Large Enhancement of Magnetocaloric and Barocaloric Effects by Hydrostatic Pressure in La(Fe\textsubscript{0.92}Co\textsubscript{0.08})\textsubscript{11.9}Si\textsubscript{1.1} with a NaZn\textsubscript{13}-Type Structure

Jiazheng Hao, Fengxia Hu,* Jian-Tao Wang, Fei-Ran Shen, Zibing Yu, Houbo Zhou, Hui Wu, Qingzhen Huang, Kaiming Qiao, Jing Wang,* Jun He, Lunhua He, Ji-Rong Sun, and Baogen Shen*

ABSTRACT: Solid-state refrigeration based on caloric effect has been regarded as an attractive alternative to the conventional gas compression technique. Boosting the caloric effect of a system to its optimum is a long-term pursuit. Here, we report enhanced magnetocaloric effect (MCE) and barocaloric effect (BCE) by hydrostatic pressure in La(Fe\textsubscript{0.92}Co\textsubscript{0.08})\textsubscript{11.9}Si\textsubscript{1.1} with a NaZn\textsubscript{13}-type structure. The entropy change $\Delta S_{\text{MCE}}$ is almost doubled under 11.31 kbar, while the $\Delta S_{\text{BCE}}$ is more than tripled under 9 kbar. To disclose the essence from the atomic level, neutron powder diffraction studies were performed. The results revealed that hydrostatic pressure sharpens the magnetoelastic transition and enlarges the volume change, $\Delta V/V$, during the transition through altering the intra-icosahedral Fe–Fe bonds rather than the inter-icosahedral distances in the NaZn\textsubscript{13}-type structure. First-principles calculations were performed, which offers a theoretical support for the enlarged caloric effect related to the evolution of phase transition nature. Moreover, the enhanced lattice entropy change was calculated by Debye fractions studies, such as controllable negative thermal expansion.

INTRODUCTION

Solid-state refrigeration based on caloric effect is of special interest since it is regarded as a promising, more efficient, and environmentally friendly alternative to gas compression-based refrigeration.\cite{ref1,ref2,ref3,ref4,ref5} In recent years, considerable effort has been made in developing efficacious magnetic refrigerants, and one effective approach is to maximize the lattice contribution to the total entropy change under the moderate magnetic fields. Generally, for a magnetic material with magnetostructural/magnetoelastic transition, the total entropy change ($\Delta S_{\text{Tot}}$) that characterizes caloric effect mainly consists of magnetic ($\Delta S_{\text{M}}$) and lattice ($\Delta S_{\text{Latt}}$) contributions, noting that the electronic entropy ($\Delta S_{\text{el}}$) is negligibly small at a high temperature. The $\Delta S_{\text{M}}$ is theoretically limited by $\Delta S_{\text{M}} = R\ln(2J + 1)$, where $J$ denotes the total angular momentum quantum number, while the $\Delta S_{\text{Latt}}$ is determined by the change of internal energy, which closely involves the volume change across phase transition.\cite{ref6} Hence, maximizing the lattice contribution to total entropy change is an effective way to enhance both MCE and BCE. For the magnetostructural/magnetoelastic phase transitions, pressure favors a small-volume phase, while magnetic field favors a ferromagnetic (FM) phase. External fields can shift the transition with respect to temperature. However, the magnitude of the volume change across the transitions, that is, the lattice contribution to the total entropy change ($\Delta S_{\text{Latt}}$), usually remains constant or becomes smaller with external fields. For example, the lattice entropy change of Gd\textsubscript{5}Si\textsubscript{2.09}Ge\textsubscript{1.91} the milestone magnetocaloric material with magnetostructural transition,\cite{ref7} is nearly independent of magnetic field, that is, $\Delta S_{\text{Latt}} \approx 9.9 \text{ J kg}^{-1} \text{ K}^{-1}$, while the spin contribution ($\Delta S_{\text{M}}$) increases from 5.3 to 14.6 J kg\textsuperscript{−1} K\textsuperscript{−1} when the change of magnetic field increases from 0–2 to 0–10 T. A similar performance was observed for another composition of Gd\textsubscript{5}Si\textsubscript{2.09}Ge\textsubscript{1.91} where the $\Delta S_{\text{Latt}}$ also remains nearly constant, $\sim 9.2 \text{ J kg}^{-1} \text{ K}^{-1}$, while the $\Delta S_{\text{M}}$ increases from 4.7 to 9.0 J kg\textsuperscript{−1} K\textsuperscript{−1} with increasing the magnetic field change from 0-2 to 0-5 T.\cite{ref8} For hexagonal MM’X compounds with magnetostructural transition, physical pressure can drive the transition occurring at a lower temperature with $\Delta S_{\text{Tot}}$ almost unchanged initially,\cite{ref9} but the...
transition becomes less abrupt, and both $\Delta S_{\text{Tot}}$ and $\Delta S_{\text{Lat}}$ quickly drop as the pressure reaches a critical value $P = 3.7 - 6$ kbar, depending on the compositions. In other words, pressure- or magnetic field-induced increase of volume change $\Delta V/V$ and the resultant enhancement of $\Delta S_{\text{Lat}}$ were rarely observed.

It has been early discovered that La(Fe$_{1-x}$Co$_x$)$_{12}$-based compounds show a great magnetocaloric effect (MCE), owing to the magnetoelastic transition and itinerant electron metamagnetic behavior. In the cubic NaNi$_2$As-type structure (space group: $Fm\overline{3}c$, 112 atoms in a unit cell), Fe$_1$ and Fe$_2$ atoms occupy two distinct Wycko positions 8b and 96i, respectively, while La resides in 8a, and Si shares the 96i site with Fe$_2$. The Fe$_1$ and Fe$_2$ sites form an icosahedron, and Fe$_1$ at the center is surrounded by 12 Fe$_2$. As a result, the magnetic entropy change $\Delta S_{\text{MCE}}$ continuously increases with the pressure up to the measuring temperature, while weakening the first-order nature of transition.

As a result, the magnetic entropy change $\Delta S_{\text{MCE}}$ decreases, but it is still more than twice of that of the conventional refrigerant Gd. Although a second-order-like transition appears for the Co-doped compounds, where both the magnetic and thermal hystereses approach zero, a considerable change of the isostructural volume, $-\Delta V/V \approx 1 - 1.4\%$, still exists, which promotes a large inverse barocaloric effect (BCE) as well as a large magnetocaloric effect (MCE).

Caloric effect driven by a hybrid field shows tremendous potential for both fundamental research and practical applications. Our studies demonstrated that both MCE and BCE can be notably enhanced by hydrostatic pressure even for the Co-doped LaFe$_{13-x}$Si$_x$ with a second-order transition. We performed neutron powder diffraction (NPD) study on La(Fe$_{0.92}$Co$_{0.08}$)$_{11.9}$Si$_{1.1}$ under a series of hydrostatic pressure. It is found that the application of pressure notably enlarges the negative volume expansion, $-\Delta V/V$, and sharpens the magnetoelastic transition through impacting the specific Fe--Fe bonds and spin fluctuations. Refinement results revealed that the intra-icosahedral B1, B2, and B3 bonds are mainly responsible for the enlargement and sharpness of negative volume expansion by pressure, while the inter-icosahedral B4 and B5 and the La--Fe bonds change a little. This result is distinct from the situation, introducing chemical pressure by H atoms in the La(Fe$_{1-x}$Si)$_{12}$-based compounds where the enlarged lattice is mainly ascribed to the elongated B4 bond close to the 24d interstitial site occupied by H.

