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1. The Hamiltonian of the electron-nuclei interacting system and the basic 

expressions for wave functions. 

The Hamiltonian of the electron-nuclei interacting system is given as 

𝐻 = 𝑇𝑒 + 𝑇𝑛 + 𝑉𝑛 + 𝑉𝑒𝑛, (S1) 

where T and V stand for kinetic energy and potential energy respectively. The subscripts 

indicate the electron (𝑒   and the nucleus (𝑛  . Herein we have employed the single 

electron approximation, in which only one electron excitation is considered, so the 

interaction potential energy between electrons 𝑉𝑒𝑒 can be omitted. 

In the weak electron-photon coupling limit, it is convenient to use Born-

Oppenheimer adiabatic approximation to separate the electronic and nuclear motions. 

Then, the wave functions (𝛹   can be written as a product of electronic (𝜙   and 

vibrational (𝜒   wave functions, i.e. 𝛹𝑙𝑚(𝒓, 𝑹) = 𝜙𝑙(𝒓, 𝑹)𝜒𝑚(𝑙)(𝑹) . We respectively 

denote the electron and nuclei coordinates by 𝒓 and 𝑹, and electronic and vibrational 

state quantum number by 𝑙 and 𝑚. The corresponding eigen-energy for wave function 

is represented by 𝐸𝑙𝑚. Here the electronic wave function 𝜙𝑙 satisfies 

[𝑇𝑒 + 𝑉𝑒𝑛]𝜙𝑙(𝒓, 𝑹) = 𝐸𝑙(𝑅)𝜙𝑙(𝒓, 𝑹), (S2) 

and the vibrational wave function 𝜒𝑚(𝑙)(𝑹) obeys 
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[𝑇𝑛 + 𝑊𝑙(𝑹)]𝜒𝑚(𝑙)(𝑹) = 𝐸𝑙𝑚𝜒𝑙𝑚(𝑹), (S3) 

where 𝑊𝑙(𝑹)  is the effective nuclear potential energy.1 According to harmonic 

approximation, the vibrational wave function can be written as 

𝜒𝑚(𝑙)
(𝑹) = ∏ 𝑋𝑚𝑘;𝑙(𝑄𝑘;𝑙)

3𝑁
𝑘=1 . (S4)  

The quantities 𝑄  introduced above are normal coordinates, describing independent 

simple harmonic vibrations, and 𝑘 stands for normal modes. The vibrational eigen-

function 𝑋𝑚𝑘;𝑙(𝑄𝑘;𝑙) satisfies the harmonic oscillator equation and can be specifically 

expressed as 

𝑋𝑚𝑘𝑙
= 𝑁𝑚𝑘;𝑙𝛨𝑚𝑘

(𝛼𝑘;𝑙𝑄𝑘;𝑙) 𝑒𝑥𝑝 (−
1

2
𝛼𝑘;𝑙

2𝑄𝑘;𝑙
2) , (S5)  

where 𝛼𝑘;𝑙 = (𝑀𝜔𝑘;𝑙/ℏ)1/2

  
and 𝑁𝑚𝑘;𝑙 = [𝛼𝑘;𝑙/(2𝑚𝑘𝑚𝑘! √𝜋)]1/2   𝜔𝑘;𝑙  is the 

vibration frequency  𝐻𝑚𝑘
 is the Hermite polynomial of order 𝑚𝑘. 

 

2. The radiative decay rate.1 

The interaction Hamiltonian inducing the radiative decay is written as 

𝐻𝑟𝑎𝑑 = −𝝁 ⋅ 𝑬, (S6) 

where 𝝁 = 𝑒 ∑ 𝒓𝑒𝑒   is the electric dipole moment of the electrons. Under low-

temperature limit, the expression of the decay rate then reads 

𝑘𝑅(𝑖 → 𝑓) =
2𝜋

ℏ
∑ ∑ |⟨𝑓𝑚; 𝛼𝑝ℎ|𝐻𝑟𝑎𝑑|𝑖0; 𝑂𝑝ℎ⟩|𝑚𝛼

2
𝛿(𝐸𝑖0 − 𝐸𝑓𝑚 − 𝐸𝛼

𝑝ℎ), (S7)  

where 𝑂𝑝ℎ  describes the initial no photon state and 𝛼𝑝ℎ  describes the final one 

photon states. 𝐸𝛼
𝑝ℎ

  is the photon energy. 𝑖  and 𝑓  refer to the initial and final 

electronic states, while 𝑚′ = 0  and 𝑚  are the quantum number of the vibrational 

states in the initial and final electronic state respectively. Further evaluation needed is 

eliminating the photon state. Through the quantization of electromagnetic fields, the 

electric field operator can be written as 

𝑬 = 𝑬(+) + 𝑬(−), (S8) 

