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Observation of monopole topological mode

Hengbin Cheng 1,2, Jingyu Yang 1,2, Zhong Wang 3 & Ling Lu 1

Among the many far-reaching consequences of the potential existence of a
magnetic monopole, it induces a topological zeromode in the Dirac equation,
which was derived by Jackiw and Rebbi 48 years ago and has been elusive ever
since. Here, we show that themonopole andmulti-monopole solutions can be
constructed in the band theory by gapping the three-dimensional Dirac points
in hedgehogmass configurations.We then experimentally demonstrate such a
monopole bound state in an optimized Dirac acoustic crystal structurally
modulated in full solid angles. The monopole mode exhibits the optimal
scaling behavior—whosemodal spacing is inversely proportional to the cubic
root of the modal volume. This work completes the kink-vortex-monopole
zero-mode trilogy and paves the way for exploring higher-dimensional bulk-
topological-defect correspondence.

The hallmark of topological physics1–8 is the robust boundary mode
protected by the non-trivial bulk gap—known as the bulk-boundary
correspondence. As more and more such topological modes have
been discovered at various locations in diverse lattice types—such as
kinks, edges, surfaces, corners, hinges, vortices, disclinations, and
dislocations, there is a growing consensus that a general corre-
spondence exists between the bulk and the topological defects9–12,
where certain order parameters of the lattice change dis-
continuously. However, among all possible topological defect states
up to three dimensions (Fig. 1a), the monopole state remains
undiscovered13.

In topological band theory, the order parameters defining the
topological defects can be understood as themass terms14,15, the scalar
or vector parameters that gap out the band degeneracies known as the
Dirac points, whose low-energy theory is described by the celebrated
Dirac equation. The topological defects of Dirac masses, in one, two,
and three dimensions (3D), were first studied by Jackiw, Rebbi, and
Rossi16,17, who derived the zero-energy modes in kink, vortex, and
monopole mass settings (Fig. 1b). The kink solution16, of one mass
term, has been realized in polyacetylene as in the
Su–Schrieffer–Heegermodel18 in 1D, andon the edge and surfaceof 2D
and 3D topological insulators. The vortex solution17, of two mass
terms, has found connections to the Majorana modes in 2D
superconductors19, the dislocation line states20,21 in 3D, and has been
recently demonstrated in phononic22–24 and photonic crystals25–27

based on the Kekulé-distorted graphene model28.

However, regarding the monopole solution, of full three mass
terms in the dimension of our real world where the Dirac equation
was originally written, no progress has been made towards its
physical discovery since the analytical result was obtained in 197616.
In this work, we theoretically propose and experimentally demon-
strate this monopole topological mode in a Dirac crystal with
hedgehog real-space modulations. We further show that the
monopole mode has the optimal mode spacing in the limit of large
mode volume.

Results
Jackiw–Rebbi monopole mode
After the proposals of the Dirac monopole in Maxwell’s equations29

and the ’t Hooft–Polyakov monopole in Yang–Mills equations30,31,
Jackiw and Rebbi found a zero-mode solution bound to themagnetic
monopole in the Dirac equation16. Themonopole zeromode arises at
a 3D topological point defect of three independent mass terms in an
8-by-8 extended Dirac equation shown in Fig. 1b. There has to be a
minimal of eight bands to allow three mass terms for the 3D
hedgehog construction without breaking the time-reversal
symmetry.

We first generalize the Jackiw–Rebbi single-monopole mass pro-
file into the multi-monopole case of arbitrary charges. Although the
mass distribution can be chosen to be spherically symmetric for a
singlemonopole, it cannotbe formonopoles of charge >132. Our choice
of the spatial mapping of the Dirac-mass vectors
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m̂ðrÞ= ðm̂xðrÞ,m̂yðrÞ,m̂zðrÞÞ is expressed as

m̂xðrÞ= sinðW θθÞ cosðWϕϕÞ
m̂yðrÞ= j sinðW θθÞj sinðWϕϕÞ
m̂z ðrÞ= cosðW θθÞ

W =
1
8π

Z
A
dAϵθϕϵxyzm̂x∂θm̂y∂ϕm̂z =W θWϕ

ð1Þ

where θ and ϕ are the polar and azimuthal angles in the spherical
coordinate; Wθ and Wϕ are the corresponding winding numbers. W is
the monopole charge, measuring how many times the three-
component Dirac-mass vectors wrap around a closed surface (A)

enclosing themonopole. The absolute value in m̂y ensured that the 3D
wrapping number (W) is expressed by the product of the two angular
winding numbers. If we use the standard parametrization without the
absolute value33, W = 1�ð�1ÞWθ

2 Wϕ (see Supplementary Note I for
comparison). The reason is that the polar angle θ∈ [0, π] generates
alternating signs ofmz that unwind each other, while the absolute sign
on eithermx or my reverses the sign of the in-plane winding wherever
mz unwinds in the polar direction.