Such chemical pressure due to H atoms can also adjust the phase transition temperature in a wide temperature range through impacting the Fe--Fe bonds and interactions, but the sharpness of phase transition and the magnitude of MCE keep nearly unchanged with varying H contents. To understand the underlined mechanism, first-principles calculations are performed, which supports the pressure-enhanced magneto-volume effect and the evolution from the second-order to the first-order transition in La(Fe$_{0.92}$Co$_{0.08}$)$_{11.9}$Si$_{1.1}$. The enhanced lattice entropy change by pressure was quantitatively calculated by Debye approximation. The results prove that hydrostatic pressure is an effective means to sharpen phase transition and boost the lattice entropy change and hence enhance both MCE and BCE for the La--Fe--Co--Si magnetocaloric materials.

**Experimental Section**

**Synthesis.** The polycrystalline La(Fe$_{0.92}$Co$_{0.08}$)$_{11.9}$Si$_{1.1}$ were prepared by arc melting constituent elements with purity better than 99.9 wt % under Ar protective atmosphere. Subsequently, the ingots were enveloped with a Ta foil and annealed in a sealed quartz tube with a high vacuum of $10^{-4}$ Pa for one month at 1353 K and then quenched in liquid nitrogen.

**Characterization.** High-resolution neutron powder diffraction (NPD) under in situ hydrostatic pressure was performed using a BT1 32-detector neutron powder diffractometer at the NIST Center for Neutron Research (NCNR). A Cu (311) monochromator was used to produce a monochromatic neutron beam with a wavelength of $\lambda = 2.0775 \AA$. The sample was compressed in a pressure cell and the pressure was applied up to 9 kbar with helium gas as the pressure medium. Data were collected in the 2-theta range of 3–168° with a step size of 0.05°. All neutron diffraction patterns were refined using the GSAS/EXPGUI package.

Magneton measurements under hydrostatic pressures up to 11.31 kbar were performed in a nonmagnetic BeCu cylindrical pressure cell (Quantum Design) using a superconducting quantum interference device magnetometer (MPMS-7 T). Daphne 7373 oil was used as the liquid pressure-transmitting medium. The pressure in the BeCu cell was calibrated by measuring the shift of the superconducting transition temperature of Pb.

For calculating entropy change $\Delta S$, “loop” modes were suggested to collect isothermal magnetization against magnetic field ($M$--$H$ curves), and then the calculated $\Delta S$ using the Maxwell relation can be reliable for first-order materials. For La(Fe$_{1-x}$Si)$_{12}$-based materials, we carefully investigated the $\Delta S$ by measuring the $M$--$H$ curves in both “loop” and “normal” modes, and found the $\Delta S$ based on the descending branch of $M$--$H$ curves in both modes are the same, even for LaFe$_{13}$Si$_{1.1}$ with strengthened first-order transition nature. So, in this work, the $\Delta S$ was obtained by adopting the descending branch of isothermal $M$--$H$ curves in normal mode. Here, the normal mode refers to collecting the isothermal $M$--$H$ curves continuously. The adopted loop mode includes the following steps: (i) cooling the sample in the maximum applied magnetic field to a temperature far below the transition temperature, (ii) heating in the maximum applied magnetic field up to the measuring temperature, and (iii) measuring the sample from the maximum applied magnetic field to zero. Then, repeat the above steps to measure the isothermal magnetization curve at the next higher temperature point.

Heat flow measurements were carried out using a differential scanning calorimeter (Netzsch DSC 214). The ramping rate was 5 K min$^{-1}$. The total entropy at ambient pressure was obtained by recording heat flow out of/into the sample as a function of temperature after subtracting the baseline background.

First-principles calculations were performed using the Vienna ab initio simulation package (VASP) with the projector augmented wave method and spin-polarized generalized gradient approximation for the exchange-correlation energy. The valence states $5s^25p^65d^{16}$ for La, $3d^{4s}$ for Fe, $3d^{4s}$ for Co, and $3s^3p^2$ for Si were used with the energy cutoff of 500 eV for the plane wave basis set. To simulate the La(Fe$_{0.92}$Co$_{0.08}$)$_{11.9}$Si$_{1.1}$ compound, a $2 \times 2 \times 2$ supercell (including 8 atoms of La, 87 of Fe, 8 of Co, and 9 of Si) based on the NaZn$_{13}$ unit cell was adopted where the refined atomic positions and lattice parameters from NPD measurements under hydrostatic pressure were used. The Brillouin zone was sampled with a Monkhorst-Pack special $k$-point grid. The energy convergence criterion was set at 10$^{-6}$ eV throughout the present calculations.

**Results and Discussion**

Temperature-dependent magnetization ($M$--$T$ curve) was measured on a La(Fe$_{0.92}$Co$_{0.08}$)$_{11.9}$Si$_{1.1}$ compound under a...
The value of $T_C$ is determined by the minimum in the derivatives of $M$–$T$ curves. The application of hydrostatic pressure significantly sharpens the phase transition and shifts the $T_C$ to a lower temperature at a rate of about $dT_C/dP = -7$ K kbar$^{-1}$. The $T_C$ declines almost linearly from 304 to 217 K, as a pressure of 11.31 kbar was applied (see the inset of Figure 1a). To illustrate the gradual steepening of the transition under hydrostatic pressure, Figure 1b shows the derivative of magnetization, $dM/dT$, as a function of temperature under different pressures. The full width at half maximum narrows from 23.1 K at ambient pressure to 6.7 K under 11.31 kbar, while the maximum of $dM/dT$ increases from 3.8 A m$^2$ kg$^{-1}$ K$^{-1}$ at ambient pressure to 16.3 A m$^2$ kg$^{-1}$ K$^{-1}$ under 11.31 kbar. These results quantify the steeper phase transition with increasing pressure. Figure 1c,d presents the typical magnetization isotherms ($M$–$H$) around $T_C$ under different pressures and the corresponding Arrott plots ($M^2$–$H/M$), respectively. At ambient pressure, the $M$–$H$ curves show completely reversible behavior without magnetic hysteresis due to the nature of the second-order transition around $T_C$. With increasing hydrostatic pressure from 0 to 11.31 kbar, magnetic hysteresis gradually appears, and the slope of the Arrott plot develops from positive into negative, resulting in an S-shaped curve. These results signify the evolution of phase transition from the second order to first order according to the Landau phase transition theory. With the pressure raised to 11.31 kbar, the maximal $-\Delta S_{MCE}$ reaches $\sim$26.0 J kg$^{-1}$ K$^{-1}$ under 0–5 T, which is 1.8 times larger than the $-\Delta S_{MCE}$ (i.e., $\sim$14.1 J kg$^{-1}$ K$^{-1}$) at ambient pressure. Moreover, the total area under the $\Delta S_{MCE}$–$T$ curve, which normally signifies refrigeration capacity (RC), increases from 542.0 J kg$^{-1}$ at zero pressure to 615.3 J kg$^{-1}$ under 11.31 kbar, equivalent to 13.5% improvement of RC. Both the enhanced $\Delta S_{MCE}$ and RC originates from the strengthened first-order transition. In particular, the enhanced lattice contribution by pressure plays a dominate role for the increased RC (see details in the following section). For the first-order Co-free material LaFe$_{11.5}$Si$_{1.5}$, pressure-enhanced MCE has also been observed, but the details involving lattice and atomic environments were not clear. To explore the origin of the pressure-enhanced MCE from the atomic level in the La(Fe,Si)$_{13}$-based materials, variable temperature neutron powder diffraction (NPD) under in situ