where 

𝑬(+) = ∑ 𝒆𝜆𝜀𝒌𝑎𝒌𝜆𝑒𝑖(𝒌⋅𝑟−𝜔𝒌𝑡)
𝒌𝜆 , (S9)  
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𝑬(+) is the positive frequency part and the negative frequency part 𝑬(−) = (𝑬(+))†. 𝒌 

and 𝜆 describe the wave vector and polarization of the photon separately. 𝑎𝒌𝜆 is the 

photon annihilation operator. The amplitude 𝜀𝒌 = 𝑖√
2𝜋ℏ𝑐𝑘

𝛺𝑝ℎ
 , where 𝛺𝑝ℎ  is the 

quantization volume for the photons. The polarization vector 𝒆𝜆 satisfy 

∑ 𝑒𝜆𝑎𝑒𝜆𝑏𝜆=1,2 = 𝛿𝑎𝑏 −
𝑘𝑎𝑘𝑏

𝑘2
, (S10)  

where 𝛿𝑎𝑏 is the Kronecker delta  𝑎, 𝑏 stands for Cartesian coordinate. Substituting 

the electric field expression into eq S7 yields 

𝑘𝑅(𝑖 → 𝑓) =
2𝜋

ℏ
∑

2𝜋ℏ𝑐𝑘

𝛺𝑝ℎ
× ∑ ⟨𝜇𝑎⟩⟨𝜇𝑏

∗ ⟩𝑎𝑏,𝑚 𝑒𝜆𝑎𝑒𝜆𝑏𝒌𝜆 𝛿(𝐸𝑖0 − 𝐸𝑓𝑚 − ℏ𝑐𝑘), (S11)  

where ⟨𝝁⟩ = ⟨𝑓𝑚|𝝁|𝑖0⟩. 𝛺𝑝ℎ can be chosen large at will, therefore we replace ∑  𝒌 by 

𝛺𝑝ℎ

(2𝜋)3 ∫ 𝑑𝛺𝒌 ∫ 𝑘2𝑑𝒌. Using eq S10 and ∫ 𝑑𝛺𝒌(𝛿𝑎𝑏 −
𝑘𝑎𝑘𝑏

𝑘2 )
4𝜋

=
8𝜋

3
, we finally obtain 

 𝑘𝑅(𝑖 → 𝑓) =
4

3ℏ
4𝑐3

∑ |⟨𝑓𝑚|𝝁|𝑖0⟩|2
𝑚 (𝐸𝑖0 − 𝐸𝑓𝑚)3,  (S12  

where |⟨𝝁⟩|2 = ∑ |⟨𝜇𝑎⟩|2
𝑎 . Note that in the absence of vibrations eq S12 boils down to 

the well-known spontaneous emission rate 
4𝑘0

3|⟨𝝁⟩|2

3ℏ
, where 𝑘0 =

𝜔0

𝑐
 and 𝜔0 is the 

transition frequency. 

Using Born-Oppenheimer adiabatic approximation and harmonic oscillator 

approximation, eq S12 turns to 

𝑘𝑅(𝑖 → 𝑓) =
4

3ℏ
4𝑐3

∑ |⟨𝜙𝑓|𝝁|𝜙𝑖⟩|
2

(∏ 𝐹(𝑓𝑚𝑘; 𝑖0𝑘)𝑘 )(𝐸𝑖0𝑘
− 𝐸𝑓𝑚𝑘

)3
{𝑚𝑘} , (S13)  

The Franck-Condon factor is defined by 

𝐹(𝑓𝑚𝑘; 𝑖𝑚′
𝑘) = |⟨𝑋𝑚𝑘𝑓|𝑋𝑚′

𝑘𝑖⟩|
2

= |∫ 𝑑𝑄𝑘𝑋𝑚𝑘𝑓(𝑄𝑘)𝑋𝑚′
𝑘𝑖(𝑄𝑘)|

2
. (S14)  

This factor measures the degree of vibrational overlap of the initial and final states. For 

displaced and undistorted oscillators, when 𝑚′ = 0 the Franck-Condon factor can be 

reduced to2 

𝐹(𝑓𝑚𝑘; 𝑖0𝑘) = 𝑒−𝑆𝑘
(𝑆𝑘)𝑚𝑘

𝑚𝑘!
. (S15)  

𝑆𝑘 =
𝛥𝑘

2

2
 is the Huang-Rhys factor defined to measure the electron-phonon coupling 

strength and 𝛥𝑘  is the dimensionless displacement in the potential energy curves. 

