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Supplementary Figure 1: Original Fermi surface mappings of CsTi3Bi5 over three

momentum regions. The Fermi surface in Fig. 1 is obtained from these results by considering

six-fold symmetry.
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Supplementary Figure 2: Origin of the flat band in CsTi3Bi5. a-c Electronic band struc-

tures of the tight-binding model of kagome lattice weighted by projected composition of three

sublattices A, B, and C, respectively. d The localized eigenstate of the flat band in (a-c), where

“+” and “-” represent the sign of wavefunctions of different sites. e DFT electronic band structures

of CsTi3Bi5 with considering SOC. f Charge density distribution of the flat band states at the M,

M’, and K respectively. The charge density distribution is drawn with an isosurface of about 0.004

e/Bohr3. These three electronic states are marked by blue arrows in (e).
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Supplementary Figure 3: The buildup of the spectral weight in the binding energy

range of 250∼500meV across the entire Brillouin zone. a,b Detailed band structures

measured along the Γ̄-M̄ and Γ̄-K̄ high symmetry directions, respectively. The spectral weight

buildup regions are marked by the dashed red frames. c,d The corresponding EDCs from a and

b, respectively. For clarity, the EDCs are offset along the vertical axis. The blue ticks mark the

energy position of kagome lattice-derived flat band. The red ticks mark the cutoff energy position

of the spectral weight buildup at the binding energy of ∼250meV. The shaded regions correspond

to the spectral weight buildup regions in a and b. e,f Representative EDCs selected from c and

d, respectively, in order to highlight the flat band energy positions and the cutoff position of the

spectral weight buildup. The flat band top (FBTop) lies at ∼250meV as marked by the peak

position of the EDCs at M̄ and K̄. The flat band bottom (FBBottom) lies at ∼500meV as marked

by the peak position of the EDCs at Γ̄. The flat band top and bottom energy positions coincide

with the top and bottom cutoff positions of the extra spectral weight buildup, indicating that they

are closely related to each other.
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Supplementary Figure 4: Comparison between the measured band structures and

the calculated kz-integrated band structures for CsTi3Bi5. a,b Detailed band structures

measured along the Γ̄-M̄ and Γ̄-K̄ high symmetry directions, respectively. The spectral weight

buildup regions between -0.25∼-0.50 eV are marked by the dashed red frames. c,d Calculated

kz-integrated band structures along the Γ̄-M̄ andΓ̄-K̄ high symmetry directions.
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Supplementary Figure 5: Calculated distribution of the NL1 and NL2 Dirac nodal

lines in three-dimensional Brillouin zone. a Electronic band structures without SOC for

CsTi3Bi5. The β, γ, and δ bands are drawn with black, red and blue colors, respectively. Two sets

of Dirac nodal points (NL1 and NL2) are marked by arrows. b Three-dimensional Brillouin zone of

CsTi3Bi5 with high symmetry points and high symmetry planes marked. c,d The formation of the

NL1 Dirac nodal loops in the kz=0 and kz=1 planes, respectively. e,f Discrete NL1 Dirac nodal

lines along kz direction in the Γ-A-H-K plane (e) and the Γ-A-L-M plane (f). g,h The formation

of the NL2 Dirac nodal loops in the kz=0 and kz=1 planes, respectively. i Continuous NL2 Dirac

nodal lines along kz direction in the Γ-A-H-K plane. j Discrete NL2 Dirac nodal lines along kz

direction in the M-L-H-K plane. The energy gap between the corresponding bands is represented

by the bottom-right colar scale. The top-left color legends in c-j correspond to the colors of the

planes that are drawn in b.
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Supplementary Figure 6: Nontrivial Z2 invariant of bands near the Fermi level. a

Calculated electronic bands with SOC for CsTi3Bi5. The α, β, γ, δ and ϵ bands are drawn with

orange, green, light blue, blue, and purple colors, respectively. Band crossings along the Γ-A path

between the γ and β bands, as well as between the β and α bands are marked by dashed circles.