![Figure 1](https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.9b03915)

**Figure 1.** (a) Temperature-dependent magnetization of the La(Fe$_{0.92}$Co$_{0.08}$)$_{11.9}$Si$_{1.1}$ compound on warming and cooling under various hydrostatic pressures with an external magnetic field $H = 1$ T applied. The inset shows the pressure dependence of Curie temperature, $T_C$. (b) $dM/dT$–$T$ curves deduced from panel (a) where the inset shows the pressure dependence of the full width at half maximum of $dM/dT$ curves, (c) typical magnetic isothermal data around $T_C$ under different pressures, and (d) corresponding Arrott plots.

![Figure 2](https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.9b03915)

**Figure 2.** Entropy change for the magnetic field changes of 0–2 T and 0–5 T under different pressures for the La(Fe$_{0.92}$Co$_{0.08}$)$_{11.9}$Si$_{1.1}$ compound.

Maxwell’s relation $\Delta S_{MCE} = \int_0^H \left( \frac{dM}{dT} \right)_H dH$, which is the total entropy change contributed from both the spin and the lattice. With the pressure raised to 11.31 kbar, the maximal $-\Delta S_{MCE}$ reaches $\sim$26.0 J kg$^{-1}$ K$^{-1}$ under 0–5 T, which is 1.8 times larger than the $-\Delta S_{MCE}$ (i.e., $\sim$14.1 J kg$^{-1}$ K$^{-1}$) at ambient pressure. Moreover, the total area under the $\Delta S_{MCE}$–$T$ curve, which normally signifies refrigeration capacity (RC), increases from 542.0 J kg$^{-1}$ at zero pressure to 615.3 J kg$^{-1}$ under 11.31 kbar, equivalent to 13.5% improvement of RC. Both the enhanced $\Delta S_{MCE}$ and RC originates from the strengthened first-order transition. In particular, the enhanced lattice contribution by pressure plays a dominate role for the increased RC (see details in the following section).
pressure (0, 3, 6, and 9 kbar) was performed on the Co-doped La(Fe0.92Co0.08)11.9Si1.1 compound under different pressures. A representative neutron powder diffraction pattern collected at 300 K in the absence of pressure is given in Figure S1. Detailed refinement results of the variations of bond lengths, bond angles, and lattice parameters with temperature and pressure are summarized in Table S1 and Figures 3 and 4. As depicted in Figure 3a, a large negative lattice expansion, $\Delta V/V$, occurs along with the ferromagnetic ordering around the $T_C$. The $\Delta V/V$ is enlarged by 45% from $-1.08$ to $-1.57\%$ as the pressure increases from 0 to 9 kbar, and no saturation signs appear (inset of Figure 3a). Meanwhile, the phase transition becomes steeper with increasing pressure. Figure 3b shows the neutron intensity variations of the ($531$) reflection as a function of temperature under different pressures. In contrast, the introduced chemical pressure by interstitial hydrogen atoms has almost no impact on the temperature and pressure dependence noticing that the $B_4$ and $B_2$ lie in one plane (Figure 4b). The Fe–Fe interatomic distances in $\text{La}_(\text{Fe0.92Co0.08})_{11.9}\text{Si1.1}$ as a function of temperature under different pressures: (c) $B_1$, $B_2$ and $B_3$, (d) $B_4$, $B_5$ and La-Fe$_2$. The bond angles of atomic chain as a function of temperature under different pressures. (e) Intra-icosahedral angles $\text{Ang-1}'$, $\text{Ang-2}'$, $\text{Ang-3}'$, and $\text{Ang-4}'$. (f) Angles on the surface of icosahedron $\text{Ang-1}$ and $\text{Ang-2}$. (g) Inter-icosahedral angles $\text{Ang-3}$ and $\text{Ang-4}$. (h) Inter-icosahedral angles $\text{Ang-5}$, $\text{Ang-6}$, and $\text{Ang-7}$.

For the distinct effect caused by physical pressure, the variation of atomic local environments is the primary concern. Figure 4a is the schematic diagram of the partial lattice structure of $\text{La}_(\text{FeSi})_{13}$, showing 9 La atoms and four surrounding Fe-icosahedral clusters, and Figure 4b depicts the details around one Fe-icosahedron where all 5 Fe–Fe bonds and all related angles of Fe–Fe–Fe atomic chains are labeled. Figure 4c, d shows the refined Fe–Fe bond length intra-icosahedron (B1, B2, and B3) and inter-icosahedron (B4 and B5) as a function of temperature under different pressures. It can be noted that the intra-cluster bonds respond more sensitively to the temperature and show clear drops with increasing temperature around the $T_C$. Meanwhile, the B5 inter-cluster bonds remain nearly constant while the B4 inter-cluster bonds elongate slightly with increasing temperature noting that the B4 and B2 lie in one plane (Figure 4b). However, the variation magnitude of B4 (+0.87%, 0 kbar) is much less than those of the intra-cluster bonds (−1.21, −1.20, and $-1.28\%$ for B1, B2, and B3, respectively). Hence, it can be concluded that the bonds within the icosahedron (B1, B2, and B3) mainly dominate the negative volume expansion ($\Delta V/V$) across $T_C$ and the slope of phase transition. Meanwhile, the bond angles relax to counter the change of bond lengths and
maintain the lattice symmetry during phase transition. In the NaZn$_{13}$-type structure of LaFe$_{13}$ (see Figure 4b), there are four intra-icosahedral angles involving Fe1 atoms at the 8b site, which are labeled by red (Ang-1$^\prime$, Ang-2$^\prime$, Ang-3$^\prime$, and Ang-4$^\prime$), while two angles on the surface of the icosahedron (Ang-1 and Ang-2, labeled by blue) and five inter-icosahedral angles involving Fe2 atoms at the 96i site only (Ang-3, Ang-4, Ang-5, Ang-6, and Ang-7, labeled also by blue). The variations of these angles against temperature under different pressures are shown in Figure 4e−h. It can be seen that all four intra-icosahedral angles and the two angles on the surface of icosahedron show no anomaly and remain approximately unchanged around $T_C$ (Figure 4e,f). These results strongly suggest that the symmetry of the icosahedron in the NaZn$_{13}$ structure keeps nearly independent of temperature and pressure, although the size of icosahedron shrinks under pressure (all the intra-icosahedral bonds B1, B2, and B3 shrink (Figure 4c)). In contrast, most inter-icosahedral angles change obviously with the ferromagnetic ordering. The Ang-4 and Ang-6, which face B2 and B3, respectively, become smaller along with the compression of B2 and B3, while both Ang-3 and Ang-5 enlarge and the Ang-7 remains almost constant to adapt the changes of Ang-4 and Ang-6 (Figure 4g,h).