According to eq S15, the Franck-Condon factor 𝐹(𝑓𝑚𝑘; 𝑖0𝑘)  is maximum when 
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𝑋𝑚𝑘𝑓 is a nodeless solution, i.e. 𝑚𝑘 = 0. This implies that corresponding radiative 

transition is governed by the 0-0 transition, in which the Franck-Condon factor is 

estimated as 1. In this case, eq S13 can be simplified to 

𝑘𝑅(𝑖 → 𝑓) ≃
4

3ℏ
4𝑐3 |⟨𝜙𝑓|𝑒 ∑ 𝒓𝑒𝑒 |𝜙𝑖⟩|

2
𝛥𝐸3. (S16)  

Using Condon approximation, i.e., ⟨𝜙𝑓(𝒓, 𝑹)|𝝁|𝜙𝑖(𝒓, 𝑹)⟩
𝑒
 is independent of 𝑹, the 

electronic coupling element in eq S16 equals to 

𝐽 = ⟨𝜙𝑓(𝒓, 𝑹0)|𝝁|𝜙𝑖(𝒓, 𝑹0)⟩
𝑒
, (S17) 

where 𝑹0 denotes suitably chosen equilibrium position of the ions. Then we have 

𝑘𝑅(𝑖 → 𝑓) ≃
4|𝐽|2

3ℏ
4𝑐3

𝛥𝐸3. (S18) 

 

3. The nonradiative decay rate.1 

To describe the nonradiative transition between different electronic states, we 

introduce the non-adiabatic operator (𝛥𝐻  which contains the nuclear vibrational energy. 

When we apply the Hamiltonian 𝐻 to 𝛹 = 𝜙𝜒, we obtain 𝐻0𝜓𝑙𝑚 = 𝐸𝑙𝑚𝜓𝑙𝑚, where 

𝐻0  is the zeroth-order adiabatic part given by 𝐻0 = 𝐻 − 𝛥𝐻 . The perturbation 

operator 𝛥𝐻  is responsible for inducing the nonradiative transition, depicting the 

effect of nuclear coordinate shifts on the electronic wave function: 

𝛥𝐻𝜙𝑙𝜒𝑚(𝑙) = − ∑
ℏ

2

𝑀𝑛
(

𝜕

𝜕𝑅𝑎𝑛
𝜙𝑙(𝒓, 𝑹))𝑎𝑛 (

𝜕

𝜕𝑅𝑎𝑛
𝜒𝑚(𝑙)

(𝑹)) . (S19)  

Here 𝑎 depicts Cartesian coordinate component, 𝑀𝑛 is the mass of nucleus 𝑛, and 

𝑅𝑎𝑛 is the coordinate component of the nucleus 𝑛. 𝛥𝐻 here is reserved to the first 

order. In the normal coordinate representation, 𝛥𝐻 can be expressed as: 

𝛥𝐻𝜙𝑙𝜒𝑚𝑘
= − ∑

ℏ
2

𝑀
(

𝜕

𝜕𝑄𝑘
𝜙𝑙)𝑘 (

𝜕

𝜕𝑄𝑘
𝜒𝑚𝑘

) , (S20)  

where 𝑀 is the geometric mean of nuclear masses. A typical level spacing of the final 

states 𝑑 is used to estimate the density of final states, replacing the 𝛿 function in the 

Fermi golden-rule. The δ  function in Fermi golden-rule can be approximated as 

∑ 𝛿(𝐸𝑖0 − 𝐸𝑓𝑚) =𝑚 𝜌𝐸 =
𝐺

𝑑
, where 𝜌𝐸 is the density of final vibrational states and 𝐺 
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is the number of vibration states in the energy region |𝐸𝑖0 − 𝐸𝑓𝑚| ≤
1

2
𝑑 . The 

nonradiative decay rate then turns to 

𝑘𝑁𝑅(𝑖 → 𝑓) =
2𝜋ℏ

3𝜂

𝑑𝑀2
∑ (|𝐽𝑖𝑓

𝑘 ⟨𝑋𝑚𝑘𝑓 |
𝜕

𝜕𝑄𝑘
| 𝑋0𝑘𝑖⟩ ∏ ⟨𝑋𝑚

𝑘′𝑓|𝑋0
𝑘′𝑖⟩𝑘′≠𝑘 |

2

)𝑘 , (S21)  

where 𝜂 is the correction factor for the non-Condon effect and the electronic part of 

𝑘𝑁𝑅 in Condon approximation is defined as 

𝐽𝑖𝑓
𝑘 = ⟨𝜙𝑓 |

𝜕

𝜕𝑄𝑘
| 𝜙𝑖⟩

𝑒
. (S22)  

It is extremely inconvenient to calculate the sum of all normal modes 𝑘. Assuming 

that the dominant contribution to the transition comes from a few maximum frequency 

modes with zero values of Huang-Rhys factor as promoting modes, promoting modes 

𝑘𝑝 and accepting modes 𝑘𝑎 are employed for simplicity. Promoting modes with the 

largest 𝐽𝑖𝑓
𝑘   have the main contribution to 𝑘𝑁𝑅  and the remaining accepting modes 

take up the energy difference 𝛥𝐸 − ℏ𝜔𝑘𝑝
, where 𝛥𝐸 = 𝐸𝑖 − 𝐸𝑓 is the energy gap and 

𝜔𝑘𝑝
  is the vibration frequency of the promoting mode. For any promoting mode, 

energy conservation law preserves, which reads 𝛥𝐸 = ℏ𝜔𝑘𝑝
+ 𝑚𝑎ℏ𝜔𝑘𝑎

 . 𝑚𝑎 =

∑ 𝑚𝑘𝑎𝑘𝑎≠𝑘𝑝
 counts the total vibration quanta of all accepting modes. 