In the band-theory language, the above Dirac theory works at the
vicinities of the Dirac points in the band structures. The 8-by-8 Dirac
equation can be constructed by coupling the two 4-by-4 3D Dirac
points. The three mass terms mean three independent ways or per-
turbations to open the bandgap. In condensed matter, the same low-

Fig. 1 | Bulk-topological-defect correspondence and the zero-mode trilogy.
a Summary of the topological modes at topological defects (marked as red points,
lines, and plane), where the Dirac mass (with components mx, my, mz) has an
undefined singularity in various dimensions. The blue arrows represent the phase
(or sign) of themass terms in the bulk, on the surface, or on the edge.b Zero-mode

trilogy. σi are the Pauli matrices, γij= σi⊗σj are the gamma matrices, and
Γijk = σi ⊗ σj ⊗ σk, where ⊗ is the Kronecker product. SSH Su–Schrieffer–Heeger18,
HCM Hou–Chamon–Mudry28, DFB distributed feedback56, VCSEL vertical-cavity
surface-emitting laser57, TCSEL topological-cavity surface-emitting laser40. The
scaling behavior between the mode spacing (FSR) and mode volume (V) is listed.
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energy Hamiltonian describes the 3D Majorana zero modes34,35,
although there has been no clue where to find them. In topological-
defect classifications10, the kink, vortex, and monopole zero modes in
1D, 2D, and 3D all belong to the same Altland–Zirnbauer symmetry
class BDI with integer invariant (Z) under time-reversal and chiral
symmetries.Of course, the chiral symmetry is not rigorously present in
our acoustic system, since the spectrum is not exactly up-down sym-
metric with respect to the Dirac frequency.

Double 3D Dirac point
The starting point of our design is a crystal hosting two 3DDirac points
to form an 8-by-8 Dirac theory. Our Dirac acoustic crystal is defined by
the 3D periodic implicit functions

f DðrÞ =
P
cyc

sinð4πa xÞ cosð2πa yÞ sinð2πa zÞ

+3
P
cyc

cosð4πa xÞ cosð4πa yÞ, ð2Þ

where a is the lattice constant and
P

cyc is the sum over the cyclic
permutation of (x, y, z). The volume of fD(r) ≥ −1.56 is filled with sound-
hard material like plastic, and the rest of the volume is air. This lattice
geometry of space group Ia�3d (#230) is improved upon a previous
blue-phase-I (BPI) structure36–38 to have two fully frequency-isolated
Dirac points, locating at the high-symmetry momenta (±P) in the
Brillouin zone of the body-centered-cubic (BCC) primitive cell
(Supplementary Note II). By taking the simple-cubic super-cell as
shown in Fig. 2, two Dirac points fold to the momentum R point of the
simple-cubic Brillouin zone, forming an 8-by-8 double Dirac point.

Here we explain a general approach to construct photonic and
phononic crystals of a specific space group G using triply periodic
functions FG(r), like the one in Eq. (2). This is done through a generic
Fourier expansion39FGðrÞ=

P
i½Ai cosðki � rÞ+Bi sinðki � rÞ� with the real

coefficients Ai and Bi, satisfying FG(r) = FG(gr) for each space-group
element g∈G. The reciprocal lattice vectors k= ðl 2πa ,m 2π

b ,n 2π
c Þ are

defined by the lattice constant a, b, c, and integers l,m, n. One usually
takes the lowest l,m, and n values for the simplest structures. We use
this method to obtain the Dirac structure of Eq. (2) (detailed in

Supplementary Note III), as well as the symmetry-breaking perturba-
tions in Eq. (3) to engineer the Dirac masses.

Dirac-mass engineering
In this section, we present the physical realizations of the mass terms
for the double 3DDirac point through symmetry arguments and space
group relations. Each mass term gaps the Dirac degeneracy, by
breaking the specific symmetries and reducing the #230 space group
to its subgroup. By identifying the corresponding subgroup for each
mass term, we can construct the structural perturbations of each
subgroup using the periodic-function method described in the pre-
vious section.