To clearly illustrate the detailed responses of Fe−Fe bonds and the related angles to pressure, Figure 5a,b presents the pressure dependence of Fe−Fe bond lengths and angles, respectively, at several constant temperatures around $T_C$. All the intra-icosahedral bonds B1, B2, and B3 tend to contract as the pressure increases at any temperature, and the contraction becomes more rapid around $T_C$. In contrast, the inter-cluster bond B5 remains approximately constant, while the inter-cluster bond B4, the shortest one among the five Fe−Fe bonds, elongates slightly with increasing pressure. The right panel of Figure 5a shows the relative change of the corresponding bond length under pressure from 0 to 9 kbar. An extremum appears around $T_C$ for all Fe−Fe bonds while trending oppositely for the intra-cluster (B1, B2, and B3) and inter-cluster (B4 and B5) bonds.

Moreover, the contraction of B1, B2, and B3 is more significant at the paramagnetic (PM) region above $T_C$ compared to the FM region below $T_C$. The magnitude of the volume contraction by 9 kbar pressure around 320 K (−1.19%) is larger than that around 200 K (−0.80%) by 49% (Figure 3a). This behavior can be ascribed to the pronounced magnetoelastic softening despite the large volume decrease at the transition from the FM to the PM phase. For La(Fe,Si)$_{13}$-based compounds, the combination of nuclear-resonant inelastic x-ray scattering (NRIXS) and density functional theory (DFT)-based first-principles calculations revealed that the PM phase is softer. Therefore, the PM phase compresses more under pressure than the FM phase.

Accordingly, the inter-icosahedral bond angles Ang-4 and Ang-6 show similar dependence on temperature and pressure, noting that they face B2 and B3, respectively. Meanwhile, the inter-icosahedral Ang-3 and Ang-5 behave oppositely upon self-adjustment (Figure 5b). The right panel of Figure 5b shows the relative changes of these four angles under pressure from 0 to 9 kbar. An extremum also appears around $T_C$, but with opposite signs for the inter-icosahedral angles (Ang-4 and Ang-6) and (Ang-3 and Ang-5). Other angles on the surface of
and between the icosahedra keep almost independent of pressure (not shown).

All these details further prove that the symmetry of icosahedra in the NaZn13-type structure remains unchanged and the lattice shrinkage caused by physical pressure is totally derived from the contraction of intra-cluster bonds (B1, B2, and B3), while the inter-cluster bonds (B4, B5) do not contribute at all. This is distinguishing from the source of lattice enlargement by introducing an interstitial hydrogen atom in the La(Fe,Si)13-based compounds with the NaZn13-type structure where the B4 bond close to the 24d interstitial site plays a dominate role, while the other four Fe–Fe bonds contribute little according to previous literatures.30 Figure 5c shows the sketch, which elaborates the distinct effects of physical and chemical pressures on the lattice. Compared to the original (left panel), hydrostatic pressure shrinks the icosahedron, while the inter-icosahedral distances remain unchanged (the right upper panel), and the incorporation of interstitial H atoms at the 24d sites only elongates the inter-icosahedral B4 bonds, while barely affecting other intra-icosahedral bonds (the right lower panel). All these illustrate that the strengthened first-order nature of transition and the enlarged magnetovolume effect by physical pressure are closely relative to the compression of intra-icosahedral Fe–Fe bonds in the structure. In contrast, the reshaping of local environment around the 24d interstitial site by chemical pressure due to H atoms in the NaZn13-type structure has almost no impact on the nature of transition and the magnetovolume effect, while the magnitude of entropy change keeps approximately constant with varying H contents even though the Tc shifts in a wide temperature range. As for LaFe1−xSi without Co, the phase transition nature, Tc, and the volume change (∆V/V) across the Tc can be also continuously adjusted by tuning the Si content.31 Our preliminary studies indicated that the change of atomic local environments with varying Si contents is different from the effect caused by hydrostatic pressure. The B1, B2, and B3 bonds of intra-icosahedral no longer change proportionally in one direction. The symmetry of icosahedral changes with varying Si contents because of the smaller radius of Si than Fe. Detailed studies are still under way. We hope to establish the relations between atomic environments and MCE for various cases (physical and chemical pressures).

For La(Fe,Si)13-based compounds, the magnetovolume effect occurs along with the itinerant electron metamagnetic (IEM) transition from the paramagnetic to the ferromagnetic state.15,17,48 As a general feature of magnetovolume effect related to IEM transition, the reduction of spontaneous magnetization, Ms caused by hydrostatic pressure is far smaller than its impact on Curie temperature TC. For the present La(Fe0.92Co0.08)11.9Si1.1 with second-order transition, ~2% reduction of Ms was detected under 7.92 kbar, equivalent to dlnMs/dP(1/GPa) ≈ −0.025, which is one order smaller than the effect of pressure on TC with dlnTC/dP(1/GPa) ≈ −0.272, noting the deduced dlnTC/dlnMs ≈ 10.9. This behavior is very analogous to that in Fe–Pt invar-type alloys with strong magnetovolume effect and spin fluctuations.49,50 The reduction of Ms is mainly caused by bandwidth narrowing due to the compressed volume under pressure, while the pressure-driven TC strongly depends on magnetic free energy involving spin fluctuations. Through the magnetovolume effect, the applied pressure affects the renormalization effect related to spin fluctuations, hence largely shifts the TC. The significant difference between the dlnMs/dP and dlnTC/dlnMs in the present La(Fe0.92Co0.08)11.9Si1.1 implies a strong contribution from the renormalization effect of spin fluctuations.

For the electronic band structure possibly influenced by hydrostatic pressure, first-principles calculation using the fixed-spin-moment method was performed for La(Fe0.92Co0.08)11.9Si1.1. Co and Si atoms are supposed to randomly occupy 96i sites together with Fe atoms in a 2 × 2 × 2 supercell of the NaZn13 cell, which is composed of 8 atoms of La, 87 of Fe, 8 of Co, and 9 of Si, matching the La(Fe0.92Co0.08)11.9Si1.1 composition. During calculation, atomic positions and lattice parameters adopt the data refined from the NPD patterns with and without pressure, so as to warrant that all the information of lattice change caused by pressure has been taken into account.