Continuous band gaps throughout the whole Brillouin zone exist between the ϵ and δ bands, as

well as between the δ and γ bands. b Products of parity for the four TRIM points and Z2 invariant

for the δ and ϵ bands.
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Supplementary Note 1. Destructive interference origin of flat band in CsTi3Bi5

Destructive interference is a common feature of most flat band models in condensed

matter physics, including flat band kagome lattice. This destructive interference mechanism

can be well explained by a basic nearest-neighbor (NN) tight-binding model. There are

three inequivalent sublattices, namely, A, B and C in the unit cell of the kagome lattice.

One single orbital on each sublattice is considered. Taking into account only NN hopping

of the three sublattices, a three-band momentum space Hamiltonian can be written as:

h(k) =


0 2t cos(k·a1

2
) 2t cos(k·a2

2
)

2t cos(k·a1
2
) 0 2t cos(k·(a1+a2)

2
)

2t cos(k·a2
2
) 2t cos(k·(a1+a2)

2
) 0

 (1)

where t, a1, a2 and k represent the NN hopping parameter, lattice vectors and wave vector

of reciprocal space, respectively. The eigenvalues of this matrix are E1 = −2t and E2,3 =

t[1 ±
√
4(cos2(k·a1

2
) + cos2(k·a2

2
) + (cos2(k·a1+a2

2
))] as plotted in Supplementary Fig. 2a-2c.

The Bloch eigenstates of the flat band E1 = −2t can be simply written as:

ϕ(k) = sin(
k · (a1 + a2)

2
)c†k,A − sin(

k · a2
2

)c†k,B + sin(
k · a1
2

)c†k,C . (2)

Now let us calculate the wannier function of the flat band by Fourier transformation of

the Bloch eigenstates:

ϕ(R) = N

∫
BZ

dke−ik·Rϕ(k) =
1√
6

6∑
a=1

(−1)ac†a. (3)

where N is a normalization constant and a runs over the six vertices of a hexagon centered

at the chosen R. As shown in Supplementary Fig. 2d, ϕ(R) takes the form of a localized

hexagonal plaquette[1]. The wavefunctions keep the same amplitude but change signs se-

quentially at six vertices of the hexagon. This causes destructive interference of the wave

functions at the six vertices of the hexagram. There is no possibility of an electron hopping

from the hexagon to six vertices of the hexagram and hence traveling to the outside lattice.

According to Eq. (1) and Eq. (2), the bands in Supplementary Fig. 2a-2c can be colored

by weights of the projected composition of three sublattices. We can see that the weights

of the three sublattices along high-symmetry paths are different in the flat band and two

dispersion bands. For example, the lower van Hove singularity at point M corresponds to
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pure sublattice character of B, while the upper van Hove singularity and flat band at the M

point show mixed sublattice character of A and C.

Part of the flat band of CsTi3Bi5 observed by ARPES shows a good agreement with DFT

calculations in Figs. 2c and 2d. To confirm that the flat band near -0.25 eV comes from

the flat band generated by destructive interference in the kagome tight-binding model, we

analyzed the Bloch eigenstates of the flat band of CsTi3Bi5 at several specific momenta,

including M , M ′ and K points as marked in Supplementary Fig. 2e. Their real space

charge densities are plotted in Supplementary Fig. 2f. For different k-points, the ratios of

the three sublattice charge densities are quite different. At the M point, the charges are

equally distributed near the A and C sublattices, but not near the B sublattice. At the M ′

point, the charge near A and C sublattices are equivalent, and each of them is much larger

than that of the B sublattice. While at the K point, A, B and C sublattices have exactly the

same charge density distributions near them. These features are consistent with those of the

flat band of the tight-binding model in Supplementary Fig. 2a-2c. These results show that

the flat band formed by Ti-dx2−y2/xy orbital near -0.25 eV in DFT calculations originated

from the destructive interference mechanism of the kagome lattice.
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