Supposing that there are only several promoting modes designated by 𝑝 , the 

nonradiative decay rate can be written as 

𝑘𝑁𝑅 ≃
2𝜋ℏ

3𝜂

𝑑𝑀2
∑ (|𝐽

𝑖𝑓

𝑘𝑝 ⟨𝑋𝑚𝑘𝑝𝑓 |
𝜕

𝜕𝑄𝑘𝑝

| 𝑋0𝑘𝑝𝑖⟩ ∏ ⟨𝑋𝑚𝑘𝑎𝑓|𝑋0𝑘𝑎𝑖⟩𝑘𝑎≠𝑘𝑝
|

2

)𝑝
𝑘𝑝=1 , (S23)  

According to the properties of Hermite polynomials in vibrational eigen-functions 𝑋𝑚𝑘
 

(eq S5 , the cross-products appearing in eq S23 vanish. Then 𝑘𝑁𝑅 turns to 

𝑘𝑁𝑅 =
2𝜋ℏ

3𝜂

𝑑𝑀2
∑ |𝐽

𝑖𝑓

𝑘𝑝|
2

|⟨𝑋𝑚𝑘𝑝𝑓 |
𝜕

𝜕𝑄𝑘𝑝

| 𝑋0𝑘𝑝𝑖⟩|

2

∏ 𝐹(𝑓𝑚𝑘𝑎
; 𝑖0𝑘𝑎

)𝑘𝑎≠𝑘𝑝

𝑝
𝑘𝑝=1 . (S24)  

According to eqs S5, the squared matrix element about the promoting mode in 

electronic part can be written as: 
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|⟨𝑋𝑚𝑘𝑝𝑓|
𝜕

𝜕𝑄𝑘𝑝

𝑋0𝑘𝑝𝑖⟩|

2

=
𝑀𝜔𝑘𝑝

2ℏ

(𝑚𝑘𝑝−𝑆𝑘𝑝)2

𝑆𝑘𝑝

𝑒
−𝑆𝑘𝑝 𝑆𝑘𝑝

𝑚𝑘𝑝

𝑚𝑘𝑝 !
. (S25)  

For promoting modes with 𝑆𝑘𝑝
= 0 , the matrix element eq S25 will vanish unless 

𝑚𝑘𝑝
= 1, which indicates each promoting mode consumes only 1 phonon. Then the 

squared matrix element |⟨𝑋𝑚𝑘𝑝𝑓|(
𝜕

𝜕𝑄𝑘𝑝

)𝑋0𝑘𝑝𝑖⟩|

2

  reduces to 
𝑀𝜔𝑘𝑝

2ℏ
 . Thus, eq S24 is 

simplified to 

𝑘𝑁𝑅 =
𝜋ℏ

2𝜂

𝑀𝑑
∑ |𝐽

𝑖𝑓

𝑘𝑝
|

2

𝜔𝑘𝑝
∏ 𝐹(𝑓𝑚𝑘𝑎

; 𝑖0𝑘𝑎
)𝑘𝑎≠𝑘𝑝

𝑝
𝑘𝑝=1 . (S26)  

It should be noted that, unlike the other sections, in this section (SI-3  the subscript 𝑎 

refers specifically to the accepting modes. 

 

4. The comparison between the energy gap law in our paper and that proposed by 

Jortner et al.3 

Through a multinomial expansion 
(∑ 𝑆𝑘𝑘 )𝑚

𝑚!
= ∑ ∏

𝑆𝑘

𝑚𝑘

𝑚𝑘!𝑘𝑚𝑘[∑ 𝑚𝑘𝑘 =𝑚]  and eqs S14, S15, 

we find 

𝑘𝑁𝑅 =
𝜋𝜂ℏ

2

𝑀𝑑
(∑ |𝐽

𝑖𝑓

𝑘𝑝|
2

𝜔𝑘𝑝

𝑆𝑚𝑒−𝑆

𝑚!

𝑝
𝑘𝑝=1 ) . (S27)  

One uses Stirling's approximation 𝑚! = 𝑚𝑚√2𝜋𝑚𝑒−𝑚 to obtain1 

𝑘𝑁𝑅 = √
𝜋

2𝑚𝑎

𝜂ℏ

𝑀𝑑
(∑ |𝐽

𝑖𝑓

𝑘𝑝|
2

𝜔𝑘
𝑝
𝑘𝑝=1 ) 𝑒−𝑆𝑒−𝑚𝑎𝛾𝑎 . (S28)  

The number 𝑚𝑎 = ∑ 𝑚𝑘𝑎𝑘𝑎
 counts the vibration quanta of accepting modes. Under 

the weak coupling limit, i. e. 𝑆 = ∑ 𝑆𝑘𝑘 ≤ 1, we have 

{
𝑘𝑁𝑅 = √

𝜋

2𝑚𝑎

𝜂ℏ

𝑀𝑑
(∑ |𝐽

𝑖𝑓

𝑘𝑝|
2

𝜔𝑘
𝑝
𝑘𝑝=1 ) 𝑒−𝛾𝑎𝑚𝑎

𝛾𝑎 = 𝑙𝑛 (
𝑚𝑎

𝑆
) − 1.