The calculated total and partial electronic density of states (DOS) are plotted in Figure S2. One can see that the spin-up and spin-down DOS peaks from −5 to 0 eV are mainly from the 3d bands of Fe and Co atoms. Moreover, there is a small splitting of 5d bands of La around the energy of −1.5 eV, indicating that the La-5d and (Fe,Co)-3d bands are well hybridized, but the main part of the partial DOS of the La-5d is located above the Fermi level. Meanwhile, the peaks from the 3s bands of Si are around the energy of −8 eV, lying far below EP, and the peaks from the 4f bands of La are around the energy of 3 eV, above EP. However, it is worth noting that calculations indicate that there is no obvious inconsistency between 0 and 9 kbar for the total electronic DOS curves in the ferromagnetic state, see details in Figure S3. This is consistent with macroscopic magnetic measurements, noting that the reduction of measured Ms under 7.92 kbar is as small as dlnMs/dP(1/GPa) ≈ −0.025. In the majority spin band, the Fermi level Ep lies well-above the main part of the 3d density of state, suggesting that strong ferromagnetism keeps under both 0 and 9 kbar. While in the minority spin band, the Ep locates around the dip between the maxima around +2.0 eV and around −1.8 eV. A similar dip structure of DOS also appears in LaFe11.5Si1.5 and Fe–Pt, which was related to the small dlnMs/dP and strong magnetovolume effect.

However, the feature of nonmagnetic DOS is considered to be useful to discuss the order of FM–PM transition15,51–55 for the materials with strong magnetovolume and spin fluctuations, such as Fe–Pt50 and Fe–Ni56 invar-type alloys. Figure 6 shows the DOS curves of the nonmagnetic state under pressure.

![Figure 6. Details of total density of states near the Fermi level Ep of the La(Fe0.92Co0.08)11.9Si1.1 compound in the nonmagnetic state under pressures of 0 and 9 kbar. The inset shows the total DOS in the nonmagnetic state. The Fermi energy is shifted to zero.](https://dx.doi.org/10.1021/acs.chemmater.9b03915)
pressures 0 and 9 kbar for La(Fe_{0.95}Co_{0.08})_{11.9}Si_{1.1}. The common feature of the 3d DOS looks similar to that of fcc Fe, ordered Fe_Pt, and FeNi.50,55–57 A high DOS at the Fermi level $E_F$ is considered to be a trigger of magnetic instability. The effect of pressure on the order of FM–PM transition can be expressed by the DOS behavior at the Fermi level $E_F$. In the following Landau–Ginzburg expansion including renormalization effect of spin fluctuations for free energy $F(M)$, the mode–mode coupling coefficient $b$ determines the order of transition.53,54

$$F(M) = \frac{1}{2} aM(T)^2 + \frac{1}{4} bM(T)^4 + \frac{1}{6} cM(T)^6 + \cdots$$

$$-HM$$

where the coefficients $a$, $b$, and $c$ can be written in terms of the density of states and its derivatives with respect to the energy at the Fermi level. $M$ denotes magnetization, and $H$ denotes magnetic field. Especially, the mode–mode coupling coefficient $b$ is expressed by the following equation,53,54

$$b = \frac{1}{16\rho(E_F)^3} \left( \frac{\rho(E_F)^2}{\rho(E_F)} - 3\rho(E_F) \right)$$

where $\rho(E_F)$ represents the density of state (DOS) at the Fermi level $E_F$ of the nonmagnetic state. The sign of $b$ connects the order of transition, which is related to the curvature of DOS at the Fermi level.51 Normally, a negative/positive $b$ indicates first-order/second-order transition. In eq 1, order $F(M) = 0$, $H/M = a/2 + bM(T)^2/4 + cM(T)^4/6$, $b$ is the slope of Arrott plots $M^2/H$. This is the reason why people usually characterize the order of transition by Arrott plots (see Figure 1d above). A change of DOS curvature caused by pressure can be clearly identified at the Fermi level, as shown in Figure 6. Based on eq 2, the calculated $b$ appears to be $b = 1.76 \times 10^{-7}$ under $P = 0$, which turns to be $b = -5.4 \times 10^{-7}$ under $P = 9$ kbar. The sign of $b$ changes from positive to negative, suggesting the pressure-driven evolution from second-order to first-order transition. These band structure calculations quantify the enhanced magnetovolume effect involving the first-order transition caused by hydrostatic pressure.

The enhanced magnetovolume effect by hydrostatic pressure will lead to increased magnetocaloric effect (MCE) and barocaloric effect (BCE). Generally, lattice entropy change ($\Delta S_{latt}$) plays a role as important as spin in the ferromagnetic materials undergoing concurrent lattice and magnetic transitions.5,43 It is crucial to ascertain the individual contributions from spin and lattice. However, the lattice entropy change is usually difficult to measure. Early research23 illustrated that the contribution of lattice entropy can be calculated from the MCE exhibited by closely related materials with and without first-order magnetic phase transition. Lately, Gschneidner et al. converged a collection of lattice contribution to the total entropy change for different materials undergoing first-order magnetic phase transition and found a linear functional relationship between the lattice entropy change and the lattice deformation ($\Delta V/V$), which is denoted by $\delta[\Delta V/V(\%)]/\delta[\Delta S_{latt}] = 0.08(1 \text{ kg}^{-1} \text{ K}^{-1})$. However, it is known that this empirical relationship is a rough approximation ignoring the specific Grüneisen parameter and Debye temperature in different materials, which may affect the accurate evaluation of lattice entropy.

Based on Debye approximation, we quantitatively calculated the lattice entropy $S_{latt}$ of La(Fe_{0.95}Co_{0.08})_{11.9}Si_{1.1} by the following equation:53,58

$$S_{latt} = -3Nk_B\ln\left[1 - \exp\left(\frac{-\Theta}{T}\right)\right] + 12Nk_BT^3 \int_0^{T/T} x^3 e^x - 1 \, dx$$

where $N$ denotes the number of atoms per mole, $k_B$ is the Boltzmann constant, and $\Theta$ is the Debye temperature, which can be determined by lattice vibration modes. For the deformed phase caused by phase transition, the Debye temperature $\Theta$ can be approximately expressed as follows:55

$$\Theta = \Theta_0(1 - \gamma\omega)$$

where $\Theta_0$ denotes the Debye temperature in the absence of lattice deformation, $\gamma$ is the Grüneisen parameter (generally $\gamma$ has an absolute value between 1 and 3 for solid materials59), and $\omega$ is the volume change $\Delta V/V$ due to phase transition. For the La(Fe_{0.95}Co_{0.08})_{11.9}Si_{1.1} compound, we derived the $\Theta_0$ to be 330 K in the FM phase by linearly fitting the plot of $C_p/T$ against $T^2$ in the low-temperature region below $T_C$ according to the expression of specific heat capacity $C_p$ for a metallic ferromagnet,60–62

$$C_p(T) = \alpha T + AT^3$$

where the Sommerfeld coefficient $\alpha$ normally associates with the electronic specific heat, which is generally small ($b \approx 0.17 \text{ mJ} \text{ K}^{-2}$) and can be ignored.61 $A = 12\pi^2\alpha/5(\Theta_0^3)$, which is associated with the Debye temperature $\Theta_0$.

