applied as a reference
system for the quantum simulations. As discussed in Ref. [48],
once the parameters are obtained with a relatively small
number of test configurations, the Monte Carlo simulations
may be accelerated by an improved acceptance probability
p(C → C ′) = min {1, e−Eeff (C)

e−Eeff (C′ )
ω(C ′ )
ω(C) }.

To summarize, we have constructed an effective classical
correspondence for understanding the Mott transition of the
half-filled Hubbard model in the framework of DMFT with
the CT-HYB algorithm. The derived model may be regarded
as a charged molecular gas with a simple two-body interaction
of the exponential form. Our analysis suggests that the Mott
transition may correspond to a classical liquid-gas transition
of the molecules driven by the effective range of the par-
ticle interaction. The correlation length exhibits logarithmic
behaviors approaching the transition. It should be noted that
the above picture was derived in the framework of DMFT.
For an exact lattice treatment, the quantum model in the
d-spatial dimension corresponds to a classical model in the
(d + 1) dimension. Then, one may ask if similar two-body
interactions will still be valid, possibly with anisotropic cor-
relation lengths ξ

μ
eff , whose values reflect the screening of the

Coulomb potential along different spatial or temporal axes. A
verification of this scenario demands numerical simulations of
the lattice model using more sophisticated approaches.
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