The total number of four mass terms (mx, my, mz, m0) and their
symmetry properties are derived from the low-energy (k ⋅ p) theory of
the eight-band Dirac point, given in Fig. 1b and detailed in Supple-
mentary Note IV. All four masses are invariant under time-reversal
symmetry, while only mx is invariant under inversion symmetry (cen-
trosymmetric). The first two masses (mx, my) break the BCC primitive
translations and expand the BCC primitive cell to the cubic supercell;
they couple the two four-band Dirac points to open a gap and are thus
called the “super-cellmasses”. The latter twomasses (mz,m0) break the
inversion symmetry to gap the two Dirac points in the BCC primitive
cell; they are thus called the “primitive-cell masses”.

The two primitive-cell masses (mz, m0) can be realized in the
subgroups #220 and #214, respectively. These are the only two BCC
subgroups that remain when inversion is removed from #230. They
represent two independent ways to break inversion and correspond to
the two different masses. Further details on the mass-subgroup rela-
tions can be found in Supplementary Note V.

The two super-cell masses (mx, my) can both be realized in the
same subgroup #205, the only centrosymmetric subgroup of #230
that remains when the primitive translations are removed. Physically,
this implies that the two distinct super-cell masses can be realized by
identical structures that are symmetry-related. To understand this, we
note that though both masses have inversions in #205, they do not
share the same inversion center. This is consistent with the symmetry
analysis, which shows that only one super-cell mass, mx, is invariant
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Fig. 2 | Acoustic realizationof the double Dirac point and the threemass terms
for themonopole design. a The ideal Dirac acoustic crystal with the 8-band Dirac
point in the super-cell. b, d, f The perturbed geometries defined by

fD(r) + δfi(r), (i = x, y, z), whose band structures are plotted in (c) and (e). The
rainbow-colored arrows represent the hedgehog form of the Dirac mass vector
(mx, my, mz).
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under inversion. These two inversion centers, (0,0,0) and ð14 , 14 , 14Þ, are
originally related by the symmetry operations in #230 but absent in
#205. One such symmetry is the glide translation fM01�1jð14 , 14 , 14Þg, where
M01�1 is amirror, and squaring the glide is the BCCprimitive translation.
Correspondingly, mx and my can also be transformed into each other
under the glide that translates between the inversion centers. The fact
that super-cell masses can be related under fractional lattice transla-
tions also appears in the previous low-dimensional examples, such as
the SSH model18, Dirac-vortex cavity27, and one-way fiber21.

After identifying the subgroups (#205, #205, #220, #214) for the
four Dirac masses (mx, my, mz, m0), we construct the geometric per-
turbations (δfx, δfy, δfz, δf 0) within each subgroup. When these per-
turbations are added to the original #230 structure fD, they gap the
Dirac points. The method for finding these perturbation functions
within specific subgroups is identical to that used in finding fD(r) in
Eq. (2).

The functional forms of the first three perturbations are listed in
Eq. (3), in which the coefficients (amplitudes) are chosen to maximize
the size of the common gap as plotted in Fig. 2. It is easy to check that
δfx(r) and δfy(r) are related by the glide symmetry and share the same
band structure in Fig. 2e, ensuring the identical bandgap frequencies
and size. Since δf 0 (in Supplementary Note VI) opens the smallest
bandgap (shown in Supplementary Note VII) compared with the other
three masses, we do not include it for the cavity construction.

δf xðrÞ =0:60
P
cyc

cosð4πa xÞ sinð4πa yÞ sinð2πa zÞ

δf yðrÞ =0:60
P
cyc

sinð4πa xÞ cosð4πa yÞ cosð2πa zÞ

δf z ðrÞ =0:36
P
cyc

cosð4πa xÞ sinð2πa yÞ cosð2πa zÞ
ð3Þ

Monopole-cavity construction
With three independent mass realizations at hand, we construct the
monopole cavity by applying the direction-dependent perturbations
to the otherwise uniform 3D Dirac crystal, where (δfx, δfy, δfz) are
aligned to the three spatial axes. The geometry of themonopole cavity

is defined by

f DðrÞ+
X

i= x,y,z

m̂iðr,W θ,WϕÞδf iðrÞ≥ � 1:56 ð4Þ

where the hedgehog mass vector m̂iðr,W θ,WϕÞ is given in Eq. (1) with
the monopole charge W =WθWϕ.