Moreover, we can attain the Grüneisen parameter $\gamma$ based on the Grüneisen law, which can be approximately described as follows,

$$\alpha_v = (\gamma/k_0)(C_v/V_m)$$

where $\alpha_v$ is the volume thermal expansion coefficient, $k_0$ is the bulk modulus, $C_v$ represents the isochoric specific heat per mole, and $V_m$ is the molar volume. Here, the $\alpha_v$ is obtained from the refined data from NPD patterns, and the bulk modulus $k_0$ ($\approx 41.7 \times 10^9 \text{ N} \text{ m}^{-2}$) is derived from the measured Young’s modulus and Poisson’s ratio for LaFeCo-Si.53,64 Based on eq 6, the Grüneisen parameter is obtained to be $\gamma = -2.4$ corresponding to the negative thermal expansion. As demonstrated by NPD data (see Table S1), the maximal volume changes ($\omega = \Delta V/V$) across phase transition under pressures 0, 3, 6, and 9 kbar is $-1.08, -1.29, -1.50$, and $-1.57\%$, respectively. Furthermore, we can acquire the volume change $\omega$ at any temperature based on the refinement using NPD data by taking the onset of FM ordering as a reference, and then the Debye temperature $\Theta$ of the deformed phase can be deduced from eq 4. Accordingly, the lattice entropy $S_{latt}$ can be calculated based on eq 3 for various pressures, and the result is illustrated in Figure 7a. After deducing the contribution from the general anharmonic vibrations of atoms, the anomaly of lattice entropy $S_{latt-PT}$ involving phase transition can be deduced (Figure 7b). Moreover, through comparing the $S_{latt-PT}$ curves with and without pressure ($S_{latt-PT}-S_{latt-o}$, Figure 7a), the pressure-induced lattice entropy change $\Delta S_{latt}$ that is, the contribution of lattice entropy to the barocaloric effect ($\Delta S_{BCE-Latt}$), can be obtained, as shown in
Δ around T kg

Δ transition. (b) Lattice entropy where the blue line represents the lattice entropy ignoring phase calculated by Debye approximation for the cases of various pressures

entropy S\text{Tot}

dependence on Table 1). Meanwhile, the pressure-induced under di

Table 1. Results Based on Magnetic Measurements and on NPD

<table>
<thead>
<tr>
<th>P [kbar]</th>
<th>(\Delta S\text{BCE-Latt} (0\text{-}2\ T)) [J kg(^{-1}) K(^{-1})]</th>
<th>(\Delta S\text{BCE-Latt} (0\text{-}5\ T)) [J kg(^{-1}) K(^{-1})]</th>
<th>total area [J kg(^{-1})]</th>
<th>(\Delta V/V) [%]</th>
<th>(\Delta S\text{BCE-Pt} (0\text{-}2\ T)) [J kg(^{-1}) K(^{-1})]</th>
<th>(\Delta S\text{BCE-Pt} (0\text{-}5\ T)) [J kg(^{-1}) K(^{-1})]</th>
<th>total area [J kg(^{-1})]</th>
<th>(\Delta S\text{BCE-Latt} (0\text{-}2\ T)) [J kg(^{-1}) K(^{-1})]</th>
<th>(\Delta S\text{BCE-Latt} (0\text{-}5\ T)) [J kg(^{-1}) K(^{-1})]</th>
<th>total area [J kg(^{-1})]</th>
</tr>
</thead>
</table>
| 0        | -7.9                              | -14.1                             | 542.0           | 0.0              | -10.0                             | 13.8                              | 8.9             | 16.0                              | 348 K in the PM phase. The trend of \(\Theta_0\) with temperature is consistent with our calculated \(\Theta_0\) by eq 4 (see Figure 5S), though the absolute value of \(\Theta_0\) is slightly different possibly due to the subtle differences of components. The \(\Theta_0\) for LaFe\(_{11.8}\)[Co\(_{0.08}\)]Si\(_{1.1}\) drops by \(-3\%\) from \(\Theta_0 \approx 300 \text{ K (FM)}\) to \(\Theta_0 \approx 292 \text{ K (PM)}\), which is comparable but somewhat smaller than the \(\Theta_0\) drop of LaFe\(_{11.6}\)Si\(_{1.4}\) which is reasonable, considering the fact that the latter with first-order transition experiences a larger \(\Delta V/V\) than the former. The decrease of \(\Theta_0\) means the increase of lattice entropy \(S\text{Latt}\). These results further verify that the transition process from the large FM to the small PM phase is a process of increasing lattice entropy, the same as the the pure magnetic transition from the ordering (FM) to the disordering (PM) phase.

Moreover, it is well-accepted that the total entropy \(S\text{Tot-PT}\) involving phase transition can be reliably measured by calorimetric measurement using a differential scanning

more than three times up to 11.0 J kg\(^{-1}\) K\(^{-1}\) at 0–9 kbar (Figure 7c, Table 1).

La(Fe\(_{11.6}\)Si\(_{1.4}\)) materials undergo negative lattice expansion during the PM–FM transition on cooling. Landers et al. investigated the lattice vibrational entropy change \(\Delta S\text{Latt}\) in LaFe\(_{11.6}\)Si\(_{1.4}\) by nuclear resonant inelastic X-ray scattering combined with density functional theory (DFT)-based first-principles calculations using the fixed-spin moment (FSM) approach.\(^{46,47}\) The results demonstrated that the \(\Delta S\text{Latt}\) obtained by nuclear resonant inelastic X-ray scattering is a sizable quantity and contributes directly and cooperatively to the total entropy change \(\Delta S\) at the phase transition. From the experimentally measured vibrational (phonon) density of states, VDOS, an abrupt increase (jump) in the Fe partial vibrational entropy \(\Delta S\text{Latt}\) was obtained on heating, and the increased magnitude of \(\Delta S\text{Latt}\) is substantial in comparison with the isothermal entropy change obtained using the Maxwell relation. Landers et al.\(^{46,47}\) also compared the DFT-computed vibrational entropy change \(\Delta S\text{Latt}\) at a constant volume for the FM, PM, and FSM (fixed spin moment) states with the experimental results. Both the experimental and theoretical results demonstrated that an increase of the \(\Delta S\text{Latt}\) occurs with the FM-to-PM transition on heating. These results are consistent with our calculated lattice entropy by Debye approximation. The lattice entropy \(S\text{Latt}\) shows a step increase around \(T_c\) with temperature increases.