(S29)  

Moreover, the energy gap law proposed by Jortner et al. is given by3 

{
𝑊 =

√2𝜋

ℏ√ℏ𝜔𝑀𝛥𝐸
𝐶2𝑒

−𝛾𝑏(
𝛥𝐸

ℏ𝜔𝑀
)

𝛾𝑏 = 𝑙𝑜𝑔 (
𝛥𝐸

𝑑𝑒𝑀
) − 1,

(S30)  
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where 𝑑𝑒𝑀 =
1

2
∑ ℏ𝜔𝑀𝛥𝑀

2
𝑀  and  

𝐶 = ∑ 𝐽
𝑖𝑓

𝑘𝑝 ⟨𝑋𝑚𝑘𝑝𝑓 |
𝜕

𝜕𝑄𝑘𝑝

| 𝑋0𝑘𝑝𝑖⟩
𝑝
𝑘𝑝=1 . (S31)  

Based on the promoting and accepting modes assumption in the weak coupling limit 

under low temperature, both eq S29 and eq S30 are derived from the Fermi golden-rule 

in adiabatic approximation: 

𝑘(𝑖0 → 𝑓𝑚) =
2𝜋

ℏ
∑ |⟨𝜙𝑓|𝐻|𝜙𝑖⟩ ⟨∏ 𝑋𝑚𝑘𝑓(𝑄𝑘)𝑘 |𝐻| ∏ 𝑋0

𝑘′𝑖(𝑄𝑘′)𝑘′ ⟩|
2

𝛿(𝐸𝑖0 − 𝐸𝑓𝑚𝑘
)𝑚 .

(S32)
  

There is consensus that in the weak coupling case the nonradiative decay is dominated 

by the highest frequency modes 𝜔𝑀.2, 3 Therefore, it is obviously that 𝑚𝑎 ∝
𝛥𝐸

ℏ𝜔𝑀
 and 

𝑆 ∝
𝑑𝑒𝑀

ℏ𝜔𝑀
, giving the comparative relations listed in Table S1. 

Table S1. Comparison of eq S29 and eq S30 with their initial equation: Fermi golden-

rule. 

Fermi golden-rule 

(𝛥𝐻 →
𝜕

𝜕𝑄𝑘
  

Equation S29 by 

Schuurmans et al.1 

Equation S30 by 

Jortner et al.3 

⟨𝜙𝑓|𝐻|𝜙𝑖⟩ 𝐽𝑖𝑓
𝑘  𝐽𝑖𝑓

𝑘  

⟨𝑋𝑚𝑘𝑓|(
𝜕

𝜕𝑄𝑘
)𝑋0𝑘𝑖⟩ 

𝑀𝜔𝑘

2ℏ  
⟨𝑋𝑚𝑘𝑓|(

𝜕
𝜕𝑄𝑘

)𝑋0𝑘𝑖⟩ 

𝐹(𝑓𝑚𝑘; 𝑖𝑚′𝑘) 𝑒−𝛾𝑎𝑚𝑎

√𝑚
 

𝑚𝑎 ∝
𝛥𝐸

ℏ𝜔𝑀
 

𝑒
−𝛾𝑏(

𝛥𝐸
ℏ𝜔𝑀

)

√𝛥𝐸
 

𝛾𝑏 ∝ 𝛾𝑎 

𝛿(𝐸𝑖0 − 𝐸𝑓𝑚𝑘
)
 

The 𝛿 function is 

approximated by the typical 

density of the final states (
1

𝑑
 . 

The 𝛿 function is 

eliminated by the 

generating function 

method. 

Obviously, eq S29 and eq S30 are basically the same, while eq S30 has a wider 

range of applications.2, 3 Practically, the above two formulas can be written to a rougher 

form according to the experimental experience where 𝑘𝑁𝑅 has an exponential trend 
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with respect to the energy gap 𝛥𝛦 . The Frank-Condon factor can be directly 

approximated by a semi-empirical exponential function, i. e. 

𝑘𝑁𝑅 =
𝜋𝜂ℏ

2

𝑀𝑑
(∑ |𝐽

𝑖𝑓

𝑘𝑝|
2

𝜔𝑘𝑝

𝑝
𝑘𝑝=1 ) 𝑒𝑥𝑝(𝛾(𝛥𝐸 + 𝛿𝐸)) . (S33)  

𝛾 and 𝛿𝐸 are the coefficients in the exponent, which can be obtained by experimental 

fitting.1 

 

5. The detailed derivation of eqs 6, 7 and 9 in the main text. 

(a  The well-known velocity form of the electronic coupling element in the 

radiative decay rate. 