The numerical results of the single- and multi-monopole modes
are presented in Fig. 3. To design the single-monopole cavity, we take
Wθ =Wϕ = +1, whosemass field is illustrated in Fig. 3a. A singlemid-gap
mode appears in the numerical spectrum in Fig. 3b, whose frequency
deviation from that of the original Dirac point is less than 1%. Plotted in
Fig. 3c is the pressure field of the topological mode localized at the
cavity center, with four cubic cells cladding in each direction. To
design themulti-monopole cavity, we takeWθ =Wϕ = +2withW = +4 as
an example. The high-charge hedgehog field is illustrated in Fig. 3d.
The numerical results in Fig. 3e, f show four nearly degeneratemid-gap
modes, whose frequency differences are within 1%.

Acoustic experiments
Encouraged by the simulation results, we 3D-print the acoustic
monopole cavity with stereolithography using photo-curable resin. As
shown in Fig. 4a, the sample has a total volumeof (36 cm)3 and a lattice
constant of a = 3 cm. This bi-continuous structure has two types of
through holes, separated by 15mm (a2), whose diameters are about 1.9
and 2.8mm allowing stainless-steel tubes to get inside the sample for
spectral and spatial measurements. The sound source is an earphone
whose output tube tip, a diameter of 2.4mm, is placed near the cavity
center. A micro-tube probe (B&K-4182) of diameter 1.2mm is used to
detect the sound pressure at any point in the sample. The acoustic
signal is a broadband pulse of a 12.0 kHz central frequency and a
6.4 kHz bandwidth, generated and recorded by a signal analysis
module (B&K-3160-A-042), the spectrum recorded in each measure-
ment is averaged a hundred times.

The two spectra in Fig. 4b demonstrate the existence of the
bandgap and the localized mid-gap mode. When the probe is off-
center, the low signal response indicates a bandgap region roughly

Fig. 3 | Single and multi-monopole cavities. a–c Dirac-mass field, eigenvalue spectrum, and the modal field distribution of the single-monopole cavity. d–f Dirac-mass
field, eigenvalue spectrum, and the modal field distributions of the multi-monopole cavity with charge four.
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from 11 to 12.5 kHz. When the probe is centered, a resonate mode
peaks in themiddle of the gap at 11.76 kHz, whose quality factor is ~73.
The field profiles of the resonant modes are mapped out by scanning
the probe tube inside the through holes of the sample using a
motorized stage. The pressurefields are recorded, with the step size of
7.5mm (= a

4), on the three orthogonal surfaces crossing the cavity
center. In Fig. 4c–e, we plot the signal profiles at the frequencies of the
three central resonatemodes. It is obvious that only themid-gapmode
is localized as a defect state. The robustness of the topologicalmode is
tested in Supplementary Note VIII, with over a hundred of steel sticks
penetrating the cavity.

Optimal scaling behavior
The free spectral range (FSR), of a resonator cavity, is the frequency
spacing between adjacent modes that shrinks as the mode volume (V)
expands. A wider FSR improves the wavelength-multiplexing band-
width, the spontaneous emission rate, and the stability of single-mode
operation. Although conventional cavities have an inverse pro-
portionality betweenmodal spacing andmodal volume (FSR∝V−1), the
recentDirac-vortex cavity27 exhibits FSR/ V�1

2 that dropsmuch slower
than the common scaling rule and is beneficial for broad-area single-
mode lasers40. Here, we show the monopole cavity offers the optimal
scaling of FSR / V�1

3 (Fig. 1b). A general theoretical argument is given
in Supplementary Note IX to derive the above scaling laws using the
concept of density-of-states.

We demonstrate numerically, in Fig. 5, the scaling law of the
monopole cavity. There are two methods to enlarge the volume of the
monopole topological mode. One method is to lower the bandgap
size40,which is twice theFSR for themid-gapmode.Theothermethod is

to expand the central singular point27 (R =0) into a volume of non-
modulatedDirac latticewith afinite radiusR, shown in Fig. 5b inset. AsR
increases, the volume of the mid-gap mode increases and the high-
order cavitymodes drop into the bandgap.We take thisfinite-Rmethod
because it requires smaller computational domains and resources. For
the same mode volume, the finite-R cavity is more spatially confined
than the R =0 version, due to the non-decaying wavefunction in the
gapless core and the fastest decaying tails in the cladding region by
choosing the largest bandgap. The FSR / V�1

3 relation is clearly identi-
fied in the simulation results fromR = 2a to 10a in Fig. 5b.Due to the size
limitation of 3D-printing and the high acoustic absorption, the experi-
mental verification of the scaling law and the multi-monopole reso-
nances are challenging, as shown in Supplementary Note X. These
challenges might be alleviated in photonic platforms.