Landers et al.\(^{46}\) also calculated Debye temperatures \(\Theta_D\) from the Lamb–Mössbauer factor based on the obtained VDOS for LaFe\(_{11.8}\)Si\(_{1.4}\).\(^{63}\) The obtained \(\Theta_D\) drops by \(-4\%\) from \(\Theta_D \approx 363 \text{ K in the PM phase to } \Theta_D \approx 348 \text{ K in the PM phase. The trend of } \Theta_D \text{ with temperature is consistent with our calculated } \Theta_D \text{ by eq 4 (see Figure 5S), though the absolute value of } \Theta_D \text{ is slightly different possibly due to the subtle differences of components. The } \Theta_D \text{ for } \text{LaFe}_{11.8}\text{Co}_{0.08}\text{Si}_{1.1} \text{ drops by } -3\% \text{ from } \Theta_D \approx 300 \text{ K (FM) to } \Theta_D \approx 292 \text{ K (PM), which is comparable but somewhat smaller than the } \Theta_D \text{ drop of } \text{LaFe}_{11.6}\text{Si}_{1.4} \text{ which is reasonable, considering the fact that the latter with first-order transition experiences a larger } \Delta V/V \text{ than the former. The decrease of } \Theta_D \text{ means the increase of lattice entropy } S\text{Latt}. \text{ These results further verify that the transition process from the large FM to the small PM phase is a process of increasing lattice entropy, the same as the the pure magnetic transition from the ordering (FM) to the disordering (PM) phase. Moreover, it is well-accepted that the total entropy } S\text{Tot-PT} \text{ involving phase transition can be reliably measured by calorimetric measurement using a differential scanning}

![Figure 7](https://doi.org/10.1021/acs.chemmate.6b03915)

Chem. Mater. 2020, 32, 1807–1818
calorimeter (DSC).\textsuperscript{13,66,67} $S_{\text{Tot}}(T) - S_{\text{Tot}}(T_0) = \int_{T_0}^{T_1} \frac{1}{T} \frac{dT}{dT}$ where $Q$ is the heat flow and $T$ is the heating/cooling rate. We performed the calorimetric measurement by DSC (Netzsch DSC 214) with a temperature ramping rate of 5 K min$^{-1}$. The calculated total entropy $S_{\text{Tot}}$ as a function of temperature at atmosphere pressure is shown in Figure 7d (red curve), where $T_0 = 190$ K at the FM state is taken as a reference and assuming $S_{\text{Tot}}(T_0 = 190)$ = 0. Note that the total entropy $S_{\text{Tot}}$ mainly consists of contributions from spin and lattice. The deviation of $S_{\text{Latt}}$ from $S_{\text{Tot}}$ should express the contribution from spins in the ferromagnetic domains even without magnetic field applied (see Figure 7d). Moreover, it is reasonable to assume that the spin contribution to $S_{\text{Tot}}$ remains nearly independent of pressure, noting that the spontaneous magnetization $M_s$ reduces little ($\delta M_s/dp$) even though the $T_C$ largely shifts to a low temperature under pressure. This is the feature of IEM ferromagnetism with strong magnetovolume effect and spin fluctuations. Accordingly, the total $S_{\text{Tot}}$ at different pressures can be obtained by summing the $S_{\text{Latt}}$ (Figure 7b) and the contribution from spin ($S_{\text{spin}}$, Figure 7d), as shown in Figure 7e. By comparing the $S_{\text{Tot}}$–$T$ curves with and without pressure (deducting $S_{\text{Tot}}$ from $S_{\text{Tot}}$, Figure 7e), pressure-induced total entropy change $\Delta S_{\text{Tot}}$ that is, the barocaloric effect (BCE), can be deduced, as shown in Figure 7f. It is noticeable that the maximal BCE attains to $\Delta S_{\text{BCE,Tot}} \approx 17.4$ J kg$^{-1}$ K$^{-1}$ at 0–9 kbar, which is more than three times larger compared to the one (~5.0 J kg$^{-1}$ K$^{-1}$) at 0–1.5 kbar. These results are roughly consistent with the entropy change evaluated by DSC measurements with in situ pressure applied for a similar composition La(Fe$_{0.92}$Co$_{0.08}$)$_{11.9}$Si$_{1.1}$ with $T_C$ (~240 K) and a larger magnetovolume effect ($\Delta V/V \approx -1.5\%$) at atmosphere pressure compared to the present La(Fe$_{0.92}$Co$_{0.08}$)$_{11.9}$Si$_{1.1}$ with $T_C$ ~304 K and $\Delta V/V \approx -1.1\%$ due to the different Co and Si stoichiometries. By normalizing the $\Delta S_{\text{BCE,Tot}}$ against the $\Delta V/V$ ($\Delta S_{\text{BCE,Tot}} \times (-1.5\%)/(1.1\%)$), the $\Delta S_{\text{BCE,Tot}}$ for the present La(Fe$_{0.92}$Co$_{0.08}$)$_{11.9}$Si$_{1.1}$ agrees well with that of La(Fe$_{11.33}$Co$_{0.47}$Si$_{1.2}$)\textsuperscript{4} (see Figure 8). All these demonstrate that the estimated total entropy change under pressure up to 9 kbar, that is, BCE, is reliable. It is known that the applied in situ pressure in DSC is difficult to be as high as 9 kbar. The present work demonstrates a feasible way to assess BCE driven by high pressure based on NPD measurements.

![Figure 8](https://dx.doi.org/10.1021/acs.chemmater.9b03915)

**Figure 8.** Pressure dependence of the maximum values of normalized barocaloric effect for the La(Fe$_{0.92}$Co$_{0.08}$)$_{11.9}$Si$_{1.1}$ compound. The blue dots represent the maximum values of the barocaloric effect of LaFe$_{11.33}$Co$_{0.47}$Si$_{1.2}$ under different pressures in ref 24.

For comparison, we also evaluated the lattice entropy change $\Delta S_{\text{Latt-ref}}$ according to the empirical relationship $\delta \Delta V/V(\%)$/ $\delta \Delta S_{\text{Latt-ref}} ~ 0.08(1 \text{ kg}^{-1} \text{ K}^{-1})$.\textsuperscript{9} The result is given in Table 1. The $\Delta S_{\text{Latt-ref}}$ accounts for 86% of the total $\Delta S_{\text{BCE,Tot}}$ measured by DSC at the ambient pressure, and grows to 100% at 9 kbar. Note that the contribution from the magnetic order during the phase transition cannot be absent although no magnetic field is applied, therefore the $\Delta S_{\text{Latt-ref}}$ is obviously overestimated where the specific Grüneisen parameter and Debye temperature in different materials were not taken into account. In other words, the lattice entropy change calculated by Debye approximation is more reliable.

The La(Fe$_{0.92}$Co$_{0.08}$)$_{11.9}$Si$_{1.1}$ compound exhibits normal magnetocaloric effect (MCE) and inverse barocaloric effect (BCE), in both of which the lattice contribution plays an important role. Pressure-driven change of the electronic band structure and atomic local environments make the magnetic transition evolve from the second order to the first order. As a result, the $\Delta S_{\text{BCE}}$ peak grows sharper (Figure 2). The maximal $\Delta S_{\text{BCE}}$ under 11.31 kbar roughly doubled compared to that without pressure. More importantly, the area under the $\Delta S_{\text{BCE}}$ Peak will keep unchanged if there is no volume change during the steepening process of phase transition driven by pressure. The negative lattice expansion around $T_C$ is enlarged and does not show saturation with increasing pressure, hence the thermal-induced $\Delta S_{\text{BCE,Tot}}$ grows with pressure. Calculations indicate that the thermal-induced lattice entropy change $\Delta S_{\text{Latt}}$ accounts for 56% of total entropy $\Delta S_{\text{Tot}}$ at atmospheric pressure (Figure 7d) during phase transition. This ratio increases to 63% as the pressure is up to 9 kbar (Figure 7b,e and Table 1) due to the enlarged $\Delta V/V$ by pressure (Figure 3a and its inset).