We denote the Hamiltonian corresponding to the electronic wave function as 𝐻0
𝑒, 

i.e. 𝐻0
𝑒𝜙𝑙 = (𝑇𝑒 + 𝑉(𝒓, 𝑹))𝜙𝑙 = 𝐸𝑙𝜙𝑙 . The derivation employs the commutability 

between ∑ 𝒓𝑒𝑒  and 𝑉(𝒓, 𝑹), and then we have 

[𝐻0
𝑒 , ∑ 𝒓𝑒𝑒 ]𝜙𝑙 = [𝑇𝑒 + 𝑉(𝒓, 𝑹), ∑ 𝒓𝑒𝑒 ]𝜙𝑙 = [𝑇𝑒 , ∑ 𝒓𝑒𝑒 ]𝜙𝑙 =

[−
ℏ

2

2𝑚𝑒
∑

𝜕2

𝜕𝑟
𝑎𝑒′

2𝑎𝑒 ′ , ∑ 𝒓𝑒𝑒 ] 𝜙𝑙 =
ℏ

2

2𝑚𝑒
(∑ 𝑟𝑒𝑎,𝑒,𝑒 ′

𝜕2

𝜕𝑟
𝑎𝑒′

2 𝜙𝑙 − ∑
𝜕2

𝜕𝑟
𝑎𝑒′

2 𝒓𝑒𝑎,𝑒,𝑒 ′ 𝜙𝑙) =

ℏ
2

2𝑚𝑒
(∑ 𝒓𝑒𝑎,𝑒,𝑒 ′

𝜕2

𝜕𝑟
𝑎𝑒′

2 𝜙𝑙 − ∑
𝜕

𝜕𝑟
𝑎𝑒′

𝑎𝑒 ′ 𝜙𝑙 − ∑
𝜕

𝜕𝑟
𝑎𝑒′

(𝒓𝑒
𝜕

𝜕𝑟
𝑎𝑒′

𝜙𝑙)𝑎,𝑒,𝑒 ′ ) =

ℏ
2

2𝑚𝑒
(∑ 𝒓𝑒𝑎,𝑒,𝑒′

𝜕2

𝜕𝑟𝑎𝑒′
2 𝜙𝑙 − 2 ∑

𝜕

𝜕𝑟𝑎𝑒′
𝑎𝑒′ 𝜙𝑙 − ∑ 𝒓𝑒𝑎,𝑒,𝑒′

𝜕2

𝜕𝑟𝑎𝑒′
2 𝜙𝑙) = −

ℏ
2

𝑚𝑒
∑

𝜕

𝜕𝑟𝑎𝑒
𝑎𝑒 𝜙𝑙  

That is 

[𝐻0
𝑒 , ∑ 𝒓𝑒𝑒 ]𝜙𝑙 = −

ℏ
2

𝑚𝑒
∑ 𝜵𝑟𝑒𝑒 𝜙𝑙 . (S34)  

Using 𝜙𝑙(𝒓, 𝑹) = (
1

𝐸𝑙
)𝐻0

𝑒𝜙𝑙(𝒓, 𝑹) and eq S34, we have 

⟨𝜙𝑓|∑ 𝒓𝑒𝑒 |𝜙𝑖⟩𝑒
=

1

𝐸𝑖
⟨𝜙𝑓| ∑ 𝒓𝑒𝑒 𝐻0

𝑒𝜙𝑖⟩
𝑒

=
1

𝐸𝑖
⟨𝜙𝑓 |(𝐻0

𝑒 ∑ 𝒓𝑒𝑒 +
ℏ

2

𝑚𝑒
∑ 𝜵𝑟𝑒𝑒 )| 𝜙𝑖⟩

𝑒
=

𝐸𝑓

𝐸𝑖
⟨𝜙𝑓| ∑ 𝒓𝑒𝑒 𝜙𝑖⟩

𝑒
+

ℏ
2

𝑚𝑒𝐸𝑖
⟨𝜙𝑓|∑ 𝜵𝑟𝑒𝑒 |𝜙𝑖⟩𝑒

.  

Defining 𝛥𝐸 = 𝐸𝑖 − 𝐸𝑓, after organization the above formula can be reduced to 

⟨𝜙𝑓|∑ 𝒓𝑒𝑒 |𝜙𝑖⟩𝑒
=

ℏ
2

𝑚𝑒𝛥𝐸
⟨𝜙𝑓|∑ 𝜵𝑟𝑒𝑒 |𝜙𝑖⟩

𝑒
, (S35)  

which is called as the velocity form. 

(b  The acceleration form of the electronic coupling element in the radiative decay 

rate. 