The unique advantage of the monopole cavity is the robust
mechanism in pinning the defect modes at the middle of the bandgap
as the FSR is being tuned to zero in a well-controlled fashion. The non-
topological defect modes lack the mechanism to stabilize a single
mode at the center of the gap in the first place. Comparing with the
topological corner modes of third-order 3D topological crystals41–45,
themonopoledesign avoids sharp interfaces aswell as the extradefect
modes associated with the additional surfaces and hinges.

Discussion
We experimentally realize the Jackiw–Rebbi monopole mode pro-
posed in their seminar paper from 1976, by observing the topological
mode of a 3D topological point defect in a lattice. The method for
constructingmass hedgehogs is applicable to other 3D Dirac andWeyl
systems46–50. Our work completes the zero-mode trilogy, of kink-

Fig. 4 | Experimental results on the monopole cavity. a Photograph of the
experiment setup and a zoom-in of the sample surface. The 3D-printed cavity has a
lattice constant a = 3 cm and a sample size of (12a)3. b The frequency response of

the cavity shows a single mid-gap resonance. c–e Probe scans of the pressure field
distributions inside the sample at three resonant peaks across the bandgap.
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vortex-monopole, as well as the bulk-topological-defect correspon-
dence within three spatial dimensions and within Hermitian theory.
Extensions to the time dimension (such as instantons51 and time crys-
tals), synthetic spaces52,53, as well as non-Hermitian systems can be
explored in the future.

Methods
Eigen-frequency solutions
The band structures and eigen-mode solutions are calculated by COM-
SOL Multiphysics. The solid-air interface is set as hard-wall boundaries.
The largest resonator size in computation is (8a)3, takingup thememory
size of 380 GB (2666MHz). The unwanted modes localized at the
scattering boundaries can be identified from their low-quality factors.

The mesh generation for large complex structures is challenging.
First, we generate the iso-surface mesh from the implicit function
using the marching cubes algorithm. Second, we improve the surface
meshes with MeshLab54 using a quadric-based edge collapse strategy.
Finally, the improved surface mesh is imported into COMSOL for
meshing the bulk with first-order free tetrahedrons. It takes a day to
mesh the cavity and another day to compute the eigen-spectrum,

containing 200 eigenmodes around the Dirac frequency, using two
Intel Xeon Gold 6140 CPUs of 36 cores at 2.30GHz.

Time-domain simulations
To further increase the simulation size, for obtaining the scaling law of
the monopole resonator, we switch to an open-source time-domain
package k-Wave55. It is based on pseudo-spectral methods and the
geometries are discretized in simple cuboids (Δx = a

32, a = 3 cm). The
computation domain includes the cavity volume of [2(R + 4a)]3 with R
from 0 to 10a, one more cell of air surrounding the cavity, and the
perfectly matched layers as the boundary condition.

We have to set the solid material parameters very carefully, in
order to make the large-scale computation feasible. The two material
parameters involved are the mass density (ρ0) and the sound velocity
(c0), whose product is the sound impedance (ρ0c0). First, ρ0c0 ≫ρaircair
approximates the hard-wall boundary condition lacked in k-Wave.
Second, c0 < cair maximizes the time step due to the Courant condition
(Δt< Δxffiffi

3
p

cair
< Δxffiffi

3
p

c0
). Third,we set thebulkmodulusρ0c02 ≪ρairc

2
air to ensure

the numerical stability that we observe in k-wave. The above three

conditions lead to our choices of c0 = 10�14 m/s and ρ0 = 1032 kg/m3 for
the hard material in simulation with Δt = 1.2 × 10−6 s.

To obtain the spectral response of the cavity, as in Fig. 5a, we
excite the modes with a broadband pulsed source near the cavity
center and hundreds of point detectors evenly distributed inside the
cavity. After 105 time steps, the recorded spectra are averaged and
normalized by the source spectrum. To obtain the modal volumes of
the monopole topological modes, as in Fig. 5b, we excite the cavity
with a narrow-band signal at the resonate frequency and apply a
Blackman window with 40,000 time steps. The resulting fields are

used to compute the modal volume as V =
RRR

dxdydz jpðrÞj2
max½jpðrÞj2 � , where p(r) is

the pressure. The time consumption for the largest cavity of R = 10a is
about threeweeks, including both the spectral andmodal calculations,
and the maximum memory in use is about 90GB.

Data availability
All the relevant data are available from the corresponding author upon
request.
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