Moreover, we can quantitatively evaluate the contribution of enlarged $\Delta V/V$ to the notable enhancement of BCE by hydrostatic pressure. Due to the enhanced magnetovolume effect and the evolution of transition nature by pressure, barocaloric effect is also dramatically boosted with pressure. The maximal $\Delta S_{\text{BCE}}$ under 9 kbar grows by more than three factors. First, we assume that the effect of pressure on the movement and evolution of phase transition order remains unchanged without affecting the $\Delta V/V$. Then, the lattice entropy $S_{\text{Latt}}'$ involving phase transition can also be obtained based on Debye approximation, as shown in Figure S4a. Similarly, we can get the pressure-induced lattice entropy change $\Delta S_{\text{Latt}}'$ that is, the contribution of the lattice entropy to the barocaloric effect ($\Delta S_{\text{BCE}}'$), as plotted in Figure S4b. Then, the total entropy $S_{\text{Tot}}'$ involving phase transition (Figure S4c) as well as the pressure-induced total entropy change $\Delta S_{\text{BCE,Tot}}$ (Figure S4d), that is, the barocaloric effect (BCE') without considering the effect of enlarged $\Delta V/V$, can similarly be obtained, assuming that the spin contribution to the $S_{\text{Tot}}'$ remains nearly independent of pressure (Figure 7d). Figure 7g,h depicts the comparison between $\Delta S_{\text{BCE,Tot}}$ and $\Delta S_{\text{BCE,Latt}}'$ and between $\Delta S_{\text{BCE,Tot}}'$ and $\Delta S_{\text{BCE,Latt}}'$ respectively, where the shaded area denotes the contribution from the enlarged $\Delta V/V$ under 9 kbar. It is evident that, compared to $\Delta S_{\text{BCE,Latt}}'$ and $\Delta S_{\text{BCE,Tot}}'$ the maxima of $\Delta S_{\text{BCE,Latt}}'$ and $\Delta S_{\text{BCE,Tot}}'$ curves increases by 39 and 22%, while the areas
under the curves, which connect RC enlarges by 47 and 20%, respectively, due to the enhanced contribution from the lattice.

■ CONCLUSIONS

In summary, large enhancement of MCE and BCE by hydrostatic pressure has been demonstrated in Co-doped La(Fe,Si)\(_{13}\) with a second-order transition. The maximal \(\Delta S_{\text{MCE}}\) almost doubled under 11.31 kbar compared to that without pressure, while the maximal \(\Delta S_{\text{BCE}}\) under 9 kbar increases more than three times compared to that under 1.5 kbar. To understand the mechanism of such pressure-promoted MCE and BCE from the atomic level, NPD studies under a series of hydrostatic pressure were performed. Careful inspection of the refinement results indicate that the hydrostatic pressure enlarges the volume change, \(\Delta V/V\), and sharpens the magnetoelastic transition through shortening the intra-icosahedral Fe–Fe bonds (B1, B2, and B3) rather than the inter-icosahedral bonds (B4 and B5) in the NaZn\(_{13}\)-type structure. This result is distinct from the situation of introducing chemical pressure by H atoms in the La(Fe,Si)\(_{13}\)-based compounds with NaZn\(_{13}\)-type structure where the enlarged lattice upon H absorption is mainly caused by the elongated B4 bond close to the 24d interstitial site. The introduced chemical pressure by H atoms in La(Fe,Si)\(_{13}\)-based compounds can adjust the phase transition temperature but not the sharpness of phase transition and the MCE. To understand the mechanism of the distinct effect by hydrostatic pressure, first-principles calculations are performed. The features of DOS in ferromagnetic and nonmagnetic states evidence the strong magnetovolume effect involving spin fluctuations and demonstrate the evolution of phase transition from second order to first order in nature, which is responsible for the enlarged caloric effect by hydrostatic pressure. Moreover, the contribution of enhanced lattice entropy change by pressure is quantitatively calculated by Debye approximation, and a reliable way to evaluate BCE is demonstrated under a high pressure that current DSC cannot reach. The present study provides an effective approach to achieve a significant enhancement of both MCE and BCE by utilizing specific atomic environments, which is also useful to achieve other related effects, such as controllable negative thermal expansion.

■ ASSOCIATED CONTENT

* Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.chemmater.9b03915.

- NPD pattern, crystal structure parameters, electronic DOS, and evaluation of the enlarged \(\Delta V/V\) to the enhancement of BCE (PDF)

■ AUTHOR INFORMATION

**Corresponding Authors**

Fengxia Hu — Beijing National Laboratory for Condensed Matter Physics & State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China; Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, P. R. China; Email: fxhu@iphy.ac.cn

Jing Wang — Beijing National Laboratory for Condensed Matter Physics & State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China; Fujian Innovation Academy, Chinese Academy of Sciences, Fuzhou, Fujian 350108, P. R. China; orcid.org/0000-0001-5458-6711; Email: wangjing@iphy.ac.cn

Baogen Shen — Beijing National Laboratory for Condensed Matter Physics & State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China; Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, P. R. China; Email: shenbg@iphy.ac.cn

**Authors**

Jiazheng Hao — Beijing National Laboratory for Condensed Matter Physics & State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China; Division of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081, P. R. China

Jian-Tao Wang — Beijing National Laboratory for Condensed Matter Physics & State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China; Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, P. R. China

Fei-Ran Shen — Beijing National Laboratory for Condensed Matter Physics & State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China

Zibing Yu — Beijing National Laboratory for Condensed Matter Physics & State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China

Houbo Zhou — Beijing National Laboratory for Condensed Matter Physics & State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China

Hui Wu — NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States; orcid.org/0000-0003-0296-5204

Qingzhen Huang — NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States

Kaiming Qiao — Beijing National Laboratory for Condensed Matter Physics & State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China

Jun He — Division of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081, P. R. China

Lunhua He — Beijing National Laboratory for Condensed Matter Physics & State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China; Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, P. R. China; China Spallation Neutron Source (CSNS), Guangdong 523808, P. R. China

Ji-Rong Sun — Beijing National Laboratory for Condensed Matter Physics & State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China; Email: wangjing@iphy.ac.cn

**Chem. Mater.** 2020, 32, 1807–1818

https://dx.doi.org/10.1021/acs.chemmater.9b03915
Complete contact information is available at: https://pubs.acs.org/10.1021/acs.chemmater.9b03915

Author Contributions
The manuscript was written through contributions of all authors.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
This work was supported by the National Key Research and Development Program of China (grant nos. 2017YFB0702702, 2019YFA0704904, 2018YFA03057004, 2017YFA0206300, 2017YFA0303601, and 2016YFB0700903), the National Natural Science Foundation of China (grant nos. 15131008, U1832219, 51771220, 51971240, 11674378, 11934016, 11674364, and 11974387), and the Key Program and Strategic Priority Research Program (B) of the Chinese Academy of Sciences.

REFERENCES