In view of the commutability of 𝑇𝑒 with 𝜵𝑟𝑒
, we obtain 
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[∑ 𝜵𝑟𝑒𝑒 , 𝐻0
𝑒]𝜙𝑙 = [∑ 𝜵𝑟𝑒𝑒 , 𝑉(𝒓, 𝑹)]𝜙𝑙

= ∑ 𝜵𝑟𝑒𝑒 (𝑉(𝒓, 𝑹)𝜙𝑙) − 𝑉(𝒓, 𝑹) ∑ 𝜵𝑟𝑒𝑒 𝜙𝑙

= (∑ 𝜵𝑟𝑒
𝑉(𝒓, 𝑹)𝑒 )𝜙𝑙. (S36)

Similarly using 𝜙𝑙(𝒓, 𝑹) = (
1

𝐸𝑙
)𝐻0

𝑒𝜙𝑙(𝒓, 𝑹) and eq S36 gives 

⟨𝜙𝑓|∑ 𝜵𝑟𝑒𝑒 |𝜙𝑖⟩𝑒
=

1

𝛥𝐸
⟨𝜙𝑓|∑ 𝜵𝑟𝑒

𝑉(𝒓, 𝑹)𝑒 |𝜙𝑖⟩𝑒
, (S37)  

which is called as the acceleration form. 

(c  The acceleration form of the electronic coupling element in the non-radiative 

decay rate. 

Correspondingly, the nonradiative decay rate can also be transformed into the 

equivalent acceleration form. In view of the commutability of 𝑇𝑒 with 𝜵𝑅𝑛
, we obtain 

an important relation 

[∑ 𝜵𝑅𝑛𝑛 , 𝐻0
𝑒]𝜙𝑙 = [∑ 𝜵𝑅𝑛𝑛 , 𝑉(𝒓, 𝑹)]𝜙𝑙

= ∑ 𝜵𝑅𝑛𝑛 (𝑉(𝒓, 𝑹)𝜙𝑙) − 𝑉(𝒓, 𝑹) ∑ 𝜵𝑅𝑛𝑛 𝜙𝑙

= (∑ 𝜵𝑅𝑛𝑛 𝑉(𝒓, 𝑹)) 𝜙𝑙 + 𝑉(𝒓, 𝑹) ∑ 𝜵𝑅𝑛𝑛 𝜙𝑙 − 𝑉(𝒓, 𝑹) ∑ 𝜵𝑅𝑛𝑛 𝜙𝑙

= (∑ 𝜵𝑅𝑛𝑛 𝑉(𝒓, 𝑹)) 𝜙𝑙 . (S38)

  

Employing 𝜙𝑙(𝒓, 𝑹) = (
1

𝐸𝑙
)𝐻0𝜙𝑙(𝒓, 𝑹) and eq S38, we obtain the acceleration form 

for the nonradiative decay rate: 

⟨𝜙𝑓| ∑ 𝜵𝑅𝑛𝑛 𝜙𝑖⟩𝑒
=

1

𝛥𝐸
⟨𝜙𝑓|∑ 𝜵𝑅𝑛𝑛 𝑉(𝒓, 𝑹)|𝜙𝑖⟩𝑒

. (S39)  

 

6. The potential energy curves and coordinate transformation relations. 

As mentioned above, the vibrational wave function 𝜒𝑚(𝑙)(𝑹)  satisfies the 

Schrödinger equation 

[− ∑ ∑
ℏ

2

2𝑀𝑛

𝜕2

𝜕𝑅𝑎𝑛
2 + 𝑊𝑙({𝑅𝑎𝑛})𝑁

𝑛=1𝑎 ] 𝜒𝑚(𝑙)({𝑅𝑎𝑛}) = 𝐸𝑙𝑚(𝑙)𝜒𝑚(𝑙)({𝑅𝑎𝑛}), (S40)  

where 𝑎 depicts Cartesian coordinate component. Expand 𝑊𝑙({𝑅𝑎𝑛}) into a Taylor 

series according to 

𝑊𝑙(𝑹) = 𝑊𝑙(𝑹𝑙
0) +

1

2
∑ 𝐶𝜈𝜆

𝑙 𝑢𝜈;𝑙𝑢𝜆;𝑙
3𝑁
𝜈,𝜆=1 , (S41)  

where 𝑢𝜈;𝑙 = 𝑅𝑛 − 𝑅𝜈;𝑙
0  . It is common to introduce the harmonic approximation in 
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computing vibrational wave functions, therefore we introduce two successive 

transformations: 

𝑢𝜈;𝑙 = √
𝑀

𝑀𝜈
�̄�𝜈;𝑙, (S42)  

and 

�̄�𝜆;𝑙 = ∑ 𝐴𝜆𝜌
𝑙 𝑄𝜌,𝑙

3𝑁
𝜌=1 . (S43)  

The quantities 𝑄𝜌,𝑙  introduced above are the normal coordinates, describing 

independent simple harmonic vibrations. Through the coordinate transformation, the 

effective potential energy surface 𝑊𝑙(𝑹) is transformed into the sum of the potential 

energy of classical harmonic oscillators. Substituting the above two transformation 

relations into eq S40, one obtains1 

(∑ 𝐻𝜌
𝑙3𝑁

𝜌=1 )𝜒𝑚(𝑙) = (𝐸𝑙𝑚(𝑙) − 𝑊𝑙(𝑹𝑙
0)) 𝜒𝑚(𝑙), (S44)  

where 

𝐻𝜌
𝑙 =

1

2𝑀

𝜕2

𝜕𝑄𝜌;𝑙
2 +

1

2
𝑐𝜌;𝑙𝑄𝜌;𝑙

2 , (S45)  

and 

𝑐𝜌;𝑙 = (𝐴𝜈𝜌
𝑙 )−1 ∑ 𝐶𝜈𝜆

𝑙 𝑀

√𝑀𝜈𝑀𝜆
𝜆 𝐴𝜆𝜌

𝑙 (S46)  

Equation S44 is the Schrödinger equation for simple harmonic vibration. Therefore, the 

coordinate transformation relations between 𝑄𝑘 and 𝑅𝑎𝑛 are given by 

𝑅𝑎𝑛 − 𝑅𝑎𝑛
0 = √

𝑀

𝑀𝑛
∑ 𝐴𝑎𝑛;𝑘𝑄𝑘

3𝑁
𝑘=1 . (S47)  

𝐴𝑎𝑛;𝑘 is the coordinate transformation matrix element. Employing the chain rule for 

derivation of compound functions, for an arbitrary composite function 𝑓 we have 

𝜕𝑓

𝜕𝑄𝑘
= ∑ √

𝑀

𝑀𝑛
𝐴𝑎𝑛;𝑘

𝜕𝑓

𝜕𝑅𝑎𝑛
𝑎𝑛 . (S48)  

 

7. The evaluation of 𝑬𝒂𝒏
𝒏𝒆𝒘

. 

The electronic interaction term defined by 𝐸𝑎𝑛(𝑹) = ⟨𝜙𝑓 |
𝜕𝑉(𝒓,𝑹)

𝜕𝑅𝑎𝑛
| 𝜙𝑖⟩

𝑒
  will 

change to 𝐸𝑎𝑛
𝑛𝑒𝑤(𝑹)  with the new potential energy 𝑉𝑛𝑒𝑤(𝒓, 𝑹) = 𝑉(𝒓, 𝑹) +

𝛥𝑉(𝒓, 𝑹) . Through the relationship between gradient operator 𝜵𝑅𝑛
  and partial 

derivative operator 
𝜕

𝜕𝑅𝑎𝑛
: 
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𝜵𝑅𝑛
(𝛥𝑉(𝒓, 𝑹)) = ∑ (

𝜕(𝛥𝑉(𝒓,𝑹))

𝜕𝑅𝑎𝑛
) 𝒏𝑎𝑛𝑎𝑛 , (S49)  

and ⟨𝜙𝑓|∑ 𝜵𝑅𝑛
(𝛥𝑉(𝒓, 𝑹))𝑛 |𝜙𝑖⟩ ∝ ⟨𝜙𝑓|∑ (𝛼𝑉(𝒓, 𝑹)𝒏𝑎𝑛)𝑎𝑛 |𝜙𝑖⟩  (eq 17 in main text , 

we have 

𝜕𝑉𝑛𝑒𝑤(𝒓,𝑹)

𝜕𝑅𝑎𝑛
=

𝜕𝑉(𝒓,𝑹)

𝜕𝑅𝑎𝑛
+

𝜕(𝛥𝑉(𝒓,𝑹))

𝜕𝑅𝑎𝑛
=

𝜕𝑉(𝒓,𝑹)

𝜕𝑅𝑎𝑛
+ 𝛼𝑉(𝒓, 𝑹). (S50)  

Correspondingly the new electronic interaction term is 

𝐸𝑎𝑛
𝑛𝑒𝑤(𝑹) = ⟨𝜙𝑓 |

𝜕𝑉𝑛𝑒𝑤(𝒓,𝑹)

𝜕𝑅𝑎𝑛
| 𝜙𝑖⟩

𝑒

= ⟨𝜙𝑓 |
𝜕𝑉(𝒓,𝑹)

𝜕𝑅𝑎𝑛
| 𝜙𝑖⟩

𝑒
+ ⟨𝜙𝑓|𝛼𝑉(𝒓, 𝑹)|𝜙𝑖⟩𝑒

= 𝐸𝑎𝑛(𝑹) + ⟨𝜙𝑓|𝛼𝑉(𝒓, 𝑹)|𝜙𝑖⟩𝑒
. (S51)

  

Please note that SI-1, SI-2, SI-3 and SI-6 are all cited from ref 1 below. For further 

details, please refer to ref 1. 
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